The following slides heavily depend on
[Chazal et al., 2016, Bubenik and Scott, 2014]

Plus a couple of examples from
[Ghrist, 2014, Kleinberg, 2002, Carlsson and Mémoli, 2010]

Section number are from [Chazal et al., 2016]

Category latex comes from [Baez, 2004]
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Defn [Baez, 2004]: A category C consists of:

@ a collection Ob(C) of objects.

@ for any pair of objects x, y, a set of morphisms from x to y,
written f: x — y.

equipped with:

e for any object x, an identity morphism 1,: x — x.

@ for any pair of morphisms f: x - yand g: y — z, a
morphism fg: x — z called the composite of f and g.

such that:

@ for any morphism f: x — y, the left and right unit laws
hold: 1,f =f = f1,.

o for any triple of morphisms f: w — x, g: x = vy, h: y — z,
the associative law holds: (fg)h = f(gh).
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10.4 Clustering functors [Ghrist, 2014]

Example: FinMet=
Objects: (X, dx) = finite metric space

Morphisms: £ : (X, dx) — (Y,dy) s. t.
dy (f(x), f(y)) < dx(x,y)

Example: Clust

Objects:
(X, P(X)) where X is a finite set and P(X) is a partition of X.

Note: elements of P(X) are called clusters.

Morphisms:
f (X, P(X)) = (Y,P(Y)) s.t. P(X) is a refinement of f~1(P(Y)).

Note: a cluster morphism can coalesce clusters, but not break them up
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Defn [Baez, 2004]: Given categories C, D, a functor F : C — D
consists of:

@ a function F : Ob(C) — Ob(D).

e for any pair of objects x, y € Ob(C), a function
F : morphism(x — y) — morphism(F(x) — F(y)).

such that:

e F preserves identities: for any object x € C, F(1x) = LF(x)-

o F preserves composition: for any pair of morphisms
f:x—y, g:y—zinC, F(fg) = F(f)F(g).
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Kleinberg's Impossibility Theorem [Kleinberg, 2002]: There is no
nontrivial functor from FinMet=< onto Clust
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Kleinberg's clustering axioms:

Scale-Invariance. For any distance function d and any « > 0, we
have F(d) = F(a - d).

Richness. Range(F) is equal to the set of all partitions of S.
Richness requires that for any desired partition P, it should be
possible to construct a distance function d on S for which
F(d)="P.

Consistency. Let d and dy be two distance functions. If F(d) = P,
and dyp is a P-transformation of d, then F(dy) = P.
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Consistency. Let d and dy be two distance functions. If F(d) = P,
and dp is a P-transformation of d, then F(dp) = P.

Let P be a partition of S, and d and djy two distance functions on
S. We say that dy is a P-transformation of d if

(a) for all i,j belonging to the same cluster of P, we have
dO(Ia./) < d(la./)' and
(b) for all i,/ belonging to different clusters of P, we have

In other words, suppose that the clustering P arises from the
distance function d. If we now produce dy by reducing distances
within the clusters and enlarging distance between the clusters
then the same clustering P should arise from dp.
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Example: PClust

Objects:

(X, P:(X)) where X is a finite set and P;(X) is a famiy of

partitions of X such that P(X) is a refinement of Ps(X) if t <.
Note: P:(X) can be represented by a dendrogram.

Morphisms:
(X, Pe(X)) = (Y, PLY)) s.t. Pe(X) is a refinement of f=1(PL(Y)).

Thm: [Carlsson and Mémoli, 2010]
3! functor FinMet< — PClust that takes the
input X = {a, b} where d(a,b) =R to
P(X) = {a},{b} for t < R and P:(X) = {a, b} for t > R.

The output corresponds to single linkage clustering.
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2.1 Persistence Modules Over a Real Parameter

[Chazal et al., 2016]

Example: Real line
Objects: real numbers
Morphisms: s — tif s <t
Example: Vec
Objects: Vector spaces
Morphisms: Linear maps

Example: Persistence module V over R is a functor from the Real
line into Vec

le.,, V={V; | t € R} with linear maps {v{ : Vs — V; | s < t}
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Example: Set
Objects: Sets
Morphisms: subset relation

(Closed) sublevelset filtration of (X, f) = Xy, = X, is a functor
from the Real line into Set.

Let f: X =R

Let Xt = (X, f)! ={x€ X | f(x) <t} = f (o0, 1]
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Example: Top
Objects: Topological spaces.
Morphisms: continuous maps.
H, is a functor from Top into Vec:

Ve = H(XY), vi = H(if) : Vs — V; is a persistent module.

V is g-tame if r; = rank(v;) < oo whenever s < t

Example: grVec
Objects: Graded vector spaces

Morphisms: Linear maps f : V,, — W, where both vector
spaces have the same grade n.

H, is a functor from Top into grVec
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2.2 Index Posets [Chazal et al., 2016]

A (T, <) is partially ordered if < is reflexive, anti-symmetric, and
transitive. Then T is a category with morphisms <.

