What is a sheaf?

Michael Robinson

DARPA SIMPLEX Program

© 2015 Michael Robinson

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Session objectives

- What is heterogeneous data fusion?
- What is a sheaf?
- What happens if I don't have a sheaf?

Axiom 1: There is a set of data sources

- A list of sensors
- A collection of tables

Grad school

High school

Postdoc

Axiom 2: There is a list of possible attributes

Different sensors will read out in attributes

- Possible columns or keys

- Possible signal spaces

Grad school

Postdoc

Axioms 3 and 4: The data sources are topologized

- Topology comes from shared attributes

Axiom 5: Data sources can be compared via restriction

- Essentially by forming subtables
- Transformations are permitted

Michael Robinson

Axiom 5: Data sources can be compared via restriction

- Essentially by forming subtables
- Transformations are permitted

Axioms 6 and 7: Data sources can be combined in a unique way

- Table joins: can find rows of a bigger table
- Problems can arise if this isn't satistifed!

Axioms 6 and 7: Data sources can be combined in a unique way

- Table joins:
- Might result in empty tables (no rows)

Axioms 6 and 7: Data sources can be combined in a unique way

- Table joins:
- Might result in empty tables (no rows)

Mathematical representation

- Specifies the attribute spaces
- Specifies transformations

Michael Robinson

Key/table duality

Two obvious viewpoints:

- Table-centric \rightarrow Tables on vertices (leads to sheaf)
- "Bottom up"
- Restrictions go from low dimensional simplices to higher dimensional simplices
- Key-centric \rightarrow Keys on vertices (leads to cosheaf)
- "Top down"
- Extensions go from high dimensional simplices to lower dimensional simplices

Building a cosheaf model

- Keys are vertices, and tables are simplices (so the base space is different)

What happens when the axioms fail?

- Axiom 1 or 2: Data isn't in a set...
- You won't be able to do much computationally
- Axiom 3 or 4 : Sources not topologized
- No basis for combining data sources...
- Axiom 5: No transformations to identify commonalities between observations
- Although information about a given entity might be available through different sources, they can't be joined
- Axiom 6 or 7: Cannot uniquely fuse
- Even if two observations are comparable, it is impossible to infer anything else about nearby observations
- This often happens in databases - two rows with overlapping keys and matching values doesn't mean they're the same!

Now, abstractly...

A sheaf of

\qquad on a \qquad
(data type)
(topological space)

Simplicial complexes

- ... higher dimensional simplices (tuples of vertices)

Simplicial complexes

- The attachment diagram shows how simplices fit together

A sheaf is ...

- A set assigned to each simplex and ...

Each such set is called the

 stalk over its simplex\mathbb{R}^{2}
This is a sheaf of vector spaces on a simplicial complex

A sheaf is ...

- ... a function assigned to each simplex inclusion

A sheaf is ...

- ... so the diagram commutes.

A global section is ...

- An assignment of values from each of the stalks that is consistent with the restrictions

Some sections are only local

- They might not be defined on all simplices or disagree with restrictions

Flabbiness

- If all local sections defined on vertices extend to global sections, the sheaf is called flabby (or flasque)
- These sheaves don't have interesting invariants
- They are good for decomposing other sheaves

$$
\mathbb{R}^{3} \rightarrow 0 \longleftarrow \mathbb{R}^{3}
$$

- Example: Vertex- or edge-weighted graphs with no further constraints
- Flabby sheaves mean there is a lack of constraints imposed by the model

Queue model example

A queue as a sheaf

- Contents of the shift register at each timestep
- $N=3$ shown

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$\rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

A single timestep

- Contents of the shift register at each timestep
- $N=3$ shown

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& (9,2) \leftrightarrow(1,9,2) \rightarrow(1,9) \leftarrow(1,1,9) \rightarrow(1,1) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Wireless network example

Michael Robinson

Wireless activation sheaf

- Each node in the wireless complex has a unique ID
- The stalk over a face consists of the set of nodes adjacent to that face, and the special symbol \perp

Wireless activation sheaf

- Each node in the wireless complex has a unique ID
- The stalk over a face consists of the set of nodes adjacent to that face, and the special symbol \perp

Wireless activation sheaf

- Each node in the wireless complex has a unique ID
- The stalk over a face consists of the set of nodes adjacent to that face, and the special symbol \perp

Wireless activation sheaf

- Each node in the wireless complex has a unique ID
- The stalk over a face consists of the set of nodes adjacent to that face, and the special symbol \perp

Note: "adjacent" means "has a higher-dimensional face in common"

Wireless activation sheaf

- Restrictions map node IDs via identity whenever possible, and otherwise send to \perp
restriction

Wireless activation sheaf

- Sheaves model node activation and traffic-passing protocols, by encoding local consistency constraints
- Node activation patterns when interference is possible. (\perp means no activity)

