
The following slides heavily depend on
[Chazal et al., 2016, Bubenik and Scott, 2014]

Plus a couple of examples from
[Ghrist, 2014, Kleinberg, 2002, Carlsson and Mémoli, 2010]

Section number are from [Chazal et al., 2016]

Category latex comes from [Baez, 2004]
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Defn [Baez, 2004]: A category C consists of:

a collection Ob(C ) of objects.

for any pair of objects x , y , a set of morphisms from x to y ,
written f : x → y .

equipped with:

for any object x , an identity morphism 1x : x → x .

for any pair of morphisms f : x → y and g : y → z , a
morphism fg : x → z called the composite of f and g .

such that:

for any morphism f : x → y , the left and right unit laws
hold: 1x f = f = f 1y .

for any triple of morphisms f : w → x , g : x → y , h : y → z ,
the associative law holds: (fg)h = f (gh).

2 / 28



10.4 Clustering functors [Ghrist, 2014]

Example: FinMet≤

Objects: (X , dX ) = finite metric space

Morphisms: f : (X , dX )→ (Y , dY ) s. t.
dY (f (x), f (y)) ≤ dX (x , y)

Example: Clust

Objects:
(X ,P(X )) where X is a finite set and P(X ) is a partition of X .

Note: elements of P(X ) are called clusters.

Morphisms:
f : (X ,P(X ))→ (Y ,P(Y )) s.t. P(X ) is a refinement of f −1(P(Y )).

Note: a cluster morphism can coalesce clusters, but not break them up
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Defn [Baez, 2004]: Given categories C ,D, a functor F : C → D
consists of:

a function F : Ob(C )→ Ob(D).

for any pair of objects x , y ∈ Ob(C ), a function
F : morphism(x → y)→ morphism(F (x)→ F (y)).

such that:

F preserves identities: for any object x ∈ C , F (1x) = 1F (x).

F preserves composition: for any pair of morphisms
f : x → y , g : y → z in C , F (fg) = F (f )F (g).

4 / 28



Kleinberg’s Impossibility Theorem [Kleinberg, 2002]: There is no
nontrivial functor from FinMet≤ onto Clust
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Kleinberg’s clustering axioms:

Scale-Invariance. For any distance function d and any α > 0, we
have F (d) = F (α · d).

Richness. Range(F ) is equal to the set of all partitions of S .
Richness requires that for any desired partition P, it should be
possible to construct a distance function d on S for which
F (d) = P.

Consistency. Let d and d0 be two distance functions. If F (d) = P,
and d0 is a P-transformation of d , then F (d0) = P.
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Consistency. Let d and d0 be two distance functions. If F (d) = P,
and d0 is a P-transformation of d , then F (d0) = P.

Let P be a partition of S , and d and d0 two distance functions on
S . We say that d0 is a P-transformation of d if

(a) for all i , j belonging to the same cluster of P, we have
d0(i , j) ≤ d(i , j); and

(b) for all i , j belonging to different clusters of P, we have
d0(i , j) ≥ d(i , j).

In other words, suppose that the clustering P arises from the
distance function d . If we now produce d0 by reducing distances
within the clusters and enlarging distance between the clusters
then the same clustering P should arise from d0.
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Example: PClust

Objects:
(X ,Pt(X )) where X is a finite set and Pt(X ) is a famiy of
partitions of X such that Pt(X ) is a refinement of Ps(X ) if t ≤ s.

Note: Pt(X ) can be represented by a dendrogram.

Morphisms:
f : (X ,Pt(X ))→ (Y ,P ′t(Y )) s.t. Pt(X ) is a refinement of f −1(P ′t(Y )).

Thm: [Carlsson and Mémoli, 2010]

∃! functor FinMet≤ → PClust that takes the
input X = {a, b} where d(a, b) = R to

Pt(X ) = {a}, {b} for t < R and Pt(X ) = {a, b} for t ≥ R.

The output corresponds to single linkage clustering.
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2.1 Persistence Modules Over a Real Parameter
[Chazal et al., 2016]

Example: Real line

Objects: real numbers

Morphisms: s → t if s ≤ t

Example: Vec

Objects: Vector spaces

Morphisms: Linear maps

Example: Persistence module V over R is a functor from the Real
line into Vec

I.e., V = {Vt | t ∈ R} with linear maps {v st : Vs → Vt | s ≤ t}
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Example: Set

Objects: Sets

Morphisms: subset relation

(Closed) sublevelset filtration of (X , f ) = Xsub = Xf
sub is a functor

from the Real line into Set.

Let f : X → R

Let X t = (X , f )t = {x ∈ X | f (x) ≤ t} = f −1(∞, t]

11 / 28



Example: Top

Objects: Topological spaces.

Morphisms: continuous maps.

Hn is a functor from Top into Vec:

Vt = H(X t), v ts = H(i st ) : Vs → Vt is a persistent module.

V is q-tame if r st = rank(v st ) ≤ ∞ whenever s < t

Example: grVec

Objects: Graded vector spaces

Morphisms: Linear maps f : Vn →Wn where both vector
spaces have the same grade n.

H∗ is a functor from Top into grVec
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2.2 Index Posets [Chazal et al., 2016]

A (T,≤) is partially ordered if ≤ is reflexive, anti-symmetric, and
transitive. Then T is a category with morphisms ≤.

