
Simplicial Leray Cosheaf

Let f : X → Y be a continuous map.

Let U of be an open cover of f (X) ⊆ Y

Let NU be nerve of corresponding to the cover U .

For each integer i ≥ 0 we have the Leray simplicial cosheaf over
the nerve NU via the assignment

F̂i : σ  Hi(f−1(Uσ)).

If σ ≤ τ , the Uτ ⊂ Uσ . Thus, we have induced inclusion:

i∗ : Hi(f−1(Uτ ))→ Hi(f−1(Uσ)).
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Height Function on the Circle

Example: f : S1 → R.

a.) b.)
H0(-;k)! k2!k! k!

f (S1) ⊂ V ∪W . k ← k2 → k

Let v be the vertex representing V . Thus Uv = V .
Let w be the vertex representing W . Thus Uw = W .
Let e be the vertex representing V ∩W . Thus Ue = V ∩W .

H0(f−1(Uv )) = H0(f−1(V )) = k = H0(f−1(Uw) = H0(f−1(W ))

H0(f−1(Ue)) = H0(f−1(V ∩W )) = k2
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Height function on the Torus

H1!

H0!

Figure : Barcodes for Leray cosheaves coming from the height function
on the torus.

F̂1 : 0 kaoo // k2
y k2

b
oo // k2

z kcoo // 0
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F̂1 : 0 kaoo // k2
y k2

b
oo // k2

z kcoo // 0

Homology: 0→ F̂ (a)⊕ F̂ (b)⊕ F̂ (c) ∂1−→ 0⊕ F̂ (y)⊕ F̂ (z)⊕ 0→ 0

Homology: 0→ ka ⊕ k2
b ⊕ kc

∂1−→ 0⊕ k2
y ⊕ k2

z ⊕ 0→ 0

∂1 =


1 −1 0 0
1 0 1 0
0 1 0 −1
0 0 −1 −1



H1(NU ; F̂1) =<


1
1
1
1

 > H0(NU ; F̂1) ∼= k
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However, if we change our bases as follows[
y′1 = y1

y′2 = y1 + y2

] [
b′1 = b1

b′2 = b1 + b2

] [
z ′1 = z1

z ′2 = z1 + z2

]
then our cosheaf F̂1 can then be written as the direct sum of two
interval modules:

0 0oo // ky′1 kb′1
oo // kz ′1 0oo // 0

0 kaoo // ky′2 kb′2
oo // kz ′2 kcoo // 0
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This observation is, at the moment, a mere curiosity. However
when wedded with the following classical theorem it provides a
powerful result in homology:

Theorem (5.12)

Let f : X → Y be continuous. Assume a cover U of the image
f (X) ⊂ Y whose nerve NU is at most one-dimensional, i.e. the
nerve has at most 1-simplices. For each i ≥ 0, we have

Hi(X) ∼= H0(NU ; F̂i)⊕H1(NU ; F̂i−1).

The proof of this result is outside of the scope of this paper, but
can be found in many references [?, ?, ?].
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Suppose the simplicial complex K is linear: a graph where every
vertex has degree at most two and contains no cycles.

For example, the simplicial leray cosheaf where f : X → R and
U is a “nice” cover of f (X), i.e. at most double intersections.
K = NU

We can phrase these computations in terms of the barcode
decomposition of a simplicial cosheaf over a linear complex:

H0(K ; F̂ ) counts closed bars and

H1(K ; F̂ ) counts open bars.
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Recalling that the latter interval module is an open bar, we can
read off the homology of the torus T by summing the vector
spaces that lie in the same anti-diagonal slice, as described in
Theorem 5.12.

H0(NU ; F̂1) = k H1(NU ; F̂1) = k

H0(NU ; F̂0) = k H1(NU ; F̂0) = k

H0(T ) = k H1(T ) = k2 H2(T ) = k

8 / 55



Level Set Persistence Determines Sub-level Set
Persistence

Figure : Determining Sub-level Set from Level Set Persistence
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One can also use Theorem 5.12 to obtain a non-obvious theorem
in 1-D persistence: that level set persistence determines
sub-level set persistence.

