
Sheaf

A sheaf is a functor from from the category of simplicial complexes

Example: σ → F (σ), a vector space

ρ ⊂ σ → L : F (ρ) → F (σ), a linear map

F (σ) is called a stalk.

F (ρ ⊂ σ) is called a restriction map

Let X be a simplicial complex.

For every σ, choose sσ ∈ F (σ). This assignment (sσ)σ∈X of an

element of F (σ) to every simplex is called a global section if

these choices are compatible with the restriction maps.

FX (X) = set of all global sections.
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Example: The constant sheaf

Let X be a simplicial complex

The constant sheaf GX :

σ → G

ρ ⊂ σ → id : G → G

Suppose (sσ)σ∈X is a global section.

Then if sτ = g ∈ G, then sσ = g for all σ ∈ X .

The the (group/vector space/...) of global sections in isomorphic to

G.
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Example: The skyscraper sheaf

The skyscraper sheaf Gτ

σ →
{

G if σ = τ

0 otherwise.

σ ⊂ σ → identity map

ρ ⊂ σ → zero map if ρ �= σ.

Suppose (sσ)σ∈X is a global section.

Then sσ = 0 for all σ �= τ , since sσ ∈ F (σ) = 0

If dimτ > 0, then ∃ρ ⊂ τ and F (ρ ⊂ τ) = 0. Thus sτ = 0.

Thus the (group/vector space/...) of global sections � {0}.

If dimτ > 0, let sτ = g. Thus in this case, the (group/vector

space/...) of global sections � G.
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Direct sum

If F and G are sheaves, then F
⊕

G is a sheaf.

σ → F (σ)
⊕

G(σ)

ρ ⊂ σ → F (ρ ⊂ σ)
⊕

G(ρ ⊂ σ)

Example:
⊕
τ∈X

Gτ

σ → ⊕
τ∈X

Gτ = G

ρ ⊂ σ → ⊕
τ∈X

Gτ (ρ ⊂ σ) =

{
identity map ρ = σ

zero map ρ ⊂ σ

Thus the (group/vector space/...) of global sections � ⊕
v∈X

G since

we can assign any element of G to a vertex v .
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Global sections, revisited
● The space of global sections alone is insufficient to 

detect redundancy or possible faults, but another 
invariant works

● It's based on the idea that we can rewrite the basic 
condition(s) for a global section s of a sheaf �

� (v
1
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� (e)

� (v
2
)

� (v
2
↝e)� (v

1
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(� (a↝b) is the restriction map connecting cell a to a cell b in a sheaf � )
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Global sections, revisited
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Recall: A queue as a sheaf
● Contents of the shift register at each timestep
● N = 3 shown

ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2ℝ3ℝ2

1 0 0
0 1 0

0 1 0
0 0 1(   )

(   )
0 1 0
0 0 1(   ) 0 1 0

0 0 1(   ) 0 1 0
0 0 1(   )

1 0 0
0 1 0(   ) 1 0 0

0 1 0(   )
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Recall: A single timestep
● Contents of the shift register at each timestep
● N = 3 shown

(1,9,2)(9,2) (1,9) (1,1)(1,1,9) (5,1,1) (2,5,1)(5,1)

1 0 0
0 1 0(   )1 0 0

0 1 0(   ) 1 0 0
0 1 0(   )

0 1 0
0 0 1(   )0 1 0

0 0 1(   ) 0 1 0
0 0 1(   ) 0 1 0

0 0 1(   )
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(   )(   )

(   )(   )

Rewriting using matrices
● Same section, but the condition for verifying that it's 

a section is now written linear algebraically

(1,9,2) (1,9) (1,1)(1,1,9) (5,1,1)

1 0 0
0 1 0

1 0 0
0 1 0

0 1 0
0 0 1

0 1 0
0 0 1

1
9
2

1
1
9

5
1
1

1 0 0    0 -1  0    0  0  0
0 1 0    0  0 -1    0  0  0

0 0 0    1  0  0    0 -1  0
0 0 0    0  1  0    0  0 -1

0
0

0
0

=
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The cochain complex
● Motivation: Sections being in the kernel of matrix 

suggests a higher dimensional construction exists!
● Goal: build the cochain complex for a sheaf �

● From this, sheaf cohomology will be defined as

much the same as homology (but the chain 
complex goes up in dimension instead of down)