Link complex
Some possible sections

$$
1 \rightarrow 1 \leftarrow 1 \rightarrow \perp \leftarrow \perp
$$

$\{\perp, 1,2\} \quad\{\perp, 1,2,3\} \quad\{\perp, 2,3\}$
Activation sheaf

Shared situational awareness

Michael Robinson

Forming mosaics

- Multiple, overlapping images can be assembled into a mosaic by stitching together similar regions
- Many algorithms exist
- Most are robust to perspective (or other) changes

Overlapping maps

(Image courtesy of NASA/JPL)

Shared visual situational awareness (In collaboration with UCLA)

Heterogeneous fusion among homogeneous sensors

Heterogeneous fusion among homogeneous sensors

"Physical" sensor footprints
Sensor data space

Heterogeneous fusion among homogeneous sensors

This construction - the data together with the transformations - is a sheaf \longrightarrow Fused targets

Camera 1
Camera 2

Data Structures as Sheaves

Michael Robinson

(DARPA SIMPLEX Program

© 2015 Michael Robinson

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Session objectives

- How do sheaves extend well-known data structures?
- How do I translate between sheaf-based data structures?
- What can I do once I have a sheaf?

What is a sheaf?

What is a sheaf?

What isn't a sheaf?

If labels on the graph are not systematically related to one another...

Consistency checks become ad hoc

Cross-modality inference is no longer possible

Vertex- or (hyper)edge-weighted (hyper)graphs

Vertex weighted \rightarrow sheaves

- Vertex has nontrivial stalk
- All restrictions are zero maps
- The resulting sheaf is flabby

Hyperedge-weighted \rightarrow cosheaves

- Toplex has nontrivial stalk
- All extensions are zero maps
- The resulting cosheaf is coflabby*

Flow sheaves

- Start with a collection of paths along which material flows
- Label each track segment with amount of material on that segment

Flow sheaves

- Conservation law enforced at each vertex
- Depending on precisely how we count material (in \mathbb{N} or \mathbb{R}, for instance), we might write the conservation law as

Flow sheaf

- Each degree n vertex is assigned a free $s R$-module* of rank $(n-1)$ for material measured in a semiring $s R$
- Restriction maps are projections

* or just a vector space if it seems easier

Local consistency

A flow sheaves encodes a notion of consistency between adjacent faces

Inferential ambiguity

Depending on how we make measurements, we might not get "the full story" of the flow

Many possible inferences

Exactly one inference

Bayesian networks

Probability spaces

Start with a set of random variables $X_{0}, X_{1}, \ldots X_{n}$
Consider the set $P\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ of all joint probability distributions over these random variables

- These are the nonnegative measures (generalized functions)

$$
f=f\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

with unit integral

- This is not a vector space - adding probability distributions doesn't yield another distribution

Marginalization cosheaf

There is a natural map

$$
P\left(X_{0}, X_{1}, \ldots, X_{n}\right) \rightarrow P\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)
$$

via marginalization, namely

$$
f\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)=\int f\left(X_{0}, X_{1}, \ldots, X_{n}\right) d X_{n}
$$

- There similar maps for marginalizing out the other random variables, too
- This yields a cosheaf on the complete n-simplex!

Bayes' rule

Conditional probabilities produce maps going the other way... For instance,

$$
P\left(X_{0}, X_{1}, \ldots, X_{n-1}\right) \rightarrow P\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

is parameterized by functions C

$$
F\left(X_{0}, X_{1}, \ldots, X_{n}\right)=C\left(X_{0}, X_{1}, \ldots, X_{n}\right) f\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)
$$

usually, one writes the arguments to C like

$$
C=C\left(X_{n} \mid X_{0}, X_{1}, \ldots, X_{n-1}\right)
$$

So... conditional probabilities yield a sheaf on part of the n-simplex

Small Bayes net example

- Consider two binary random variables X and Y with a given conditional $C(Y \mid X)$

$$
P(X) \stackrel{\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)}{\longleftrightarrow} P(X, Y) \xrightarrow{\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)} P(Y)
$$

Marginalization cosheaf
$P(X) \xrightarrow[\left(\begin{array}{cc}p(0 \mid 0) & 0 \\ p(110) & 0 \\ 0 & p(0 \mid 1) \\ 0 & p(111)\end{array}\right)]{ }=C(X, Y)$
Conditional sheaf

Linear translation-invariant filters

Michael Robinson

How does a sheaf model a signal?

How does a sheaf model a signal?

A sheaf morphism ...

- ... takes data in the stalks of two sheaves ...

A sheaf morphism ...

- ... and relates them through linear maps ...

A sheaf morphism ...

- ... so the diagram commutes!

A sampling morphism is ...

An ambiguity sheaf is ...

- The collection of kernels of these sampling maps

An ambiguity sheaf is ...

