Sheaf

A sheaf is a functor from from the category of simplicial complexes
Example: $\sigma \rightarrow F(\sigma)$, a vector space

$$
\rho \subset \sigma \quad \rightarrow \quad L: F(\rho) \rightarrow F(\sigma), \text { a linear map }
$$

$F(\sigma)$ is called a stalk.
$F(\rho \subset \sigma)$ is called a restriction map
Let X be a simplicial complex.
For every σ, choose $s_{\sigma} \in F(\sigma)$. This assignment $\left(s_{\sigma}\right)_{\sigma \in X}$ of an element of $F(\sigma)$ to every simplex is called a global section if these choices are compatible with the restriction maps.
$F_{X}(X)=$ set of all global sections.

Example: The constant sheaf

Let X be a simplicial complex
The constant sheaf G_{X} :

$$
\begin{aligned}
& \sigma \rightarrow G \\
& \rho \subset \sigma \quad \rightarrow \quad \text { id }: G \rightarrow G
\end{aligned}
$$

Suppose $\left(s_{\sigma}\right)_{\sigma \in X}$ is a global section.
Then if $s_{\tau}=g \in G$, then $s_{\sigma}=g$ for all $\sigma \in X$.
The the (group/vector space/...) of global sections in isomorphic to G.

Example: The skyscraper sheaf

The skyscraper sheaf G_{τ}

$$
\left.\begin{array}{l}
\sigma \rightarrow \begin{cases}G & \text { if } \sigma=\tau \\
0 & \text { otherwise. }\end{cases} \\
\sigma \subset \sigma \rightarrow \text { identity map }
\end{array}\right] \begin{aligned}
& \rho \subset \sigma \rightarrow \text { zero map if } \rho \neq \sigma .
\end{aligned}
$$

Suppose $\left(s_{\sigma}\right)_{\sigma \in X}$ is a global section.
Then $s_{\sigma}=0$ for all $\sigma \neq \tau$, since $s_{\sigma} \in F(\sigma)=0$
If $\operatorname{dim} \tau>0$, then $\exists \rho \subset \tau$ and $F(\rho \subset \tau)=0$. Thus $s_{\tau}=0$.
Thus the (group/vector space/...) of global sections $\simeq\{0\}$.
If $\operatorname{dim} \tau>0$, let $s_{\tau}=g$. Thus in this case, the (group/vector space/...) of global sections $\simeq G$.

If F and G are sheaves, then $F \bigoplus G$ is a sheaf.

$$
\begin{aligned}
& \sigma \quad F(\sigma) \bigoplus G(\sigma) \\
& \rho \subset \sigma \quad \rightarrow \quad F(\rho \subset \sigma) \bigoplus G(\rho \subset \sigma)
\end{aligned}
$$

Example: $\bigoplus_{\tau \in X} G_{\tau}$

$$
\begin{aligned}
& \sigma \rightarrow \bigoplus_{\tau \in X} G_{\tau}=G \\
& \rho \subset \sigma \rightarrow \bigoplus_{\tau \in X} G_{\tau}(\rho \subset \sigma)= \begin{cases}\text { identity map } & \rho=\sigma \\
\text { zero map } & \rho \subset \sigma\end{cases}
\end{aligned}
$$

Thus the (group/vector space/...) of global sections $\simeq \bigoplus_{v \in X} G$ since we can assign any element of G to a vertex v.

Now, abstractly...

A sheaf of on a \qquad
(data type)
(topological space)

Simplicial complexes

- ... higher dimensional simplices (tuples of vertices)

Simplicial complexes

- The attachment diagram shows how simplices fit together

- A set assigned to each simplex and ...

Each such set is called the stalk over its simplex

This is a sheaf of vector spaces on a simplicial complex

A sheaf is

- ... a function assigned to each simplex inclusion

A sheaf is

- ... so the diagram commutes.

A global section is ...

