The following slides heavily depend on [Chazal et al., 2016, Bubenik and Scott, 2014]

Plus a couple of examples from [Ghrist, 2014, Kleinberg, 2002, Carlsson and Mémoli, 2010]

1/28

Section number are from [Chazal et al., 2016]

Category latex comes from [Baez, 2004]

Defn [Baez, 2004]: A category C consists of:

- a collection Ob(C) of **objects**.
- for any pair of objects x, y, a set of morphisms from x to y, written f: x → y.

equipped with:

- for any object x, an **identity morphism** $1_x : x \to x$.
- for any pair of morphisms f: x → y and g: y → z, a morphism fg: x → z called the composite of f and g.

such that:

- for any morphism f: x → y, the left and right unit laws hold: 1_xf = f = f1_y.
- for any triple of morphisms f: w → x, g: x → y, h: y → z, the associative law holds: (fg)h = f(gh).

2 / 28

Example: **FinMet**[≤]

Objects: (X, d_X) = finite metric space

Morphisms: $f : (X, d_X) \rightarrow (Y, d_Y)$ s. t. $d_Y(f(x), f(y)) \le d_X(x, y)$

Example: Clust

Objects: (X, $\mathcal{P}(X)$) where X is a finite set and $\mathcal{P}(X)$ is a partition of X.

Note: elements of $\mathcal{P}(X)$ are called clusters.

Morphisms:

 $f: (X, \mathcal{P}(X)) \to (Y, \mathcal{P}(Y))$ s.t. $\mathcal{P}(X)$ is a refinement of $f^{-1}(\mathcal{P}(Y))$.

Note: a cluster morphism can coalesce clusters, but not break them up

Defn [Baez, 2004]: Given categories C, D, a **functor** $F : C \rightarrow D$ consists of:

- a function $F : Ob(C) \to Ob(D)$.
- for any pair of objects x, y ∈ Ob(C), a function
 F : morphism(x → y) → morphism(F(x) → F(y)).

such that:

• *F* preserves identities: for any object $x \in C$, $F(1_x) = 1_{F(x)}$.

4 / 28

• F preserves composition: for any pair of morphisms $f: x \to y, g: y \to z$ in C, F(fg) = F(f)F(g).

Kleinberg's Impossibility Theorem [Kleinberg, 2002]: There is no nontrivial functor from FinMet^ \leq **onto** Clust

(日) (四) (注) (注) (注) (三)

5/28

Kleinberg's clustering axioms:

Scale-Invariance. For any distance function d and any $\alpha > 0$, we have $F(d) = F(\alpha \cdot d)$.

Richness. Range(F) is equal to the set of all partitions of S. Richness requires that for any desired partition \mathcal{P} , it should be possible to construct a distance function d on S for which $F(d) = \mathcal{P}$.

Consistency. Let d and d_0 be two distance functions. If $F(d) = \mathcal{P}$, and d_0 is a \mathcal{P} -transformation of d, then $F(d_0) = \mathcal{P}$.

Consistency. Let d and d_0 be two distance functions. If $F(d) = \mathcal{P}$, and d_0 is a \mathcal{P} -transformation of d, then $F(d_0) = \mathcal{P}$.

Let \mathcal{P} be a partition of S, and d and d_0 two distance functions on S. We say that d_0 is a \mathcal{P} -transformation of d if

- (a) for all i, j belonging to the same cluster of \mathcal{P} , we have $d_0(i, j) \leq d(i, j)$; and
- (b) for all i, j belonging to different clusters of \mathcal{P} , we have $d_0(i, j) \ge d(i, j)$.

In other words, suppose that the clustering \mathcal{P} arises from the distance function d. If we now produce d_0 by reducing distances within the clusters and enlarging distance between the clusters then the same clustering \mathcal{P} should arise from d_0 .

Kleinberg's clustering axioms:

Scale-Invariance. For any distance function d and any $\alpha > 0$, we have $f(d) = f(\alpha \cdot d)$.