By making use of the above interpretation of barcodes and
cosheaf homology, we illustrate how one can take the Leray
cosheaves presented as a barcode and sweep from left to right to
obtain the associated sub-level set persistence module (and its
barcode in certain situations).

Stated formally, we have the following theorem.

10 / 55



Theorem
Suppose X is compact and f : X → Y ⊂ R is continuous. Given a
cover U of the image with linear nerve and associated simplicial
Leray cosheaves F̂i , one can recover the sub-level set persistence
module of f for any choice of t0 < · · · < tn and integer i ≥ 0 as
follows:

1 For each tj take the intersection of elements in U with the
interval (−∞, tj ] to form the restricted cosheaves F̂i|(−∞,tj ]
and F̂i−1|(−∞,tj ].

2 The persistence module in degree i is then determined
pointwise at tj by

Hi(f−1(−∞, tj ]) ∼= H0(NU∩(−∞,tj ]; F̂i)⊕H1(NU∩(−∞,tj ]; F̂i−1).
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Proof.
One must first observe that Theorem 5.12 holds over the
restriction.

f−1(−∞, ti] //

��

X

f
��

(−∞, ti] // Y

This proves that the ith homology of the sub-level set can be
computed via cosheaf homology. Now we must show that one can
recover functoriality from the cosheaf perspective. If σ ∈ NU is a
simplex in the nerve and if t < t ′, then there is a map

Uσ ∩ (−∞, t] ↪→ Uσ ∩ (−∞, t ′].

This implies that there is a map
F̂i(Uσ ∩ (−∞, t])→ F̂i(Uσ ∩ (−∞, t ′]) and thus a map from chains
valued in F̂i|(−∞,t] to chains valued in F̂i|(−∞,t ′]. By functoriality
of spectral sequences (maps of filtrations induce maps between
spectral sequences) we get the desired map on homology.

12 / 55



Sheaves as the Correct Foundation for Level Set
Persistence

Level set persistence: take a cover U of the image of f : X → Y
and studying simplicial Leray cosheaves over the nerve NU .

Suppose we use a different cover U ′ of the image.

Is there any way of comparing the Leray simplicial cosheaves over
two different nerves?

Of course one could always refine the two covers U and U ′ to a
common cover, but it would be convenient for proving theorems to
work with all open sets at once.

This leads to the general notion of a cosheaf, which is the dual
notion of a sheaf.
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Definition (Pre-Cosheaves)
Any functor

F̂ : Open(X)→ D

is called a pre-cosheaf valued in D.
If V ⊂ U , then we usually write the extension maps of a cosheaf
as r F̂

U,V : F̂ (V )→ F̂ (U). Often we omit the superscript F or F̂ .

Definition (Pre-Sheaves)
Any functor

F : Open(X)op → D

is called a pre-sheaf valued in D.
If V ⊂ U , then we usually write the restriction maps of a sheaf as
ρF

V ,U : F (U)→ F (V ). Often we omit the superscript F or F̂ .
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Definition (Leray Pre-Cosheaf)

Given a continuous map f : X → Y and an integer i ≥ 0, one has
the Leray pre-cosheaf :

P̂i : U ⊂ Y  Hi(f−1(U))

Dually, one has the Leray pre-sheaf :

P i : U ⊂ Y  H i(f−1(U))
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k2!

k!

