P => Q If Pistrue than Qistrue If Bisa basis for W]

If then [W = span B are]

the rectors in Bare? l. Indep PEDQ If [B is a basis for W] then IW = Sp. BJ True If I'w = span &33 the IB is a basis] Also need l.D False

TB is a b as 15 for be cause]

[W = span B] True on (False) EIf W= Span BJ Hen Bisa basis QXP P => Q

are equivalent Thm 8': If A is a SQUARE $n \times n$ matrix, then the following

- a.) A is invertible
- b.) The row-reduced echelon form of A is I_n , the identity
- entry in every row). c.) An echelon form of A has n leading entries entry column – no free variables]. (A square $\Rightarrow A$ has leading entry in every column if and only if A has leading [I.e., every column of an echelon form of A is a leading
- d.) The column vectors of A are linearly independent.
- e.) Ax = 0 has only the trivial solution.
- f.) Ax = b has at most one sol'n for any b.
- g.) Ax = b has a unique sol'n for any b.
- h.) Ax = b is consistent for every $n \times 1$ matrix b.
- i.) Ax = b has at least one sol'n for any b.
- of the columns of A]. j.) The column vectors of A span R^n [every vector in \mathbb{R}^n can be written as a linear combination
- k.) There is a square matrix C such that CA = I.
- 1.) There is a square matrix D such that AD = I.
- m.) A^T is invertible.
- n.) A is expressible as a product of elementary matrices.

n uniquely as a linear	[every vector in R^n can be written uniquely as a linear combination of the columns of A].
Ę	a basis for κ^{**} . I uniquely as a lines

- p.) Col $A = R^n$.
- q.) dim Col A = n.

has a nonzero

- r.) rank of A = n.
- s.) Nul $A = \{0\}$,

Ax-2Ix=0

sol'n for

Rank(A) + nullity(A) = 0	V.) 7=0 75 NOTa	u.) A has nullity 0.	t.) dim Nul $A = 0$.	b.) 11a1 11 = (b);
Rank(A) + nullity(A) = Number of columns of A.		(AX)	シードー・	~

Ex. 2) Suppose A is a 9X4 matrix.

If Rank(A) = 4, then nullity(A) =

 $A\mathbf{x} = 0$ has $A\mathbf{x} = \mathbf{b}$ has solutions.

If Rank(A) = 3, then nullity(A) =

 $A\mathbf{x} = 0$ has solutions.

 $A\mathbf{x} = \mathbf{b}$ has

3=0 is an

e value of A

(A-DI)X - AX = O has infinite #of solve

5.1: Eigenvalues and Eigenvectors

7 Scalar Math II ix A if there exist

Defn: λ is an eigenvalue of the matrix A if there exists a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.

The vector \mathbf{x} is said to be an **eigenvector** corresponding to the eigenvalue λ .

Example: Let
$$A = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$$
.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 5 \end{bmatrix} \neq \begin{bmatrix} 1 \\ -5 \end{bmatrix} = \begin{bmatrix} -1 \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

Thus -1 is an eigenvalue of A and $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus 5 is an eigenvalue of A and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a corresponding eigenvector of A.

Note
$$\begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix} \neq k \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$
 for any k .

Thus $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$ is <u>NOT</u> an eigenvector of A.

MOTIVATION:

Note
$$\begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Thus $A \begin{bmatrix} 2 \\ 8 \end{bmatrix} = A(\begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = A \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$= -1 \begin{bmatrix} -1 \\ 5 \end{bmatrix} + 3 \cdot 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix}$$

Finding eigenvalues:

Suppose $A\mathbf{x} = \lambda \mathbf{x}$ (Note A is a SQUARE matrix).

Then $A\mathbf{x} = \lambda I\mathbf{x}$ where I is the identity matrix.

Thus
$$A\mathbf{x} - \lambda I\mathbf{x} = (A - \lambda I)\mathbf{x} = \mathbf{0}$$
 $\mathbf{D}\mathbf{x} = \mathbf{0}$

Thus if $A\mathbf{x} = \lambda \mathbf{x}$ for a nonzero \mathbf{x} , then $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a nonzero solution. 00 # of soln

Thus
$$det(A - \lambda I) = 0$$
.

