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Session objectives
● What is heterogeneous data fusion?

● What is a sheaf?

● What happens if I don't have a sheaf?
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Axiom 1: There is a set of data sources

● A list of sensors
● A collection of tables
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Axiom 2: There is a list of possible 
attributes

Different sensors will read out in attributes
● Possible columns or keys
● Possible signal spaces
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Axioms 3 and 4: The data sources are 
topologized

● Topology comes from shared attributes
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Axiom 5: Data sources can be 
compared via restriction

● Essentially by forming subtables
– Transformations are permitted
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Axiom 5: Data sources can be 
compared via restriction

● Essentially by forming subtables
– Transformations are permitted
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Axioms 6 and 7: Data sources can be 
combined in a unique way

● Table joins: can find rows of a bigger table
– Problems can arise if this isn't satistifed!
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Axioms 6 and 7: Data sources can be 
combined in a unique way

● Table joins:
– Might result in empty tables (no rows)
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Axioms 6 and 7: Data sources can be 
combined in a unique way

● Table joins:
– Might result in empty tables (no rows)
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Mathematical representation

● Specifies the attribute spaces
● Specifies transformations
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Key/table duality
Two obvious viewpoints:
● Table-centric → Tables on vertices (leads to sheaf)

– “Bottom up”
– Restrictions go from low dimensional simplices to higher 

dimensional simplices
● Key-centric → Keys on vertices (leads to cosheaf)

– “Top down”
– Extensions go from high dimensional simplices to lower 

dimensional simplices
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Building a cosheaf model
● Keys are vertices, and tables are simplices (so the 

base space is different)

HS GPA UG GPA
GR GPA

Stipend

Salary

(Note: ID fields ignored for simplicity)Idea credit: Jose Perea (Michigan)

Postdoc

Grad school

Undergrad
High school
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What happens when the axioms fail?
● Axiom 1 or 2: Data isn't in a set…

– You won't be able to do much computationally
● Axiom 3 or 4: Sources not topologized

– No basis for combining data sources…
● Axiom 5: No transformations to identify commonalities between 

observations

– Although information about a given entity might be available 
through different sources, they can't be joined

● Axiom 6 or 7: Cannot uniquely fuse

– Even if two observations are comparable, it is impossible to infer 
anything else about nearby observations

– This often happens in databases – two rows with overlapping keys 
and matching values doesn't mean they're the same!
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Now, abstractly...

A sheaf of _____________ on a ______________
(data type) (topological space)
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Simplicial complexes
● ... higher dimensional simplices  (tuples of vertices)
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Simplicial complexes
● The attachment diagram shows how simplices fit 

together 
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● A set assigned to each simplex and ...

A sheaf is ...

ℝ3

ℝ2

ℝ

ℝ3

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

Each such set is called the 
stalk over its simplex

This is a sheaf of vector spaces 
on a simplicial complex
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(   )

(   )

● … a function assigned to each simplex inclusion

A sheaf is ...

ℝ3

ℝ2

ℝ

ℝ2

ℝ

ℝ2

ℝ2

ℝ3

ℝ3

1  0  2
2  1 -1

0  0  1
1  0  0

1  0  1
0  1  1

(    )

(    )
(    )

0 1 1
1 0 1

1 0 0
2 1 0

1 0 0
0 1 1

1
0

0
1

(1 0)

(0 1)

(1 0)

( )
( )
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Each such function is 
called a restriction
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● … so the diagram commutes.

A sheaf is ...
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( )

( )
( )

● An assignment of values from each of the stalks that 
is consistent with the restrictions

A global section is ...
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( )

( )

● They might not be defined on all simplices or disagree 
with restrictions

Some sections are only local
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Flabbiness
● If all local sections defined on vertices extend to global sections, 

the sheaf is called flabby (or flasque)

– These sheaves don't have interesting invariants
– They are good for decomposing other sheaves

● Example: Vertex- or edge-weighted graphs with no further 
constraints

● Flabby sheaves mean there is a lack of constraints imposed by the 
model

ℝ30ℝ3
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Queue model example
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A queue as a sheaf
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
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A single timestep
● Contents of the shift register at each timestep
● N = 3 shown