Figure : Visualizing the Leray pre-cosheaf H0 for the height function on
the circle.
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Example (Height Function on the Circle)
Let f : S1 → R be the function that projects
C = {(x , y) ∈ R2 | x2 + y2 = 1} onto the x-axis. For each open
set U in R, P̂i assigns the ith homology group Hi(f−1(U)) to U .
Let us restrict our functor to the category of bounded open
intervals Int(R), since they generate all of Open(R). Note that
Int(R) can be visualized as the upper half-plane
H+ = {(m, r) |m ∈ R, r > 0} by letting each point (m, r)
represent the midpoint and radius of an interval I ⊂ R:

m(I) = x + y
2 r(I) = y − x

2

The partial order I ≤ J ⇔ I ⊆ J is then equivalent to the partial
order on H+ where (m, r) ≤ (m′, r ′) if and only if
|m′ − m| ≤ r ′ − r . Thus, for maps to the real line, the Leray
pre-cosheaf P̂i assigns to each point in the upper-half plane the
vector space Hi(f−1(I)), and to each pair of inclusions I ≤ J the
map Hi(f−1(I))→ Hi(f−1(J)). For i = 0 and the height function
on the circle, this assignment is depicted in Figure 3.
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Obtaining Fibers via Stalks

One apparent disadvantage that Leray pre-cosheaves have is the
restriction to open sets U prohibits directly recording the
homology of the fiber f−1(y). However, there is a categorical
construction that can be used in some cases to derive Hi(f−1(y))
from the homology groups Hi(f−1(U)). Moreover, this
construction will work even better when we dualize to
cohomology, which motivates the use of Leray pre-sheaves.
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Definition (Limit)
The limit of a functor F : I→ C is an object lim←−F ∈ C along with
a collection of morphisms ψx : lim←−F → F (x) that commute with
arrows in the diagram of F , i.e. if g : x → y is a morphism in I,
then ψy = F (g) ◦ ψx in C.
We require that the limit is universal in the following sense: if
there is another object L′ and morphisms ψ′x that also commute
with arrows in F , then there is a unique morphism u : L′ → lim←−F
that commutes with everything in sight, i.e. ψ′x = ψx ◦ u for all
objects x in I.

L′

∃!u
��

ψ′x

��

ψ′y

��

lim←−F

ψx|| ψy ##
F (x)

F(g)
// F (y)
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Example
Let I be the category of open sets U that contain a point y ∈ Y
with morphisms corresponding to inclusions, which we call
Open(Y )y . The limit of the restricted functor
P̂i : Open(Y )y → Vect is called the costalk of P̂i at y.
Unfortunately, for a general continuous map it is unknown how
the costalk at y is related to the homology of the fiber f−1(y).
The technical reason for this is that limits and homology do not
commute [?, Prop. 2.5.19]. This is one traditional reason why
many mathematicians prefer pre-sheaves over pre-cosheaves.
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Definition (Colimit)
The colimit of a functor F : I→ C is defined in a dual manner.

F (x)
F(g) //

φx

""

φ′x

��

F (y)
φy

{{

φ′y

��

lim−→F

∃!u
��

C ′
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Example (Stalk)
Given a pre-sheaf F : Open(Y )op → Vect and a point y ∈ Y the
stalk at y is defined to be the colimit of F over open sets
containing y:

Fy := lim−→
U3y

F (U)
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In contrast to the Leray pre-cosheaves, the Leray pre-sheaves are
traditionally considered better behaved by the following theorem.

Theorem (Thm. 6.2 [?])
Suppose f : X → Y is a proper map between locally compact
spaces. For any point y ∈ Y we have

P i
y
∼= H i(f−1(y)).

Proof.
The bulk of the proof appears in Theorem 6.2 of [?, pp. 176-7]
where it is proved for the sheafification of P i , which we will
describe shortly. One can then observe that sheafification
preserves stalks to get the desired result.
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Local to Global Properties of the (Co)Sheaf Axiom

If a topological space is equipped with a cover U = {Ui}i∈I and a
pre-cosheaf F̂ , then we can define a simplicial cosheaf over NU
by restricting the assignment of F̂ to only those open sets (and
their intersections) appearing in U :

F̂ : σ  F̂ (Uσ)

One can then compute simplicial cosheaf homology of F̂ on this
cover, which is also called the

Cech homology of F̂ :

H0(NU ; F̂ ) H1(NU ; F̂ ) H2(NU ; F̂ ) · · ·

The first term H0(NU ; F̂ ) is used to define the cosheaf axiom, and
its mirror term H0(NU ;F ) is used to define the sheaf axiom.
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Definition

A pre-cosheaf F̂ of vector spaces is a cosheaf if for every open
set U and every cover U of U

F̂ (U) ∼= H0(NU ; F̂ ).