- An assignment of values from each of the stalks that is consistent with the restrictions

Some sections are only local

- They might not be defined on all simplices or disagree with restrictions

Sheaf Cohomology and its Interpretation

Michael Robinson

(DARPA SIMPLEX Program

© 2015 Michael Robinson

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Global sections, revisited

- The space of global sections alone is insufficient to detect redundancy or possible faults, but another invariant works
- It's based on the idea that we can rewrite the basic condition(s) for a global section s of a sheaf \mathscr{P}

$$
\begin{aligned}
& +\mathscr{P}\left(v_{1} \leadsto e\right) s\left(v_{1}\right)-\mathscr{P}\left(v_{2} \leadsto e\right) s\left(v_{2}\right)=0 \\
& -\mathscr{P}\left(v_{1} \leadsto e\right) s\left(v_{1}\right)+\mathscr{S}\left(v_{2} \leadsto e\right) s\left(v_{2}\right)=0
\end{aligned}
$$

$(\mathscr{P}(a \sim b)$ is the restriction map connecting cell a to a cell b in a sheaf $\mathscr{S})$

Global sections, revisited

- The space of global sections alone is insufficient to detect redundancy or possible faults, but another invariant works
- It's based on the idea that we can rewrite the basic condition(s) for a global section s of a sheaf \mathscr{P}

Recall: A queue as a sheaf

- Contents of the shift register at each timestep
- $N=3$ shown

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$\rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \leftarrow \mathbb{R}$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

Recall: A single timestep

- Contents of the shift register at each timestep
- $N=3$ shown

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& (9,2) \leftrightarrow(1,9,2) \rightarrow(1,9) \leftrightarrow(1,1,9) \rightarrow(1,1) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Rewriting using matrices

- Same section, but the condition for verifying that it's a section is now written linear algebraically

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
(1,9,2) \rightarrow(1,9) \hookrightarrow(1,1,9) \rightarrow(1,1) \leftarrow(5,1,1)
$$

The cochain complex

- Motivation: Sections being in the kernel of matrix suggests a higher dimensional construction exists!
- Goal: build the cochain complex for a sheaf \mathscr{S}

- From this, sheaf cohomology will be defined as

$$
H^{k}(X ; \mathscr{P})=\operatorname{ker} d^{k} / \text { image } d^{k-1}
$$

much the same as homology (but the chain complex goes up in dimension instead of down)

Generalizing up in dimension

- Global sections lie in the kernel of a particular matrix
- We gather the domain and range from stalks over vertices and edges... These are the cochain spaces

$$
C^{k}(X ; \mathscr{P})=\underset{a \text { is a } k \text {-simplex }}{\bigoplus \mathscr{P}(a)}
$$

- An element of $C^{k}(X ; \mathscr{P})$ is called a cochain, and specifies a datum from the stalk at each k-simplex
(The direct sum operator \bigoplus forms a new vector space by concatenating the bases of its operands)

The cochain complex

- The coboundary map $d^{k}: C^{k}(X ; \mathscr{P}) \rightarrow C^{k+1}(X ; \mathscr{S})$ is given by the block matrix

The cochain complex

- We've obtained the cochain complex

- Cohomology is defined as

$$
H^{k}(X ; \mathscr{P})=\operatorname{ker} d^{k} / \text { image } d^{k-1}
$$

All the cochains that are consistent in dimension k...
... that weren't already present in dimension $k-1$

Cohomology facts

- $H^{0}(X ; \mathscr{P})$ is the space of global sections of \mathscr{S}
- $H^{1}(X ; \mathscr{S})$ usually has to do with oriented, non-collapsible data loops

- $H^{k}(X ; \mathscr{S})$ is a functor: sheaf morphisms induce linear maps between cohomology spaces

Cohomology versus homology

Homologies of different chain complexes:

- Chain complex: simplices and their boundaries

- Transposing the boundary maps yields the cochain complex: functions on simplices
$\stackrel{\partial_{k+2}^{\mathrm{T}}}{\rightleftarrows} C_{k+1}(X) \stackrel{\partial_{k+1}^{\mathrm{T}}}{4} C_{k}(X) \stackrel{\partial_{k}^{\mathrm{T}}}{\rightleftarrows} C_{k-1}(X) \stackrel{\partial_{k-1}^{\mathrm{T}}}{\leftrightarrows}$
- With \mathbb{R} linear algebra, homology* of both of these carry identical information for a wide class of spaces
* we call the homology of a cochain complex cohomology

Cohomology versus homology

Homologies of different chain complexes:

- Transposing the boundary maps yields the cochain complex: functions on simplices

The coboundary maps work like discrete derivatives and compute differences between functions on higher dimensional simplices

Sheaf cohomology versus homology

Homologies of different chain complexes:

- Transposing the boundary maps yields the cochain complex: functions on simplices
$\stackrel{\partial_{k+2}^{\mathrm{T}}}{\longleftarrow} C_{k+1}(X) \stackrel{\partial_{k+1}^{\mathrm{T}}}{4} C_{k}(X) \stackrel{\partial_{k}^{\mathrm{T}}}{\rightleftarrows} C_{k-1}(X) \stackrel{\partial_{k-1}^{\mathrm{T}}}{\leftrightarrows}$
- Sheaf cochain complex: also functions on simplices, but they are generalized!