Richness. Range(f) is equal to the set of all partitions of S. Richness requires that for any desired partition \mathcal{P} , it should be possible to construct a distance function d on S for which $f(d) = \mathcal{P}$.

Consistency. Let d and d_0 be two distance functions. If $f(d) = \mathcal{P}$, and d_0 is a \mathcal{P} -transformation of d, then $f(d_0) = \mathcal{P}$.

In other words, suppose that the clustering \mathcal{P} arises from the distance function d. If we now produce d_0 by reducing distances within the clusters and enlarging distance between the clusters then the same clustering \mathcal{P} should arise from d_0 .

Kleinberg's Impossibility Theorem [Kleinberg, 2002]: There is no nontrivial functor from FinMet[≤] **onto** Clust

Example: PClust

Objects: $(X, \mathcal{P}_t(X))$ where X is a finite set and $\mathcal{P}_t(X)$ is a famiy of partitions of X such that $\mathcal{P}_t(X)$ is a refinement of $\mathcal{P}_s(X)$ if $t \leq s$. Note: $\mathcal{P}_t(X)$ can be represented by a dendrogram.

Morphisms:

 $f: (X, \mathcal{P}_t(X)) \to (Y, \mathcal{P}'_t(Y))$ s.t. $\mathcal{P}_t(X)$ is a refinement of $f^{-1}(\mathcal{P}'_t(Y))$.

Thm: [Carlsson and Mémoli, 2010]

∃! functor **FinMet**[≤] → **PClust** that takes the input $X = \{a, b\}$ where d(a, b) = R to $\mathcal{P}_t(X) = \{a\}, \{b\}$ for t < R and $\mathcal{P}_t(X) = \{a, b\}$ for $t \ge R$.

The output corresponds to single linkage clustering.

2.1 Persistence Modules Over a Real Parameter [Chazal et al., 2016]

Example: Real line

Objects: real numbers

Morphisms: $s \rightarrow t$ if $s \leq t$

Example: Vec

Objects: Vector spaces

Morphisms: Linear maps

Example: Persistence module $\mathbb V$ over $\mathbb R$ is a functor from the Real line into Vec

I.e., $\mathbb{V} = \{V_t \mid t \in \mathbb{R}\}$ with linear maps $\{v_t^s : V_s \to V_t \mid s \leq t\}$

Example: Set

Objects: Sets

Morphisms: subset relation

(Closed) sublevelset filtration of $(X, f) = \mathbb{X}_{sub} = \mathbb{X}_{sub}^{f}$ is a functor from the **Real line** into **Set**.

Let $f: X \to \mathbb{R}$

Let $X^t = (X, f)^t = \{x \in X \mid f(x) \le t\} = f^{-1}(\infty, t]$

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う へ で
11/28

Example: Top

Objects: Topological spaces.

Morphisms: continuous maps.

 H_n is a functor from **Top** into **Vec**:

 $V_t = H(X^t)$, $v_s^t = H(i_t^s) : V_s \to V_t$ is a persistent module.

 \mathbb{V} is **q-tame** if $r_t^s = rank(v_t^s) \leq \infty$ whenever s < t

Example: grVec

Objects: Graded vector spaces

Morphisms: Linear maps $f: V_n \rightarrow W_n$ where both vector spaces have the same grade n.

 H_* is a functor from **Top** into **grVec**

A (\mathbf{T}, \leq) is partially ordered if \leq is reflexive, anti-symmetric, and transitive. Then **T** is a category with morphisms \leq .

 $\textbf{T}\text{-}\mathsf{Persistence}\xspace$ module $\mathbb V$ is a functor from T into $\mathsf{Vec}\xspace$

I.e., $\mathbb{V} = \{V_t \mid t \in \mathsf{T}\}$ with linear maps $\{v_t^s : V_s \to V_t \mid s \leq t\}$

If $S \subset T$, then $\mathbb{V}_S = \mathbb{V}|_S$ = the **restriction** of \mathbb{V} to S.

Example $\{1, ..., m\} \subset \mathbb{R}$.