Dually, a pre-sheaf F of vector spaces is a sheaf if for every open
set U and every cover U of U

F (U) ∼= H0(NU ;F ).
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Remark (Local to Global)
It is often said that sheaves mediate the passage from local to
global. This means that the value of F (U) (the global datum) is
completely determined by the values of {F (Ui)} (the local data)
where U = {Ui} is a cover of U . This perspective has powerful
implications for parallel processing; in essence, the (co)sheaf
axiom is a distributed algorithm.
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The first observation one can make about the cosheaf axiom is
that if U = U1 ∪ U2 where U1 ∩ U2 = ∅ and F̂ is a cosheaf, then
F̂ (U) ∼= F̂ (U1)⊕ F̂ (U2). Many pre-cosheaves satisfy this
property without being cosheaves themselves. For example, each
of the Leray pre-cosheaves P̂i satisfy this property without being
cosheaves themselves.

Figure : The two Leray pre-cosheaves P̂0 and P̂1 for the height function
on the circle. The figure on the right is an example of a pre-cosheaf that
is not a cosheaf.
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Example (P̂1 is not a cosheaf)
In Figure 4 we consider side-by-side the two non-zero Leray
pre-cosheaves associated to the height function on the circle
f : S1 → R. The pre-cosheaf P̂1 fails to be a cosheaf because if
one takes any cover U = {Ui} of f (S1) by open sets where no
single open set contains the entire image, then the pre-cosheaf
P̂1 restricts to a collection of zero vector spaces and zero maps
over the nerve NU . One immediately has that

P̂1(∪Ui) = k 6= H0(NU ; P̂1) = 0,

which is required in order for P̂1 to be a cosheaf. On the other
hand, P̂0 is always a cosheaf.
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Example (P̂0 is a cosheaf)
Suppose f : X → Y is a continuous map. The Leray pre-cosheaf
P̂0 : U  H0(f−1(U)) is a cosheaf. To see why, let W = U ∪ V .
By continuity of the map f and the Mayer-Vietoris long-exact
sequence in homology, we have the exact sequence (meaning the
kernel of one map is the image of the previous) of vector spaces

H0(f−1(U∩V ))→ H0(f−1(U))⊕H0(f−1(V ))→ H0(f−1(W ))→ 0.

The first two terms are exactly the terms one writes down for
computing

Cech homology of P̂0 over the cover {U,V }, i.e.

P̂0(U ∩ V )→ P̂0(U)⊕ P̂0(V ).

The cokernel of this map is precisely the

Cech homology of P̂0 over {U,V }. The final two terms in the last
row of the Mayer-Vietoris long exact sequence says precisely that
P̂0(W ) is isomorphic to this cokernel, i.e.

H0(N{U,V}; P̂0) ∼= P̂0(W ).

Induction proves that P̂0 satisfies the cosheaf condition for finite
covers [?, p. 418]. To get the full cosheaf condition one then
needs to use the fact that homology commutes with direct
limits [?, p. 162] and a technical reformulation of the cosheaf
axiom [?, Thm. 2.3.4].
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Sheafification and the Leray Sheaf

Both sheaves and cosheaves have the local-to-global properties
described above and so either one should be preferred over their
“pre”-cousins. Fortunately, there is a well understood procedure
for turning any pre-sheaf into a sheaf called sheafification. It is a
cruel asymmetry that there is not a similarly nice procedure for
turning any pre-cosheaf into a cosheaf [?, Sec. 2.5.4].