Note that the eigenvectors corresponding to λ are the nonzero solutions of $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Thus to find the eigenvalues of A and their corresponding eigenvectors:

Step 1: Find eigenvalues: Solve the equation $Character^{+1}C$ $det(A-\lambda I)=0$ for λ .

Step 2: For each eigenvalue λ_0 , find its corresponding eigenvectors by solving the homogeneous system of equations

$$(A - \lambda_0 I)\mathbf{x} = 0 \text{ for } \mathbf{x}.$$

Defn: $det(A - \lambda I) = 0$ is the **characteristic equation** of A.

Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries.

Defn: The **eigenspace** corresponding to an eigenvalue λ_0 of a matrix A is the set of all solutions of $(A - \lambda_0 I)\mathbf{x} = \mathbf{0}$.

Note: An eigenspace is a vector space

The vector **0** is always in the eigenspace.

The vector **0** is never an eigenvector.

The number 0 can be an eigenvalue.

Thm: A square matrix is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Find the e value of their corresponding e vectors L 3 4 1A-7I/ $= \frac{|(1-7)(4-7)|}{3} = \frac{(1-7)(4-7)-6}{3}$ $= 4 - 5\pi + \pi^{2} - 6$ $= \pi^{2} - 5\pi - 2 = 0$

$$\chi = \frac{5 \pm \sqrt{25 - 4(-2)}}{2}$$

$$= \frac{5 \pm \sqrt{33}}{2}$$

E. value
$$\gamma = \frac{5 \pm \sqrt{33}}{2}$$

Find e. vectors: Solve $(A - \lambda I) \times 0$
for nonzero e. vectors \hat{x}

$$\begin{bmatrix} 1 - (\frac{5 \pm \sqrt{33}}{2}) & 2 & 0 \\ 3 & 4 - (\frac{5 \pm \sqrt{33}}{2}) & 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 \mp \sqrt{33} & 2 & 0 \\ 3 & 4 - (\frac{5 \pm \sqrt{33}}{2}) & 0 \end{bmatrix}$$

$$\Rightarrow R_{1}(1)$$

$$\begin{bmatrix} 1 & 2 & 2 & 0 \\ 3 & 4 & 2 & 0 \\ 3 & 4 & 2 & 0 \end{bmatrix}$$

$$\Rightarrow R_{1}(1)$$

$$\begin{bmatrix} 2 & 2 & 2 & 0 \\ -3 \mp \sqrt{33} & 2 & 0 \\ 2 & 3 + \sqrt{33} & 2 & 0 \end{bmatrix}$$

$$\Rightarrow R_{2}(1)$$

$$= \frac{1}{3} = \frac{1}{3} =$$

$$S_{1}mp_{1}(f_{\gamma}) = f_{1}r\dot{s}f$$

$$2\left(\frac{2}{-3}I_{\sqrt{3}3}\right)\left(\frac{-3\pm\sqrt{3}3}{-3\pm\sqrt{3}3}\right)$$

$$=\frac{4(-3\pm\sqrt{33})}{9-33}$$

$$=\frac{4(-3\pm\sqrt{533})}{-246}$$

$$= \frac{3 + \sqrt{33}}{6}$$

$$\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
-3 \pm \sqrt{33} \\
6
\end{bmatrix}$$

$$\lambda_2$$

$$\lambda_3 = 5 + \sqrt{33}$$

$$\lambda_4 = 5 + \sqrt{33}$$

$$\lambda_5 = 5 + \sqrt{33}$$

$$\lambda_6 = 5 + \sqrt{33}$$

$$\lambda_7 = 5 + \sqrt{33}$$

$$\lambda_8 = 5 + \sqrt{33}$$

 $\begin{bmatrix} -3 - \sqrt{33} \\ 6 \end{bmatrix}$

Find e. Valu ? C. Vectors for \[\begin{aligned} 1 & 2 & 3 & 4 \\ 0 & 2 & 6 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{aligned} \] det (A-7I) $=(1-\lambda)(2-\lambda)^3=0$ 2 1 repeated e value

rector Find Solve IX = O e value 2 1 0 $\begin{array}{c|cccc}
0 & 0 & 7 & -3 & 8 & 3 \\
0 & 0 & 0 & R_1 & -6 & 8 & 3 \\
0 & 0 & 0 & 0
\end{array}$