(1,9,2)(9,2) (1,9) (1,1)(1,1,9) (5,1,1) (2,5,1)(5,1)

1 0 0
0 1 0(   )1 0 0

0 1 0(   ) 1 0 0
0 1 0(   )

0 1 0
0 0 1(   )0 1 0

0 0 1(   ) 0 1 0
0 0 1(   ) 0 1 0

0 0 1(   )
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Wireless network example
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Wireless activation sheaf
● Each node in the wireless complex has a unique ID
● The stalk over a face consists of the set of nodes 

adjacent to that face, and the special symbol ⟘
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{1, 2, ⟘}
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Wireless activation sheaf
● Each node in the wireless complex has a unique ID
● The stalk over a face consists of the set of nodes 

adjacent to that face, and the special symbol ⟘
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Wireless activation sheaf
● Each node in the wireless complex has a unique ID
● The stalk over a face consists of the set of nodes 

adjacent to that face, and the special symbol ⟘
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Wireless activation sheaf
● Each node in the wireless complex has a unique ID
● The stalk over a face consists of the set of nodes 

adjacent to that face, and the special symbol ⟘
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7

{2, 3, 4, ⟘}

Note: “adjacent” means “has a higher-dimensional face in common”
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Wireless activation sheaf
● Restrictions map node IDs via identity whenever 

possible, and otherwise send to ⟘

1

2 3

4

5

6

7

{2, 3, 4, ⟘}

{1, 2, 3, 4, ⟘}

restriction
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Wireless activation sheaf
● Sheaves model node activation and traffic-passing 

protocols, by encoding local consistency constraints
● Node activation patterns when interference is 

possible.  (⟂ means no activity)

Link complex

{⟂,1,2}

1 2 3

{⟂,1,2}

{⟂,1,2,3} {⟂,2,3}

{⟂,2,3}

Activation sheaf

Some possible sections
1→1←1→⟂←⟂

2→2←2→2←2
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Shared situational awareness
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Forming mosaics
● Multiple, overlapping images can be assembled 

into a mosaic by stitching together similar regions
– Many algorithms exist
– Most are robust to perspective (or other) changes

Overlapping maps

(Image courtesy of NASA/JPL)
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Shared visual situational awareness
(In collaboration with UCLA)

. . .Time

Potential features:
● Embrace multi-modality: 
 categorical and image data 
 together could yield improved 
 object recognition and tracking

● Objects in scene correspond to
categorical-valued partial sections
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Heterogeneous fusion among 
homogeneous sensors

“Physical” sensor footprints Sensor data space

Images Images
Camera 2

Camera 1

A sensor transforms a 
physical region into data
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“Physical” sensor footprints Sensor data space

Images Images

Detections

Summarization

Camera 2
Camera 1

Heterogeneous fusion among 
homogeneous sensors
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“Physical” sensor footprints Sensor data space

Images Images

Detections

Fused targets

Camera 2
Camera 1

G
lo

ba
liz

at
io

n

This construction – the data together 
with the transformations – is a sheaf

Heterogeneous fusion among 
homogeneous sensors
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Data Structures as Sheaves

SIMPLEX Program

© 2015 Michael Robinson 
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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Session objectives
● How do sheaves extend well-known data 

structures?

● How do I translate between sheaf-based data 
structures?

● What can I do once I have a sheaf?
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What is a sheaf?

A A' A A'

a
a
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A A' A A'

a
a

AA

What is a sheaf?
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A A'

a

A

x x

xx

If labels on the graph are 
not systematically related 
to one another...

Consistency checks 
become ad hoc

Cross-modality inference 
is no longer possible

x

?