Definition (Sheafification)

Let F : Open(X)op → Vect be a pre-sheaf. The sheafification F̃
of F assigns to every open set U the set of functions
s : U → tx∈UFx that locally extend, i.e. for every x ∈ U and
s(x) ∈ Fx there exists a V 3 x with V ⊂ U and a t ∈ F (V ) such
that the image of t ∈ F (V ) in Fy agrees with s(y) for all y ∈ V .
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Definition (Leray Sheaves)
Suppose f : X → Y is a continuous map, then the ith Leray sheaf
F i is the sheafification of the Leray pre-sheaf P i associated to f .

The assertion of this paper is that the Leray sheaves are the
proper object of study for understanding the level set persistence
of a proper continuous map f : X → Y . Unfortunately, the Leray
sheaves are uncomputable in practice and are primarily good for
proving theoretical results. In principle the cosheafification of the
Leray pre-cosheaves P̂i would be preferred, but there is no known
cosheafification procedure.
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Level Set Persistence for Definable Maps

In this section we restrict ourselves to a suitably tame class of
maps and spaces so that most of the technical discrepancies
between pre-sheaves and pre-cosheaves disappear. This class of
maps and spaces is defined in terms of finitely many logical
operations and includes most applications of interest, most
notably point cloud persistence. Finally, we present the
culmination of this paper: a collection of functors that can be
reliably called the ith level set persistence of a tame map.

33 / 55



Definition ([?], p. 2)

An o-minimal structure on R is a sequence of sets O = {On}n≥0
satisfying

1 On is a boolean algebra of subsets of Rn, i.e. it is a
collection of subsets of Rn closed under unions and
complements, with ∅ ∈ On;

2 If A ∈ On, then A× R and R× A are both in On+1;
3 The sets {(x1, . . . , xn) ∈ Rn|xi = xj} for varying i ≤ j are in
On;

4 If A ∈ On+1 then π(A) ∈ On where π : Rn+1 → Rn is
projection onto the first n factors;

5 For each x ∈ R we require {x} ∈ O1 and
{(x , y) ∈ R2|x < y} ∈ O2;

6 The only sets in O1 are the finite unions of open intervals
and points.

When working with a fixed o-minimal structure, we say a set is
definable if it belongs to some On. A map is definable if its
graph, viewed as a subset of the product, is definable. 34 / 55



The prototypical o-minimal structure is the class of
semi-algebraic sets, which has become increasingly relevant in
applied mathematics.

Definition
A semi-algebraic subset of Rn is a subset of the form

X =

p⋃
i=1

q⋂
j=1

Xij

where the sets Xij are of the form {fij(x) = 0} or {fij > 0} with fij
a polynomial in n variables.
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Proposition (Semi-algebraic Sets are Definable)
The collection of semi-algebraic subsets in Rn for all n ≥ 0
defines an o-minimal structure on R.

Proof.
The only semi-algebraic subsets of R are finite unions of points
and open intervals. From the definition, one sees that the class of
semi-algebraic sets is closed under finite unions and
complements. The Tarski-Seidenberg theorem states that the
projection onto the first m factors Rm+n → Rm sends
semi-algebraic subsets to semi-algebraic subsets [?]. We can
deduce from this theorem all of the conditions of o-minimality.

36 / 55



Semi-algebraic maps are defined to be those maps f : Rk → Rn

whose graphs are semi-algebraic subsets of the product. The next
example shows that the collection of augmented point clouds can
be regarded as the fibers of a semi-algebraic map.

Example (Point-Cloud Data)

Suppose Z is a finite set of points in Rn. For each z ∈ Z ,
consider the square of the distance function

dz(x1, . . . , xn) =
n∑

i=1
(xi − zi)

2.

By the previously stated facts we know that the sets

Bz := {x ∈ Rn+1 | dz(x1, . . . , xn) ≤ x2
n+1}

are semi-algebraic along with their unions and intersections.
Denote by X the union of the Bz . The Tarski-Seidenberg theorem
implies that the map

f : X → R f−1(r) := ∪z∈Z B(z , r) = {x ∈ Rn | ∃z ∈ Z s.t. dz(x) ≤ r2}

is semi-algebraic.
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One of the nice features of a point cloud is that the topology of
the union Xr = ∪xi∈Z B(xi, r) only changes for finitely many values
of r . This behavior is common among all definable sets and maps.