The general sampling theorem

- Given a sheaf S and a sampling of it, construct the ambiguity sheaf A

Theorem:

- Perfect reconstruction of global sections of S is possible if and only if the only global section of A is the zero function
- "No ambiguities means it's possible to reconstruct"

Nyquist-Shannon sampling

- Encode signals as a sheaf of bandlimited functions $B F$ over \mathbb{R}, with bandwidth B
- It's easier to work in the frequency domain:

$$
B F=\{f \in \mathrm{C}(\mathbb{R}, \mathbb{C}) \mid \operatorname{supp} f \subseteq[-B, B]\}
$$

- Samples are taken at integers, obtained by inverse Fourier transform
- For instance at n, we sample using the function M_{n}

$$
M_{n}(f)=\int_{-B}^{B} f e^{-2 n \pi i x} d x
$$

Nyquist-Shannon sampling

- The ambiguity sheaf identifies bandlimited functions with zeros at specific locations

$$
\begin{aligned}
A_{n} & =\left\{f \in B F \backslash M_{n}(f)=0\right\} \\
& =\{\text { Bandlimited functions that are zero at } n\}
\end{aligned}
$$

Nyquist-Shannon sampling

- The ambiguity sheaf identifies bandlimited functions with zeros at specific locations

$$
A_{n}=\left\{f \in B F \mid M_{n}(f)=0\right\}
$$

$=\{$ Bandlimited functions that are zero at $n\}$

Global sections of the ambiguity sheaf are bandlimited functions that vanish at every integer

Filters as sheaf morphisms

- Theorem: Every discrete-time LTI filter can be encoded as a sequence of two sheaf morphisms

Sheaf formalism
Input —— Internal state - Output
Hardware

Input sheaf

- Sections of this sheaf are timeseries, instead of continuous functions

$$
\longrightarrow 0 \longleftarrow \mathbb{R} \longrightarrow 0 \longleftarrow \mathbb{R} \longrightarrow 0 \longleftarrow \mathbb{R} \longrightarrow 0
$$

Output sheaf

- The output sheaf is the same

The internal state

- Contents of the shift register at each timestep
- $N=3$ shown

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$\rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The internal state

- Loads a new value with each timestep

The internal state

- Produces average of the shift register at each timestep

A

Finishing both morphisms

- Put in a few zero maps!

$\rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}$

$0 \longleftarrow \mathbb{R} \longrightarrow 0 \longleftarrow \mathbb{R} \longrightarrow 0 \longleftarrow \mathbb{R} \longrightarrow 0 \longleftarrow \mathbb{R}$

A single timestep

- Sections of the sheaves linked together give possible input/output combinations of the filter

Of course, this extends...

- Sections of the sheaves linked together give possible input/output combinations of the filter

$\rightarrow(9,2) \leftarrow(1,9,2) \rightarrow(1,9) \leftarrow(1,1,9) \rightarrow(1,1) \leftarrow(5,1,1) \rightarrow(5,1) \leftarrow(2,5$

$0 \longleftarrow 4 \longrightarrow 0 \longleftarrow 3.7 \longrightarrow 0 \longleftarrow 2.3 \longrightarrow 0 \longleftarrow 2$.

How this formalism helps...

- Of course, it corresponds nicely to the hardware ... BUT...
- It's easy to splice in nonlinear operations
- It works on nontrivial base spaces: A systematic study of filtering is now possible on cell complexes

Sheaves make it easy to invent topological filters that have controlled performance characteristics

Filtering sinosoids from noise

Signals at ports of standard LPF filter

Filtering out chirpy signals

Signals at ports of standard LPF filter

Time

Filtering out chirpy signals

Signals at ports of variable-bandwidth LPF filter

Time

Filtering out chirpy signals

Signals at ports of variable-bandwidth LPF filter

Circumventing bandwidth limits

- More averaging in a connected window leads to:
- More noise cancellation (Good)
- More distortion to the signal (Bad)

- Can safely do more averaging by collecting samples at "similar places" across the entire signal

Filter block diagram

Stage 1: Topological estimation

Stage 2: Grouping sheaf

Distance matrix of point cloud

Values of the signal at the neighbors

Process execution

Topological filter results

Signals at ports of topological filter

Compare: standard adaptive filter

Signals at ports of variable-bandwidth LPF filter

Time

Input image

Noisy input image

Fixed frequency image filter

Boxcar filtered output

Topological filter output

Topological filtered output

Error contributions

Topological filter stage-wise performance at $2.5 x$ filter BW

Error contributions

Topological filter stage-wise performance at $2.5 x$ filter $B W$

Error contributions

Topological filter stage-wise performance at $2.5 x$ filter $B W$

Further reading...

- Sanjeevi Krishnan, "Flow-cut dualities for sheaves on graphs," http://arxiv.org/abs/1409.6712
- Robert Ghrist and Sanjeevi Krishnan, "A Topological Max-Flow Min-Cut Theorem," Proceedings of Global Signals. Inf., (2013).
- Michael Robinson, "Understanding networks and their behaviors using sheaf theory," IEEE Global Conference on Signal and Information Processing (GlobalSIP) 2013, Austin, Texas.
- Michael Robinson, "The Nyquist theorem for cellular sheaves," Sampling Theory and Applications 2013, Bremen, Germany.