What isn't a sheaf?
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Vertex- or (hyper)edge-weighted 
(hyper)graphs

Vertex weighted → sheaves
● Vertex has nontrivial stalk
● All restrictions are zero maps
● The resulting sheaf is flabby

Hyperedge-weighted → cosheaves
● Toplex has nontrivial stalk
● All extensions are zero maps
● The resulting cosheaf is 

coflabby*

 * This is such a fun term – but I don't see it much in use
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Flow sheaves
● Start with a collection of paths along which material flows
● Label each track segment with amount of material on that 

segment

3 2

1 4 3

7

T
im

e
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Flow sheaves
● Conservation law enforced at each vertex
● Depending on precisely how we count material (in ℕ or ℝ, for 

instance), we might write the conservation law as

                    a+b = c+d or a+b-c-d = 0

a b

c d e

f

d+e = f



Michael Robinson10

Flow sheaf
● Each degree n vertex is assigned a free sR-module* of 

rank (n – 1) for material measured in a semiring sR
● Restriction maps are projections

3 2

1 4 3

7

U⊆sR⊕sR⊕sR⊕sR 

V⊆sR⊕sR⊕sR

sR sR

sR sR sR

sR

Flow sheaf
(3,2,1,4)

(4,3,7)

* or just a vector space if it seems easier
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Local consistency
A flow sheaves encodes a notion of consistency between 
adjacent faces

3 2

1
3

8

Cannot label this edge in a way 
consistent with the data

It's an indication that a flow was 
incorrectly measured somewhere 
in this vicinity

4≠5
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Inferential ambiguity
Depending on how we make measurements, we might 
not get “the full story” of the flow

3 2

1 ? 3

8

3 2

1 ? 3

7

? 2

? ? 3

7
Inconsistent:
no inference 
possible

Exactly one inference

Many possible inferences
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Bayesian networks
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Probability spaces
Start with a set of random variables X0,X1,… Xn

Consider the set P(X0,X1,…, Xn) of all joint probability 
distributions over these random variables

● These are the nonnegative measures (generalized 
functions)

f = f(X0,X1,…, Xn)

with unit integral
● This is not a vector space – adding probability 

distributions doesn't yield another distribution
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Marginalization cosheaf
There is a natural map

P(X0,X1,…, Xn) → P(X0,X1,…, Xn-1) 

via marginalization, namely

f(X0,X1,…, Xn-1) = ∫ f(X0,X1,…, Xn) dXn

● There similar maps for marginalizing out the other 
random variables, too

● This yields a cosheaf on the complete n-simplex!
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Bayes' rule
Conditional probabilities produce maps going the 
other way…  For instance, 

P(X0,X1,…, Xn-1) → P(X0,X1,…, Xn) 

is parameterized by functions C
F(X0,X1,…, Xn) = C(X0,X1,…, Xn) f(X0,X1,…, Xn-1)

usually, one writes the arguments to C like

C = C(Xn | X0,X1,…, Xn-1)

So…  conditional probabilities yield a sheaf on part 
of the n-simplex



Michael Robinson17

Small Bayes net example
● Consider two binary random variables X and Y 

with a given conditional C(Y | X)

X Y

P(X) P(X,Y) P(Y) Marginalization
cosheaf

1 1 0 0
0 0 1 1

1 0 1 0
0 1 0 1(      ) (      )

P(X) P(X,Y) P(Y)
p(0|0)     0
p(1|0)     0

   0     p(0|1)
   0     p(1|1)

Conditional 
sheaf= C(Y | X)
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Linear translation-invariant filters
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How does a sheaf model a signal?

C((-2,0),ℝ)

C((-1,0),ℝ)

C((-1,1),ℝ)

C((0,1),ℝ)

C((0,2),ℝ)

Simplicial complex
for ℝ The sheaf of 

continuous functions
0

-1

1
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C((-2,0),ℝ)

C((-1,0),ℝ)

C((-1,1),ℝ)

C((0,1),ℝ)

C((0,2),ℝ)
-2          -1          0           1             2

C
om

pu
tin

g 
gl

ob
al

 s
ec

tio
n

Set of real-valued continuous 
functions on (-2,0)

Restriction map “chops” off 
portion of a function

Space of global sections is the set 
of continuous functions on ℝ

How does a sheaf model a signal?
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ℝ2

A sheaf morphism ...
● … takes data in the stalks of two sheaves … 

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

(  ) (  ) (  )

(  )(   ) (   )
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(  )

(   )
ℝ2

A sheaf morphism ...
● … and relates them through linear maps … 

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

 ½  0
-½ -1

1  0
0 -1

 0 1
-1 0
 1 1

 0 -1
 1 0

(  ) (  ) (  )

(  )(   ) (   ) (  )

(  )
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(  )

(  )
(   )

(   )
ℝ2

A sheaf morphism ...
● … so the diagram commutes!