Definition
A definable map f : E → B between definable sets is said to be
definably trivial if there is a definable set F and a definable
homeomorphism h : E → B × F such that the diagram

E

f ��

h // B × F

π
||

B

commutes, i.e. π ◦ h = f .
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Remark

A definably trivial map is simple because the topology of the fiber
f−1(b) ∼= F does not change. In particular, there is a
neighborhood U of b for which Hi(f−1(U)) ∼= Hi(f−1(b)), so that
the costalk of the Leray pre-cosheaf agrees with the homology of
the fiber. In short, there is no advantage to studying the Leray
pre-sheaves over the Leray pre-cosheaves for definably trivial
maps.

Theorem (Trivialization Theorem [?])

Let f : E → B be a definable continuous map between definable
sets E and B. Then B can be partitioned into definable sets
B1, . . . ,Bk so that the restrictions

f |f−1(Bi) : f−1(Bi)→ Bi

are definably trivial.
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H1!

H0!

Figure : A point cloud consisting of three points in the plane on the
edges of an equilateral triangle can be regarded as a definable map.
Example 0.25 explains how the persistence modules are constructed.
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Example (Point Cloud Revisited)

In Example 0.21, we showed that the family of augmented spaces
associated to a point cloud is a definable map. This example is
crucial because it shows that point cloud persistence is a special
case of level set persistence. By Theorem 0.24, there is a
decomposition of R into definable sets over which the map f is
definably trivial. With some work, one can show that this
decomposition is into half-open intervals {[si, si+1)}. Let ti denote
a point strictly between si and si+1. Letting Xr = f−1(r), one can
show that there is a sequence of fibers and maps

· · · ← Xti → Xsi+1 ← Xti+1 → Xsi+2 ← · · ·

where every map Xsi ← Xti is a homeomorphism and thus an
isomorphism on homology. The fact there is such an isomorphism
follows from Remark 0.23. The fact that there is a map
Xti → Xsi+1 follows from the existence of a neighborhood U
containing Xti and Xsi+1 that deformation retracts onto Xsi+1 [?,
Prop. 11.1.26]. Taking homology in each degree produces the
persistence modules depicted in Figure 5. 41 / 55



Stratified Spaces and Constructible Cosheaves

In this section we present the Leray (co)sheaves associated to a
definable map in an entirely different way. This characterization
is based on a folk-theorem of MacPherson [?] and is phrased in
the language of Whitney stratified spaces, which includes
definable sets as a special case [?], and constructible cosheaves,
which we define below.
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Definition (Whitney Stratified Spaces)
A Whitney stratified space is a space X that is a closed subset of
a smooth manifold M along with a decomposition into pieces
{Xσ}σ∈PX such that

each piece Xσ is a locally closed smooth submanifold of M ,
and
whenever Xσ is in the closure of Xτ the pair satisfies
condition (b). This condition says if {yi} is a sequence in Xτ
and {xi} is a sequence in Xσ converging to p ∈ Xσ and the
tangent spaces TyiXτ converges to some plane T at p, and
the secant lines `i connecting xi and yi converge to some line
` at p, then ` ⊆ T . See Figure 6.
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Remark
We have omitted condition (a) because it is implied by condition
(b) [?, Prop. 2.4]. Condition (a) states that if we only consider a
sequence yi in Xτ converging to p such that the tangent planes
TyiXτ converge to some plane T , then the tangent plane to p in
Xσ must be contained inside T .

Figure : Diagram for Whitney Condition (b)
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The Whitney conditions are important because so many types of
spaces admit Whitney stratifications, the most important being
semi-algebraic and sub-analytic spaces. Remarkably, these
conditions about limits of tangent spaces and secant lines imply
strong structural properties of the space, such as being
triangulable [?].