"Weather Loop" a simple model

Sensors/ Questions	Rain? (R)	$\begin{aligned} & \text { Humidity \% } \\ & \text { (H) } \end{aligned}$	Clouds? (L)	$\begin{aligned} & \text { Sun? } \\ & \text { (S) } \end{aligned}$		
News (N)	X			X		
Weather Website (W)	X	X				
Rooftop Camera (C)			X	X		
Twitter (T)		X	X	N	R	W
Question: Can misleading globalized information be detected?						
\wedge				C	L	T

Tutorial on Sheaves in Data Analytics: Lecture 7: Sheaf Cohomology and its Interpretation

https://youtu.be/dAfVrTDFcs4?list=PLSekr gm4hWLvFtJXOWUueVO65uhvBPrA

Lifting functions into linear maps

Consider any function between sets $f: A \rightarrow B$

- Let $\mathbb{R}(A)$ be the vector space generated by A
- The basis of $\mathbb{R}(A)$ is the set of elements of A
- Then f lifts uniquely to a linear map $R f$

Notice that generally we cannot recover a unique element of B from $\mathbb{R}(B)$.

But we can if we've used $R f \circ(1 \times)$

Tutorial on Sheaves in Data Analytics: Lecture 7: Sheaf Cohomology and its Interpretation

https://youtu.be/dAfVrTDFcs4?list=PLSekr gm4hWLvFtJXOWUueVO65uhvBPrA

Switching sheaves

- It's possible to construct a sheaf that represents the truth table of a logic circuit
- Each vertex is a logic gate, each edge is a wire

Quiescent* logic sheaf

Switching sheaves

- Vectorify everything about a quiescent logic sheaf, and you obtain a switching sheaf

Quiescent* logic sheaf

$$
\begin{gathered}
\mathbb{F}_{2}\left[\mathbb{F}_{2} \times \mathbb{F}_{2}\right] \\
=
\end{gathered}
$$

A vector space whose basis is the set of
$\otimes=$ Tensor product

Switching sheaves

- Vectorify everything about a quiescent logic sheaf, and you obtain a switching sheaf

Quiescent* logic sheaf

Vectorify!

Switching sheaf

Global sections of switching sheaves

- In the case of a 3 input gate, the global sections are spanned by all simultaneous combinations of inputs

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~A}) \\
\left.\mathbb{F}_{2}^{2} \mathbb{F}_{2}^{2} \mathbb{F}_{2}^{2} \mathrm{~B}\right) \\
\mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{2} \\
\mathbb{F}_{2}^{2} \\
\boldsymbol{F}_{2}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{a} \otimes \mathrm{~b} \otimes \mathrm{c} \\
& \mathrm{~A} \otimes \mathrm{~B} \otimes \mathrm{C}
\end{aligned}
$$

$2^{8}=256$ sections in total

Global sections of switching sheaves

- When we instead consider a logically equivalent circuit, the situation changes
- Global sections consist of simultaneous inputs to each gate, but consistency is checked via tensor contractions
- There is an inherent model of uncertainty

Global sections of switching sheaves

- The space of global sections is (a, A)
(b,B) now 6 dimensional - some sections were lost!

$$
\begin{aligned}
& \mathrm{a} \otimes \mathrm{~b}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{a} \otimes \mathrm{~b}+\mathrm{C} \otimes \mathrm{~d} \\
& \mathrm{a} \otimes \mathrm{~B}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{~A} \otimes \mathrm{~b}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{~A} \otimes \mathrm{~B}+\mathrm{c} \otimes \mathrm{D} \\
& \mathrm{~A} \otimes \mathrm{~B}+\mathrm{C} \otimes \mathrm{D}
\end{aligned}
$$

Recall that the space of global sections is a subspace of $\mathbb{F}_{2}^{4} \bigoplus \mathbb{F}_{2}^{4}$

Global sections of switching sheaves

- The space of global sections is (a,A)
(b,B) now 6 dimensional - some sections were lost!