 $\{1,...,m\}$ -Persistence module \mathbb{V}_m is the restriction of the persistence module \mathbb{V} over \mathbb{R}

Defn: Given functors $F, G : C \rightarrow D$, a **natural transformation** $\alpha : F \Rightarrow G$ consists of:

a function α mapping each object x ∈ C to a morphism
 α_x : F(x) → G(x)

such that:

• for any morphism $f : x \rightarrow y$ in C, this diagram commutes:

$$\begin{array}{c|c} F(x) \xrightarrow{F(f)} F(y) \\ \alpha_x & & & \downarrow \\ \alpha_x & & & \downarrow \\ G(x) \xrightarrow{G(f)} G(y) \end{array}$$

2.3 Module Categories [Chazal et al., 2016]

Defn: Given **T**-persistent modules $\mathbb{U}, \mathbb{V} : \mathbf{T} \to \mathbf{Vec}$, a homomorphism $\phi : \mathbb{U} \Rightarrow \mathbb{V}$ consists of:

• a collection of linear maps $\{\phi_t : U_t \to V_t \mid t \in \mathbf{T}\}$

such that:

• for any morphism $s \leq t$ in \mathbb{U} , this diagram commutes:

 $Hom(\mathbb{U}, \mathbb{V}) = \{homomorphisms \ \mathbb{U} \Rightarrow \mathbb{V}\}$ $End(\mathbb{V}) = \{homomorphisms \ \mathbb{V} \Rightarrow \mathbb{V}\}$

15 / 28

・ロト ・団ト ・ヨト ・ヨト ・ ヨー ・ つへの

2.4 Interval Modules [Chazal et al., 2016]

Let \mathbf{T} be a totally ordered set.

 $J \subset \mathbf{T}$ is an **interval** if $r, t \in J$ and if r < s < t, then $s \in J$.

The **interval module** $I = \mathbf{k}^{J}$ is the **T**-persistence module with vector spaces

$$m{H}_t = egin{cases} m{k} & \textit{if} \ t \in J \ 0 & \textit{otherwise} \end{cases}$$

and linear maps

$$i_t^s = egin{cases} 1 & \textit{if } s,t \in J \ 0 & \textit{otherwise} \end{cases}$$

In informal language, \mathbf{k}^J represents a 'feature' which 'persists' over exactly the interval J and nowhere else.

I.e, \mathbf{k}^J represents a bar in the barcode.

2.5 Interval Decomposition [Chazal et al., 2016]

The direct sum $\mathbb{W}=\mathbb{U}\oplus\mathbb{V}$ of two persistence modules $\mathbb{U},\,\mathbb{V}$ is the category with

Objects: $W_t = U_t \oplus V_t$

Morphisms: $w_t^s = u_t^s \oplus v_t^s$.

A persistence module \mathbb{W} is **indecomposible** if

$$\mathbb{W} = \mathbb{U} \oplus \mathbb{V}$$
 implies $\mathbb{U}, \mathbb{V} \in \{0, \mathbb{W}\}$

Given an indexed family of intervals $\{J_{\ell} \mid \ell \in L\}$ we can synthesize a persistence module $\mathbb{V} = \bigoplus_{\ell \in L} \mathbf{k}^{J_{\ell}}$ whose isomorphism type depends only on the multiset $\{J_{\ell} \mid \ell \in L\}$.

Given a persistence module, $\mathbb V,$ we can often decompose $\mathbb V$ into submodules isomorphic to interval modules.

The decomposition of a persistence module is frequently described in metaphorical terms. The index $t \in \mathbb{R}$ is interpreted as time. Each interval summand \mathbf{k}^J represents a feature of the module which is born at time inf(J) and dies at time sup(J).

18/28

Theorem 2.8 (Gabriel, Auslander,RingelTachikawa,Webb, Crawley-Boevey) Let \mathbb{V} be a persistence module over $\mathbf{T} \subset \mathbb{R}$. Then \mathbb{V} can be decomposed as a direct sum of interval modules in either of the following situations:

T is a finite set; or
 each V_t is finite-dimensional.