Definition (Entrance Path Category)
Suppose X is a stratified space. The entrance path category of X
Entr(X) has points of X for objects and equivalence classes of
entrance paths for morphisms. An entrance path is a continuous
map γ : I = [0, 1]→ X with the property that the ambient
dimension of the stratum containing γ(t) is non-increasing with t .
Two entrance paths γ and η connecting x to x ′ are equivalent if
there is a map h : [0, 1]2 → X such that for every s ∈ [0, 1] the
map h(s, t) is an entrance path, γ(t) = h(0, t) and η(t) = h(1, t);
see Figure 7. The definable entrance path category is similar
with the added stipulation that X is definable and that all the
paths and relations are definable in the sense of Definition 0.18.
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Example

If X is the geometric realization of a simplicial complex, then it
can be stratified by its open simplices. One can prove that
Entr(X) is equivalent to a poset with the relation that there is a
unique entrance path from τ to σ if and only if σ ≤ τ . We express
this succinctly as

Entr(X) ' (X ,≤)op
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The folk-theorem of MacPherson is that suitably behaved
cosheaves defined on stratified spaces are equivalent to functors
from the entrance path category. This equivalence would take us
beyond the scope of this paper (see [?] for a more thorough
treatment), so we will simply define these well-behaved cosheaves
as functors from the entrance path category.

Figure : Two entrance paths in the plane related through a family of
entrance paths.

Definition
Suppose X is a stratified space. A constructible cosheaf is a
functor F̂ : Entr(X)→ Vect.
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Example
By Example 0.29, we see that a simplicial cosheaf on K is the
same as a constructible cosheaf on the geometric realization of K ,
regarded as a stratified space.
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The correspondence between constructible cosheaves and actual
cosheaves is encapsulated in the following theorem.

Theorem (Correspondence with Cosheaves)

Given a constructible cosheaf F̂ on a stratified space X one can
associate an actual cosheaf, which we also call F̂ , by observing
that each open set U receives an induced stratification from X ,
and hence has an entrance path category, and letting

F̂ (U) := lim−→
Entr(U)

F̂ |U

Proof.
This is theorem 11.2.15 of [?]. It requires proving a Van Kampen
theorem for the entrance path category, which is beyond the
scope of this paper.
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Example
In Figure 8 we have two constructible cosheaves over the real
line. For each constructible cosheaf we have picked the three
open intervals and the corresponding colimit of the cosheaf over
the entrance path category restricted to that open set.
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Figure : Two constructible cosheaves and the associated colimits of the
restriction to various intervals.
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Now we can state a definable analog of the Leray sheaves that
could be programmed on a computer.

Theorem (Constructible Cosheaves from Definable Maps [?])

If we are given a proper definable map f : E → B that comes from
the restriction of a C1 map between manifolds, then for each i the
assignment

b ∈ B  Hi(f−1(b))

defines a definable cosheaf.
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Sketch of the Proof
This is a non-trivial theorem, which is proved in detail as
Theorem 11.2.17 of [?]. The first observation to make is that the
fiber f−1(b) over a point b ∈ B has an open neighborhood U that
retracts onto the fiber. This is because f−1(b) can be presented
as a closed union of finitely many strata [?, p. 60] and the closed
union of finitely many strata has a regular neighborhood that
retracts onto it [?, Prop. 11.1.26].

Intuitively, if a path γ : I → B starts in a stratum Bτ that contains
b = γ(1) in it’s closure, then one can assign the homology of the
zig-zag of inclusions

f−1(γ(0)) ↪→ U ←↩ f−1(γ(1))

to any morphism γ in Entr(B). However, we prefer a more
inductive procedure by considering the pullback
I ×B E = {(t , e) | γ(t) = f (e)} as a definable set [?, Lem. 11.1.15]
and the projection π1 : I ×B E → [0, 1] as a definable map.
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To prove invariance under homotopy through entrance paths, one
then considers a definable homotopy h : I2 → B and pulls back to
a definable map to the square I2. One then proves invariance for
this restricted map.
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