Ck(X; � ) Ck+1(X; � )
dk

Ck+2(X; � )
dk+1

Ck-1(X; � )
dk-1

Hk(X; � ) = ker dk / image dk-1
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Generalizing up in dimension
● Global sections lie in the kernel of a particular 

matrix
● We gather the domain and range from stalks over 

vertices and edges...  These are the cochain spaces

● An element of Ck(X; � ) is called a cochain, and 
specifies a datum from the stalk at each k-simplex

Ck(X; � ) = ⊕ � (a)
a is a k-simplex

(The direct sum operator ⊕ forms a new vector space by 
concatenating the bases of its operands)
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The cochain complex
● The coboundary map dk : Ck(X; � ) → Ck+1(X; � ) 

is given by the block matrix 

[b
i
:a

j
] � (a

j
↝b

i
) Row i

Column j

dk  =

0,  +1, or -1 
depending on the 
relative orientation 
of a

j
 and b

i
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The cochain complex
● We've obtained the cochain complex

● Cohomology is defined as

Ck(X; � ) Ck+1(X; � )
dk

Ck+2(X; � )
dk+1

Ck-1(X; � )
dk-1

Hk(X; � ) = ker dk / image dk-1

All the cochains that are consistent in 
dimension k ...

… that weren't already present in 
dimension k - 1



Michael Robinson14

Cohomology facts
● H0(X; � ) is the space of global sections of �
● H1(X; � ) usually has to do with oriented, 

non-collapsible data loops

● Hk(X; � ) is a functor: sheaf morphisms 
induce linear maps between cohomology 
spaces

Nontrivial 
H1(X; ℤ)
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Cohomology versus homology

Homologies of different chain complexes:
● Chain complex: simplices and their boundaries

● Transposing the boundary maps yields the cochain 
complex: functions on simplices

● With ℝ linear algebra, homology* of both of these 
carry identical information for a wide class of spaces

Ck(X) Ck-1(X)Ck+1(X)
∂k+1 ∂k ∂k-1

Ck(X) Ck-1(X)Ck+1(X)
∂k+1 ∂k ∂k-1

T T T∂k+2
T

* we call the homology of a cochain complex cohomology 
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Cohomology versus homology

Homologies of different chain complexes:
● Transposing the boundary maps yields the cochain 

complex: functions on simplices

Ck(X) Ck-1(X)Ck+1(X)
∂k+1 ∂k ∂k-1

T T T∂k+2
T

The coboundary maps work like discrete derivatives 
and compute differences between functions on higher 
dimensional simplices
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Sheaf cohomology versus homology

Homologies of different chain complexes:
● Transposing the boundary maps yields the cochain 

complex: functions on simplices

● Sheaf cochain complex: also functions on simplices, 
but they are generalized!

Ck+1(X; � ) Ck(X; � )
dk

Ck-1(X; � )
dk-1

Ck+2(X; � )
dk+1

Ck(X) Ck-1(X)Ck+1(X)
∂k+1 ∂k ∂k-1

T T T∂k+2
T
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“Weather Loop” a simple model
Sensors/
Questions

Rain? 
(R)

Humidity % 
(H)

Clouds? 
(L)

Sun? 
(S)

News (N) X X

Weather Website (W) X X

Rooftop Camera (C) X X

Twitter  (T) X X

Make simplicial complex

Question: Can misleading globalized 
information be detected?



h"ps://youtu.be/dAfVrTDFcs4?list=PLSekr_gm4hWLvFtJX0WUueVO65uhvBPrA	  	  	  
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fA B

A A
The basis of (A) is the set of elements of A

f Rf

A B

A B
f

Rf

B B

Rf �



h"ps://youtu.be/dAfVrTDFcs4?list=PLSekr_gm4hWLvFtJX0WUueVO65uhvBPrA	  	  	  
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Switching sheaves
● It's possible to construct a sheaf that represents the truth table of a 

logic circuit
● Each vertex is a logic gate, each edge is a wire

�
2
 × �

2

pr
1

pr
2

and

Quiescent* logic sheaf

�
2

�
2

�
2

andSheafify

Logic circuit

A B

C

A B   C

0  0    0
0  1    0
1  0    0
1  1    1

*Quiescent = steady state,   prn = projection onto nth component
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Switching sheaves
● Vectorify everything about a quiescent logic sheaf, 

and you obtain a switching sheaf

�
2
 × �

2

pr
1

pr
2

and
Vectorify!