- All local sections on the upstream gate are represented

Global sections of switching sheaves

- The space of global sections is (a, A)
(b,B) now 6 dimensional - some sections were lost!

$$
\begin{aligned}
& \mathrm{a} \otimes \mathrm{~b}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{a} \otimes \mathrm{~b}+\mathrm{C} \otimes \mathrm{~d} \\
& \mathrm{a} \otimes \mathrm{~B}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{~A} \otimes \mathrm{~b}+\mathrm{c} \otimes \mathrm{~d} \\
& \mathrm{~A} \otimes \mathrm{~B}+\mathrm{c} \otimes \mathrm{D} \\
& \mathrm{~A} \otimes \mathrm{~B}+\mathrm{C} \otimes \mathrm{D}
\end{aligned}
$$

- All local sections supported on the downstream gate are there too

Global sections of switching sheaves

No quiescent logic states were

Higher cohomology spaces

- Switching sheaves are written over 1-dimensional spaces, so they could have nontrivial 1-cohomology
- Nontrivial 1-cohomology classes consist of directed loops that store data
- Since we just found that logic value transitions are permitted, this means that 1-cohomology can detect glitches

Glitch generator: cohomology

$H^{0}(X ; \mathscr{F})$ is generated by
$\mathrm{A}+\mathrm{C}+\mathrm{D} \otimes \mathrm{e}$ $a+c+d \otimes E$
$A+a+C+c+d \otimes e+D \otimes E$
Indication that there's a race condition possible

H^{1} detects the race condition

Hazard transition state

Example: flip-flop

This is what traditional analysis gives...
5 possible states

Flip-flop cohomology

$$
\begin{array}{ll}
H^{l}(X ; F) \cong \mathbb{Z}_{2} \longleftarrow & \begin{array}{l}
\text { Race condition } \\
H^{0}(X ; F) \cong \mathbb{Z}_{2}^{7}
\end{array} \\
\text { detected! }
\end{array}
$$

$\| A \otimes b \otimes C$ I These states describe the ${ }^{\prime} A \otimes B \otimes C$ I possible transitions out of the hazard state - something that takes a bit more trouble to obtain traditionally

States from the truth table

Bonus: Cosheaf homology

Michael Robinson

Cosheaf homology

- The globality of cosheaf sections concentrates in top dimension, which may vary over the base space
- No particular degree of cosheaf homology holds global sections if the model varies in dimension
- But what is clear is that numerical instabilities can arise if certain nontrivial homology classes exist
- These can obscure actual solutions, but can look "very real" resulting in confusion
- There are many open questions...

Wave propagation as cosheaf

$\Delta u+k^{2} u=0$ with Dirichlet boundary conditions

Open aperture

Scattered phase (deg)

Wave propagation as cosheaf

- Solving $\Delta u+k^{2} u=0$ (single frequency wave propagation) on a cell complex with Dirichlet boundary conditions

Wave propagation as cosheaf

- Solving $\Delta u+k^{2} u=0$ (single frequency wave propagation) on a cell complex with Dirichlet boundary conditions

Wave propagation cosheaf homology

- The global sections indeed get spread across dimension
- Here's the chain complex:

Dimension 2
Dimension 1
Dimension 0
$\mathrm{M}\left(S^{1}, \mathbb{C}\right) \oplus \mathbb{C} \oplus \mathbb{C} \rightarrow \mathrm{M}((-\infty, 0], \mathbb{C}) \oplus \mathbb{C}^{2} \oplus \mathrm{M}([0, \infty), \mathbb{C})$

Global sections are parameterized by a subspace of these

Further reading...

- Louis Billera, "Homology of Smooth Splines: Generic Triangulations and a Conjecture of Strang," Trans. Amer. Math. Soc., Vol. 310, No. 1, Nov 1998.
- Justin Curry, "Sheaves, Cosheaves, and Applications" http://arxiv.org/abs/1303.3255
- Michael Robinson, "Inverse problems in geometric graphs using internal measurements," http://www.arxiv.org/abs/1008.2933
- Michael Robinson, "Asynchronous logic circuits and sheaf obstructions," Electronic Notes in Theoretical Computer Science (2012), pp. 159-177.
- Pierre Schapira, "Sheaf theory for partial differential equations," Proc. Int. Congress Math., Kyoto, Japan, 1990.

How do we Deal with Noisy Data?