T-Persistence module V is a functor from T into Vec

le.,, V={V; | t € T} with linear maps {v; : Vs — V; | s < t}

If S C T, then Vg = V|g = the restriction of V to S.
Example {1,...,m} C R.

{1, ..., m}-Persistence module V, is the restriction of the
persistence module V over R
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Defn: Given functors F, G : C — D, a natural transformation
a: F = G consists of:

@ a function v mapping each object x € C to a morphism
ax : F(x) = G(x)

such that:

e for any morphism f : x — y in C, this diagram commutes:
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2.3 Module Categories [Chazal et al., 2016]

Defn: Given T-persistent modules U,V : T — Vec, a
homomorphism ¢ : U = V consists of:

@ a collection of linear maps {¢;: : Uy — V; | t € T}
such that:

o for any morphism s < t in U, this diagram commutes:

u;
Us > Ut

e

Vs = Vi
t

Hom(U, V) = { homomorphisms U = V}
End(V) = {homomorphisms V = V}
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2.4 Interval Modules [Chazal et al., 2016]

Let T be a totally ordered set.
JCTisaninterval if r,t € Jand if r<s < t, thens e J.

The interval module I = k” is the T-persistence module with

vector spaces
| {k if teJ
t pr—

0 otherwise

and linear maps
. {1 ifs,teJ

) e
t .
0 otherwise

In informal language, k’ represents a 'feature’ which ‘persists’ over
exactly the interval J and nowhere else.

l.e, k” represents a bar in the barcode.
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2.5 Interval Decomposition [Chazal et al., 2016]

The direct sum W = U @ V of two persistence modules U, V is
the category with

Objects: W; = Uy & V4
Morphisms: wy = ui @ v;.

A persistence module W is indecomposible if
W=Ua®V implies U,V € {0, W}

Given an indexed family of intervals {J; | £ € L} we can synthesize
a persistence module V = @, k7t whose isomorphism type
depends only on the multiset {J, | £ € L}.

Given a persistence module, V, we can often decompose V into
submodules isomorphic to interval modules.
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The decomposition of a persistence module is frequently described
in metaphorical terms. The index t € R is interpreted as time.
Each interval summand k” represents a feature of the module
which is born at time inf(J) and dies at time sup(J).
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Theorem 2.8 (Gabriel, Auslander,RingelTachikawa,Webb,
Crawley-Boevey) Let V be a persistence module over T C R. Then
V can be decomposed as a direct sum of interval modules in either
of the following situations:

(1) T is a finite set; or

(2) each V4 is finite-dimensional.

On the other hand, there exists a persistence module over Z
(indeed, over the nonpositive integers) which does not admit an
interval decomposition.
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Prop 2.5 Let I = k17 be an interval module over T C R, then
End(I) = R.

Prop 2.6: Interval modules are indecomposible.
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2.6 The Decomposition Persistence Diagram

[Chazal et al., 2016]

Let k(p*, g*) = k(P"4") where (p*, g*) represents an interval
(open, closed, or half-open).

If a persistence module V indexed over R can be decomposed,

V= @zeL k((PZ: ql*)

Then we define the decorated persistence diagram to the be
multiset:

Dgm(V) = Int(V) = {(p. qt*) | £ € L}
and the undecorated persistence diagram to the be multiset:
dgm(V) = int(V) = {(p}. qt*) | £ € L} — A

where A = {(r,r) | r € R} = the diagonal.
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Fig. 2.3 A traditional example. Left: X is a smoothly embedded curve in the plane, and f is its
y-coordinate or ‘height” function. Right: The decorated persistence diagram of H(Xgyup): there are
three intervals in Hy (blue dots, marked 0) and one interval in Hy (red dot, marked 1)

22/28



2.7 Quiver Calculations [Chazal et al., 2016]

A persistence module V indexed over a finite subset of the real line
T ai<a<-<ap

can be thought of as a diagram of n vector spaces and n — 1 linear
maps: V:V, — Vo, — — V,,

Such a diagram can be represented by a quiver (multidigraph):

Example 2.13 Let a < b < c¢. There are six interval modules over
{a, b, c}, namely:

k[a,a] = e, op oc k[a, b] = e, oy oc
k[b, b] = o, o ¢ k[b, c] = o, oy o
k[c,c] = o, op o k[a,c] = e, oy o
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If k[a, b] = e, oy o occurs with multiplicity m in the
interval decomposition of V, then

m = ([a,b] | Vape) = (oa

oy Oc>
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Example 2.15 The invariants of a single linear map v : V; — V,
are:

rank(v) = (e, o)
nullity(v) = (e, op)
conullity(v) = (o, o)
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Example: If a < b < c < d, then
rank(Vp — V) > rank(V, — Vy)

Proof:
rank(Vp — V) = ( o, o )
= <°a ®ph o °d>
+<Oa ®) o .d>
+<.a o) o Od>
+<Oa L) o Od>
> <’a o o .d>
= (o, )

= rank(V, — V4)
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