Quiescent* logic sheaf

�
2

�
2

�
2

*Quiescent = steady state,   prn = projection onto nth component

�
2
[�

2
 × �

2
]

=

A vector space 
whose basis is 

the set of 
ordered pairs 

=

�
2

2 ⊗ �
2

2

⊗ = Tensor 
product
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Switching sheaves
● Vectorify everything about a quiescent logic sheaf, 

and you obtain a switching sheaf

�
2
 × �

2 �
2

2 ⊗ �
2

2

pr
1

pr
2

and

1 0 1 0
0 1 0 1

1 1 0 0
0 0 1 1

1 1 1 0
0 0 0 1

(    ) (    )

(    )
Vectorify!

Quiescent* logic sheaf Switching sheaf

�
2
2 �

2
2

�
2
2

�
2

�
2

�
2

*Quiescent = steady state,   prn = projection onto nth component
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Global sections of switching sheaves
● In the case of a 3 input gate, the global sections are 

spanned by all simultaneous combinations of inputs

�
2

2 ⊗ �
2
2 ⊗ �

2
2

(a,A) (b,B) (c,C) a ⊗ b ⊗ c
a ⊗ b ⊗ C
a ⊗ B ⊗ c
a ⊗ B ⊗ C
A ⊗ b ⊗ c
A ⊗ b ⊗ C
A ⊗ B ⊗ c
A ⊗ B ⊗ C

28 = 256 sections in total

�
2
2 �

2
2 �

2
2

�
2
2
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�
2
2

�
2
4

�
2
2 �

2
2

�
2
4

�
2
2

�
2
2

● When we instead consider a 
logically equivalent circuit, the 
situation changes

● Global sections consist of 
simultaneous inputs to each gate, 
but consistency is checked via 
tensor contractions

● There is an inherent model of 
uncertainty

Global sections of switching sheaves

datafow
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�
2
2

�
2
4

�
2
2 �

2
2

�
2
4

�
2
2

�
2
2

● The space of global sections is 
now 6 dimensional – some 
sections were lost!

a ⊗ b  +  c ⊗ d
a ⊗ b  + C ⊗ d
a ⊗ B +  c ⊗ d
A ⊗ b +  c ⊗ d
A ⊗ B + c ⊗ D
A ⊗ B + C ⊗ D

(a,A) (b,B)

(c,C)AND

Global sections of switching sheaves

(d,D)

Recall that the space of global 
sections is a subspace of �

2
4 �

2
4⊕
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�
2
2

�
2
4

�
2
2 �

2
2

�
2
4

�
2
2

�
2
2

● The space of global sections is 
now 6 dimensional – some 
sections were lost!

● All local sections on the 
upstream gate are represented

a ⊗ b  +  c ⊗ d
a ⊗ b  + C ⊗ d
a ⊗ B +  c ⊗ d
A ⊗ b +  c ⊗ d
A ⊗ B + c ⊗ D
A ⊗ B + C ⊗ D

(a,A) (b,B)

(c,C)AND

Global sections of switching sheaves

(d,D)
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�
2
2

�
2
4

�
2
2 �

2
2

�
2
4

�
2
2

�
2
2

● The space of global sections is 
now 6 dimensional – some 
sections were lost!

● All local sections supported on 
the downstream gate are there 
too

a ⊗ b  +  c ⊗ d
a ⊗ b  + C ⊗ d
a ⊗ B +  c ⊗ d
A ⊗ b +  c ⊗ d
A ⊗ B + c ⊗ D
A ⊗ B + C ⊗ D

(a,A) (b,B)

(c,C)AND

Global sections of switching sheaves

(d,D)
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�
2
2

�
2
4

�
2
2 �

2
2

�
2
4

�
2
2

�
2
2

No quiescent logic states were 
actually lost, but the sections 
of this sheaf represent sets of 
simultaneous data at each gate 
that might be in transition!

(a,A) (b,B)

(c,C)AND

Global sections of switching sheaves

(d,D)
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Higher cohomology spaces
● Switching sheaves are written over 1-dimensional 

spaces, so they could have nontrivial 1-cohomology
● Nontrivial 1-cohomology classes consist of 

directed loops that store data
● Since we just found that logic value transitions are 

permitted, this means that 1-cohomology can 
detect glitches
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Glitch generator: cohomology

A
F H0(X;ℱ) is generated by

A+C+D ⊗ e
a+c+d ⊗ E

A+a+C+c+d ⊗ e+D ⊗ E

H1(X;ℱ)≅ℤ
2

C

E

D

Hazard 
transition 
state

Indication that 
there's a race 
condition possible

H1 detects the race condition
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Example: fip-fop

C A B T Q
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

Hazard!