ℝ3

ℝ2

ℝ2

ℝ2

ℝ2

ℝ2

2 0
1 1

1 1
2 0

0 1 0
1 0 0 1 0 0

0 1 0

1 0
0 1

0 1
1 0

 ½  0
-½ -1

1  0
0 -1

 0 1
-1 0
 1 1

(  ) (  ) (  )

(  )(   )
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A sampling morphism is ...

C((-2,0),ℝ)

C((-1,0),ℝ)

C((-1,1),ℝ)

C((0,1),ℝ)

C((0,2),ℝ)

ℝ

0

ℝ

0

ℝ

Evaluate at -1

Evaluate at 0

Evaluate at 1
-2          -1          0           1             2
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● The collection of kernels of these sampling maps
C((-2,0),ℝ)

C((-1,0),ℝ)

C((-1,1),ℝ)

C((0,1),ℝ)

C((0,2),ℝ)

ℝ

0

ℝ

0

ℝ

Z
-1
(-2,0)

C((-1,0),ℝ)

C((0,1),ℝ)

Z
0
(-1,1)

Z
1
(0,2)

Evaluate at -1

Evaluate at 0

Evaluate at 1

The set of continuous 
functions on (-2,0) that 
vanish at -1

-1

An ambiguity sheaf is ...



Michael Robinson26

Z
-1
(-2,0)

C((-1,0),ℝ)

C((0,1),ℝ)

Z
0
(-1,1)

Z
1
(0,2)

-2          -1          0           1             2

C
om

pu
tin

g 
gl

ob
al

 s
ec

tio
n

Sections of the 
ambiguity sheaf are 
functions that appear 
to be all zero under 

the sampling

An ambiguity sheaf is ...
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The general sampling theorem
● Given a sheaf S and a sampling of it, construct the 

ambiguity sheaf A

Theorem: 
● Perfect reconstruction of global sections of S is 

possible if and only if the only global section of A 
is the zero function

● “No ambiguities means it's possible to reconstruct”
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Nyquist-Shannon sampling
● Encode signals as a sheaf of bandlimited functions 

BF over ℝ, with bandwidth B
● It's easier to work in the frequency domain:

BF = { f ∈ C(ℝ,ℂ) | supp f ⊆ [-B, B] }
● Samples are taken at integers, obtained by inverse 

Fourier transform  

● For instance at n, we sample using the function M
n

M n( f )=∫
−B

B

f e−2nπ i x dx
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Nyquist-Shannon sampling
● The ambiguity sheaf identifies bandlimited 

functions with zeros at specific locations

BF BF BF BF BF

ℂ 0 ℂ 0 ℂ

A
-1

A
0

A
1BF BF

identityidentity identity identity identity identity

M
0

M
-1

M
1

identity identity

A
n
 = { f ∈ BF | M

n
 (f) = 0} 

     = {Bandlimited functions that are zero at n}
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Nyquist-Shannon sampling
● The ambiguity sheaf identifies bandlimited 

functions with zeros at specific locations

A
-1

A
0

A
1BF BF

A
n
 = { f ∈ BF | M

n
 (f) = 0} 

     = {Bandlimited functions that are zero at n}

Global sections of the ambiguity sheaf are bandlimited 
functions that vanish at every integer

There aren't any if B < 1/2
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Filters as sheaf morphisms
● Theorem: Every discrete-time LTI filter can be 

encoded as a sequence of two sheaf morphisms

S
1
                S

2         
         S

3

Input Internal state Output

Weighted sum

Sheaf formalism

Hardware

Shift register
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Input sheaf
● Sections of this sheaf are timeseries, instead of 

continuous functions

ℝ0ℝ0ℝ0ℝ0
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Output sheaf
● The output sheaf is the same

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0

ℝ0
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The internal state
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
ℝ0ℝ0ℝ0ℝ0
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The internal state
● Loads a new value with each timestep

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0

ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)
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The internal state
● Produces average of the shift register at each 

timestep

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

(0 0 1) (0 0 1)(0 0 1)

ℝ0ℝ0ℝ0ℝ0

(⅓ ⅓ ⅓) (⅓ ⅓ ⅓) (⅓ ⅓ ⅓)
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Finishing both morphisms
● Put in a few zero maps!