On the other hand, there exists a persistence module over $\mathbb Z$ (indeed, over the nonpositive integers) which does not admit an interval decomposition.

Prop 2.5 Let $\mathbb{I} = \mathbf{k_T}^J$ be an interval module over $\mathbf{T} \subset \mathbb{R}$, then $End(\mathbb{I}) = \mathbb{R}$.

Prop 2.6: Interval modules are indecomposible.

2.6 The Decomposition Persistence Diagram [Chazal et al., 2016]

Let $\mathbf{k}(p^*, q^*) = \mathbf{k}^{(p^*, q^*)}$ where (p^*, q^*) represents an interval (open, closed, or half-open).

If a persistence module $\mathbb V$ indexed over $\mathbb R$ can be decomposed,

$$\mathbb{V}\cong igoplus_{\ell\in L} \mathsf{k}((p^*_\ell,q\ell^*)$$

Then we define the **decorated persistence diagram** to the be multiset:

$$Dgm(\mathbb{V}) = Int(\mathbb{V}) = \{(p_{\ell}^*, q\ell^*) \mid \ell \in L\}$$

and the undecorated persistence diagram to the be multiset:

$$dgm(\mathbb{V}) = int(\mathbb{V}) = \{(p_{\ell}^*, q\ell^*) \mid \ell \in L\} - \Delta$$

where $\Delta = \{(r, r) \mid r \in \mathbb{R}\} =$ the diagonal.

Fig. 2.3 A traditional example. *Left:* X is a smoothly embedded curve in the plane, and f is its y-coordinate or 'height' function. *Right:* The decorated persistence diagram of $H(X_{sub})$: there are three intervals in H_0 (*blue dots*, marked 0) and one interval in H_1 (*red dot*, marked 1)

2.7 Quiver Calculations [Chazal et al., 2016]

A persistence module $\mathbb V$ indexed over a finite subset of the real line $T: a_1 < a_2 < \cdot < a_n$

can be thought of as a diagram of *n* vector spaces and n-1 linear maps: $\mathbb{V}: V_{a_1} \to V_{a_1} \to \to V_{a_n}$

Such a diagram can be represented by a quiver (multidigraph):

Example 2.13 Let a < b < c. There are six interval modules over $\{a, b, c\}$, namely:

If $\mathbf{k}[a, b] = \mathbf{e}_a - \mathbf{e}_b - \mathbf{e}_c$ occurs with multiplicity m in the interval decomposition of \mathbb{V} , then

$$m = \langle [a, b] | \mathbb{V}_{a, b, c} \rangle = \langle \bullet_a - - - \bullet_b - - \circ_c \rangle$$

Example 2.15 The invariants of a single linear map $v: V_a \rightarrow V_b$ are:

$$rank(v) = \langle \bullet_{a} - - \bullet_{b} \rangle$$
$$nullity(v) = \langle \bullet_{a} - - \circ_{b} \rangle$$
$$conullity(v) = \langle \circ_{a} - - \bullet_{b} \rangle$$

Example: If $a \le b \le c \le d$, then $rank(V_b \to V_c) \ge rank(V_a \to V_d)$

Proof:

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ う へ で
26 / 28

Baez, J. C. (2004).

Some definitions everyone should know. http://math.ucr.edu/home/baez/qg-fall2006/definitions.tex.

- Bubenik, P. and Scott, J. A. (2014). Categorification of persistent homology. Discrete Comput. Geom., 51(3):600–627.
- Carlsson, G. and Mémoli, F. (2010).

Characterization, stability and convergence of hierarchical clustering methods.

J. Mach. Learn. Res., 11:1425–1470.

Chazal, F., de Silva, V., Glisse, M., and Oudot, S. (2016).
 The structure and stability of persistence modules.
 SpringerBriefs in Mathematics. Springer, [Cham].

Ghrist, R. (2014).

Elementary Applied Topology.

Createspace Independent Pub.

Kleinberg, J. (2002).

An impossibility theorem for clustering. pages 446-453.