Set
Reset

Hold

This is what traditional analysis gives...  
5 possible states

Transition 
out of the 
hazard state 
to the hold 
state causes 
a race 
condition

C A

T

Q

B
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Flip-fop cohomology

H1(X;F)ℤ
2

H0(X;F)ℤ
2

7

Generated by:
aBc              abc+aBC
ABc              abc+Abc
abC
AbC
ABC

These states describe the 
possible transitions out of the 
hazard state – something that 
takes a bit more trouble to 
obtain traditionally

States from the truth 
table

Race condition 
detected!C A

T

Q

B
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Bonus: Cosheaf homology
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Cosheaf homology
● The globality of cosheaf sections concentrates in 

top dimension, which may vary over the base space
– No particular degree of cosheaf homology holds global 

sections if the model varies in dimension
● But what is clear is that numerical instabilities can 

arise if certain nontrivial homology classes exist
– These can obscure actual solutions, but can look “very 

real” resulting in confusion
– There are many open questions…
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Wave propagation as cosheaf

Narrow feed channel
Open aperture

Δu + k2u = 0 
with Dirichlet 
boundary 
conditions
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Wave propagation as cosheaf
● Solving Δu + k2u = 0 (single frequency wave 

propagation) on a cell complex with Dirichlet 
boundary conditions

ℂ2 M(S1,ℂ)

M([0,∞),ℂ)

M((-∞,0],ℂ)

ℂ

M(X,ℂ) = Space of complex measures on X

ev0

ev0

pr1

(an integral transform)

(an integral transform)
Narrow 
feed channel

Open aperture
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Wave propagation as cosheaf
● Solving Δu + k2u = 0 (single frequency wave 

propagation) on a cell complex with Dirichlet 
boundary conditions

ℂ2 M(S1,ℂ)

M([0,∞),ℂ)

M((-∞,0],ℂ)

ℂ

M(X,ℂ) = Space of complex measures on X

ev0

ev0

pr1

(an integral transform)

(an integral transform)

ℂ

ℂ

δ0

δ0

Narrow 
feed channel

Open aperture
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Wave propagation cosheaf homology

● The global sections indeed get spread across 
dimension

● Here's the chain complex:

M(S1,ℂ) M((-∞,0],ℂ) M([0,∞),ℂ)ℂ2ℂ ℂ ℂ⊕ ⊕ ⊕ ⊕

Dimension 2 Dimension 1 Dimension 0

Global sections are parameterized by a subspace of these
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Further reading...
● Louis Billera, “Homology of Smooth Splines: Generic 

Triangulations and a Conjecture of Strang,” Trans. Amer. 
Math. Soc., Vol. 310, No. 1, Nov 1998.

● Justin Curry, “Sheaves, Cosheaves, and Applications” 
http://arxiv.org/abs/1303.3255

● Michael Robinson, “Inverse problems in geometric graphs 
using internal measurements,” 
http://www.arxiv.org/abs/1008.2933

● Michael Robinson, “Asynchronous logic circuits and sheaf 
obstructions,” Electronic Notes in Theoretical Computer Science 
(2012), pp. 159-177. 

● Pierre Schapira, “Sheaf theory for partial differential 
equations,” Proc. Int. Congress Math., Kyoto, Japan, 1990.

http://arxiv.org/abs/1303.3255
http://www.arxiv.org/abs/1008.2933
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Inexact matching
● Sections of a sheaf are great: they globalize 

information across data sources
● But they seem to require exact matches between 

data sources, which is undesirable…

● What if instead we want matches that are 
approximate, to a certain tolerance?

Images Images
Camera 2

Camera 1
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Relaxing matching requirements
● Sections require exact matches...