Michael Robinson

(DARPA SIMPLEX Program

© 2015 Michael Robinson

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Inexact matching

- Sections of a sheaf are great: they globalize information across data sources
- But they seem to require exact matches between data sources, which is undesirable...

- What if instead we want matches that are approximate, to a certain tolerance?

Relaxing matching requirements

- Sections require exact matches...

All equal \rightarrow It's a section

Relaxing matching requirements

- ... any inconsistency cannot be tolerated...

Relaxing matching requirements

- ... so relax the matching condition to handle errors

Variance $(\{199,201,200\})<10 \% \rightarrow$ it's a pseudosection

Relaxing matching requirements

- ... so it can do more than just check consistency

If any([Not hot, Hot, Hot]==Hot) \rightarrow
Perhaps you should not touch!

Consistency structures

Given a sheaf \mathscr{P} on a simplicial complex X, one also needs a consistency structure:

- Assign to each non-vertex k-simplex a, a function

$$
C_{a}: \mathscr{P}(a)^{2+k} \rightarrow\{0,1\}
$$

- A pseudosection $p \in \oplus \mathscr{P}(a)$ satisfies

$$
C_{a}\left(p(a), \mathscr{P}\left(v_{0} \leadsto a\right) p\left(v_{0}\right), \ldots, \mathscr{P}\left(v_{k} \leadsto a\right) p\left(v_{k}\right)\right)=1
$$

everywhere it's defined, assuming $a=\left(v_{0}, \ldots, v_{k}\right)$.

- The consistency structure C_{a} returns 1 whenever the data at a are consistent

Pseudosections are sections...

- ... just of a different sheaf
- Theorem: Pseudosections of a sheaf over an abstract simplicial complex X are sections of another sheaf over the barycentric subdivision of X

Conclusion: at least theoretically, it suffices to work with sheaves

Mathematical dependency tree

Homology

Linear algebra
Lectures 5, 6

Cellular sheaves
de Rham cohomology (Stokes' theorem)

Calculus

Tutorial objectives

- What are sheaves?
- The "local to global" viewpoint
- Encoding existing data into sheaves
- "Sheafification"
- Data analytic capabilities enabled by sheaves
- "Sections," "cohomology"
- Practice analyzing sheaves in software
- "Persistence," "local homology"
- Interpret this analysis into the context of the data

What's next?

There are many open questions remaining... some will be addressed by DARPA SIMPLEX, but not all

- Focus: heterogeneity, hypothesis generation Wide open areas with little coverage in the literature:
- Persistence for sheaves
- Duality relationships between sheaves and cosheaves
- Sheaf computations (cohomological or otherwise)
- Seriously addressing large or varied datasets

The biggest engineering problems are usually based on fun math problems

Mathematician's view of the world

Applications are merely corollaries of great theorems
Differential equations
Linear algebra
Numerical analysis
Dynamical systems
Computational theory
Logic

Physics
Data processing
Control and modeling
Computer hardware and software

Applications lead to pure math

Physics
Data processing
Control and modeling
Computer hardware and software

Differential equations
Linear algebra
Numerical analysis
Dynamical systems
Computational theory
Logic

Further reading...

- Herbert Edelsbrunner and John Harer, "Persistent homology: A survey," Surveys on Discrete and Computational Geometry. Twenty Years Later, 257-282 (J. E. Goodman, J. Pach, and R. Pollack, eds.), Contemporary Mathematics 453, Amer. Math. Soc., Providence, Rhode Island, 2008.
- Robert Ghrist, "Barcodes: The persistent topology of data," Bull. Amer. Math. Soc., Vol. 45, No. 1, January 2008.
- Michael Robinson, "Pseudosections of consistency structures," AU-CASMathStats Technical Report No. 2015-2. http://auislandora.wrlc.org/islandora/object/techreports\%3A19
- Michael Robinson, "Multipath-dominant, pulsed doppler analysis of rotating blades," IET Radar Sonar and Navigation, Volume 7, Issue 3, March 2013, pp. 217-224.
- Michael Robinson and Robert Ghrist "Topological localization via signals of opportunity," IEEE Trans. Sig. Proc, Vol. 60, No. 5, May 2012.
- Shmuel Weinberger, "What is persistent homology?" Notices of the Amer. Math. Soc., Vol. 58, No. 1, January 2011.

The End!

Michael Robinson

michaelr@american.edu

Preprints available from my website: http://www.drmichaelrobinson.net/