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

ℝ0ℝ0ℝ0ℝ0

ℝ0ℝ0ℝ0ℝ0
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A single timestep
● Sections of the sheaves linked together give 

possible input/output combinations of the filter

20 0 09 1 10

(1,9,2)(9,2) (1,9) (1,1)(1,1,9) (5,1,1) (2,5,1)(5,1)

40 0 03.7 2.3 2.70
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Of course, this extends...
● Sections of the sheaves linked together give 

possible input/output combinations of the filter

20 0 09 1 10

(9,2,6) (1,9,2)(9,2) (1,9) (1,1)(1,1,9) (5,1,1) (2,5,1)(5,1)

40 0 03.7 2.3 2.70
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How this formalism helps...
● Of course, it corresponds nicely to the hardware

                               … BUT... 
● It's easy to splice in nonlinear operations
● It works on nontrivial base spaces: A systematic 

study of filtering is now possible on cell 
complexes

Sheaves make it easy to invent topological filters that 
have controlled performance characteristics
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Filtering sinosoids from noise
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Filtering out chirpy signals

Loss of signal as frequency changes Phase reversal
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Filtering out chirpy signals

Unstable amplitude
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Filtering out chirpy signals

Loss of amplitude – filter cannot “keep up”!
Poor initial 
estimate of 
frequency
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Circumventing bandwidth limits
● More averaging in a connected window leads to:

– More noise cancellation (Good)
– More distortion to the signal (Bad)

● Can safely do more averaging by collecting 
samples at “similar places” across the entire signal
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Stage 2:
Topological 

filtering

Filter block diagram

Input signal
Point cloud 

metric
construction

Grouping sheaf
construction Averaging filter Output signal

Stage 1:
Topological 
estimation

T
im

e

Neighbors

Average along rows
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Stage 1: Topological estimation

Image spatial 
domain

Image 
values Pixel neighborhood

Point cloud in ℝ16
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Stage 2: Grouping sheaf
Distance matrix 
of point cloud

Values of the signal 
at the neighbors

neighborsSa
m

pl
e 

nu
m

be
r

neighbors

Sa
m

pl
e 

nu
m

be
r

Sa
m

pl
e 

nu
m

be
rSample number

Locations of 
nearest neighbors

Average

Process execution
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Topological filter results

Extremely stable output amplitudeSome low
frequency
distortion
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Compare: standard adaptive filter

Unstable amplitude
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Input image
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Fixed frequency image filter
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Topological filter output
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Error contributions 

Boxcar filter

Using true topology

Using topological
estimator

   
 E

rr
or

Noise

Topological 
estimation error

Matching 
Dimension: 20
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Error contributions
   

 E
rr

or

Noise

Boxcar filter

Using true topology

Using topological
estimator

Matching 
Dimension: 25
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Error contributions
   

 E
rr

or

Noise

Boxcar filter

Using true topology

Using topological
estimator

Matching 
Dimension: 30
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Further reading...
● Sanjeevi Krishnan, “Flow-cut dualities for sheaves on 

graphs,” http://arxiv.org/abs/1409.6712
● Robert Ghrist and Sanjeevi Krishnan, “A Topological 

Max-Flow Min-Cut Theorem,” Proceedings of Global 
Signals. Inf., (2013). 

● Michael Robinson, “Understanding networks and their 
behaviors using sheaf theory,” IEEE Global Conference on 
Signal and Information Processing (GlobalSIP) 2013, 
Austin, Texas.

● Michael Robinson, “The Nyquist theorem for cellular 
sheaves,” Sampling Theory and Applications 2013, 
Bremen, Germany.

http://arxiv.org/abs/1409.6712
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