200°F 200°F
200°F

ℝ ℝ ℝ

200°F200°F

id id

All equal → It's a section

Sheaf:

Data:
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Relaxing matching requirements
● … any inconsistency cannot be tolerated… 

199°F 199°F
201°F

ℝ ℝ ℝ

200°F200°F

id id

Not a section

Sheaf:

Data:
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Relaxing matching requirements
● … so relax the matching condition to handle errors

199°F 199°F
201°F

ℝ ℝ ℝ

200°F200°F

id id
Sheaf:

Data:

Variance({199,201,200}) < 10% → it's a pseudosection
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Relaxing matching requirements
● … so it can do more than just check consistency

50°F Not hot
Hot

ℝ
{Hot,

Not hot}
{Burn hazard,
Not burn hazard}

Burn hazardHot

id
Sheaf:

Data:

If any([Not hot, Hot, Hot]==Hot) → 
     Perhaps you should not touch!
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Consistency structures
Given a sheaf � on a simplicial complex X, one also 
needs a consistency structure:
● Assign to each non-vertex k-simplex a, a function 

Ca : � (a) 2+k → {0,1}

● A pseudosection p ∈ ⊕ � (a) satisfies

Ca(p(a), � (v0 ↝ a)p(v0), … , � (vk ↝ a)p(vk)) = 1

everywhere it's defined, assuming a = (v0, … , vk).

● The consistency structure Ca returns 1 whenever the 
data at a are consistent
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Pseudosections are sections… 
● … just of a different sheaf
● Theorem: Pseudosections of a sheaf over an abstract 

simplicial complex X are sections of another sheaf 
over the barycentric subdivision of X

Conclusion: at least theoretically, it suffices to work with sheaves
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Mathematical dependency tree

Sheaves

Cellular sheaves

Linear algebra

Set theory

Calculus

Topology

Homology

Simplicial
Complexes

CW complexes

Sheaf cohomology

Abstract
Simplicial
Complexes

de Rham cohomology
(Stokes' theorem)

Manifolds

Lecture 2

Lectures 3, 4

Lectures 5, 6

Lectures 7, 8
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Tutorial objectives
● What are sheaves?

– The “local to global” viewpoint
● Encoding existing data into sheaves

– “Sheafification”
● Data analytic capabilities enabled by sheaves

– “Sections,” “cohomology”
● Practice analyzing sheaves in software

– “Persistence,” “local homology” 
● Interpret this analysis into the context of the data
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What's next?
There are many open questions remaining… some 
will be addressed by DARPA SIMPLEX, but not all
● Focus: heterogeneity, hypothesis generation

Wide open areas with little coverage in the literature:
● Persistence for sheaves
● Duality relationships between sheaves and 

cosheaves
● Sheaf computations (cohomological or otherwise)
● Seriously addressing large or varied datasets
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The biggest engineering problems are 
usually based on fun math problems
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Mathematician's view of the world
Applications are merely corollaries of great theorems

Differential equations

Linear algebra

Numerical analysis

Dynamical systems

Computational theory

Logic

Physics

Data processing

Control and modeling

Computer hardware
and software
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Applications lead to pure math

Differential equations

Linear algebra

Numerical analysis

Dynamical systems

Computational theory

Logic

Physics

Data processing

Control and modeling

Computer hardware
and software
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Further reading...
● Herbert Edelsbrunner and John Harer, “Persistent homology: A survey,” Surveys 

on Discrete and Computational Geometry. Twenty Years Later, 257–282 (J. E. 
Goodman, J. Pach, and R. Pollack, eds.), Contemporary Mathematics 453, Amer. 
Math. Soc., Providence, Rhode Island, 2008.

● Robert Ghrist, “Barcodes: The persistent topology of data,” Bull. Amer. Math. 
Soc., Vol. 45, No. 1, January 2008.

● Michael Robinson, “Pseudosections of consistency structures,” AU-CAS-
MathStats Technical Report No. 2015-2. 
http://auislandora.wrlc.org/islandora/object/techreports%3A19

● Michael Robinson, “Multipath-dominant, pulsed doppler analysis of rotating 
blades,” IET Radar Sonar and Navigation, Volume 7, Issue 3, March 2013, pp. 
217-224.

● Michael Robinson and Robert Ghrist “Topological localization via signals of 
opportunity,” IEEE Trans. Sig. Proc, Vol. 60, No. 5, May 2012.

● Shmuel Weinberger, “What is persistent homology?” Notices of the Amer. Math. 
Soc., Vol. 58, No. 1,  January 2011.
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The End!

Michael Robinson

michaelr@american.edu

Preprints available from my website:

http://www.drmichaelrobinson.net/

mailto:michaelr@american.edu
http://www.drmichaelrobinson.net/
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