T-Persistence module V is a functor from T into Vec

I.e., V = {Vt | t ∈ T} with linear maps {v st : Vs → Vt | s ≤ t}

If S ⊂ T, then VS = V|S = the restriction of V to S.

Example {1, ...,m} ⊂ R.

{1, ...,m}-Persistence module Vm is the restriction of the
persistence module V over R
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Defn: Given functors F ,G : C → D, a natural transformation
α : F ⇒ G consists of:

a function α mapping each object x ∈ C to a morphism
αx : F (x)→ G (x)

such that:

for any morphism f : x → y in C , this diagram commutes:

F (x)
F (f ) //

αx

��

F (y)

αy

��
G (x)

G(f )
// G (y)
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2.3 Module Categories [Chazal et al., 2016]

Defn: Given T-persistent modules U,V : T→ Vec, a
homomorphism φ : U⇒ V consists of:

a collection of linear maps {φt : Ut → Vt | t ∈ T}

such that:

for any morphism s ≤ t in U, this diagram commutes:

Us
ust //

φs
��

Ut

φt
��

Vs
v s
t

// Vt

Hom(U,V) = {homomorphisms U⇒ V}

End(V) = {homomorphisms V⇒ V}
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2.4 Interval Modules [Chazal et al., 2016]

Let T be a totally ordered set.

J ⊂ T is an interval if r , t ∈ J and if r < s < t, then s ∈ J.

The interval module I = kJ is the T-persistence module with
vector spaces

It =

{
k if t ∈ J

0 otherwise

and linear maps

i st =

{
1 if s, t ∈ J

0 otherwise

In informal language, kJ represents a ’feature’ which ‘persists’ over
exactly the interval J and nowhere else.

I.e, kJ represents a bar in the barcode.
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2.5 Interval Decomposition [Chazal et al., 2016]

The direct sum W = U⊕ V of two persistence modules U, V is
the category with

Objects: Wt = Ut ⊕ Vt

Morphisms: w s
t = ust ⊕ v st .

A persistence module W is indecomposible if

W = U⊕ V implies U,V ∈ {0,W}

Given an indexed family of intervals {J` | ` ∈ L} we can synthesize
a persistence module V =

⊕
`∈L k

J` whose isomorphism type
depends only on the multiset {J` | ` ∈ L}.

Given a persistence module, V, we can often decompose V into
submodules isomorphic to interval modules.
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The decomposition of a persistence module is frequently described
in metaphorical terms. The index t ∈ R is interpreted as time.
Each interval summand kJ represents a feature of the module
which is born at time inf (J) and dies at time sup(J).
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Theorem 2.8 (Gabriel, Auslander,RingelTachikawa,Webb,
Crawley-Boevey) Let V be a persistence module over T ⊂ R. Then
V can be decomposed as a direct sum of interval modules in either
of the following situations:

(1) T is a finite set; or

(2) each Vt is finite-dimensional.

On the other hand, there exists a persistence module over Z
(indeed, over the nonpositive integers) which does not admit an
interval decomposition.
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Prop 2.5 Let I = kT
J be an interval module over T ⊂ R, then

End(I) = R.

Prop 2.6: Interval modules are indecomposible.
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2.6 The Decomposition Persistence Diagram
[Chazal et al., 2016]

Let k(p∗, q∗) = k(p
∗,q∗) where (p∗, q∗) represents an interval

(open, closed, or half-open).

If a persistence module V indexed over R can be decomposed,

V ∼=
⊕

`∈L k((p∗` , q`
∗)

Then we define the decorated persistence diagram to the be
multiset:

Dgm(V) = Int(V) = {(p∗` , q`∗) | ` ∈ L}

and the undecorated persistence diagram to the be multiset:

dgm(V) = int(V) = {(p∗` , q`∗) | ` ∈ L} −∆

where ∆ = {(r , r) | r ∈ R} = the diagonal.
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2.7 Quiver Calculations [Chazal et al., 2016]

A persistence module V indexed over a finite subset of the real line
T : a1 < a2 < · < an

can be thought of as a diagram of n vector spaces and n − 1 linear
maps: V : Va1 → Va1 → → Van

Such a diagram can be represented by a quiver (multidigraph):

Example 2.13 Let a < b < c . There are six interval modules over
{a, b, c}, namely:

k[a, a] = •a———◦b———◦c k[a, b] = •a———•b———◦c

k[b, b] = ◦a———•b———◦c k[b, c] = ◦a———•b———•c

k[c , c] = ◦a———◦b———•c k[a, c] = •a———•b———•c

23 / 28



If k[a, b] = •a———•b———◦c occurs with multiplicity m in the
interval decomposition of V, then

m = 〈 [a, b] | Va,b,c〉 = 〈•a———•b———◦c〉
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Example 2.15 The invariants of a single linear map v : Va → Vb

are:
rank(v) = 〈•a———•b〉

nullity(v) = 〈•a———◦b〉
conullity(v) = 〈◦a———•b〉
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Example: If a ≤ b ≤ c ≤ d , then
rank(Vb → Vc) ≥ rank(Va → Vd)

Proof:

rank(Vb → Vc) = 〈———•b———•c———〉

= 〈•a———•b———•c———•d〉
+〈◦a———•b———•c———•d〉
+〈•a———•b———•c———◦d〉
+〈◦a———•b———•c———◦d〉

≥ 〈•a———•b———•c———•d〉

= 〈•a———————————•d〉

= rank(Va → Vd)
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