1.1, 1.2 Solving systems of linear equations.
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System of Linear Equations: ~

1121 + a12%2 + ... + A1 Ty = by
a21T1 + a22T2 + ... + G2, Ty

oefficient May Augmented Matrix Form:
£ ¥ X

G111 a1z ... a1 a2 ... Qin
azq aszz ... Cbzn a21 azz2 ... QAzn bs
L Am 1 Am?2 Amn . L Am1 Am?2 Amn bm -

Two systems of equations are equzmlent if they both have the
same solution set.

It two augmented matrices are row-equivalent, the corresponding
linear systems of equations are equlvalent

—

2



Methods of solving a system of linear equations:

1.) Put matrix in Echelon Form
2.) Put matrix in Reduced Echelon form ( 0 A
- her

Echelon form (non-unique):

leading entry

T

The leftmost nonzero element in each row is
M
or pivot.

i.) In each column with a leading entry, all entries below the
T
leading entry are zero. _

ii.) Each leading entry of a row is to the left of the leading entry

of any row below it. 1—1_1_‘)/

iii.) All rows of all zeros are below all non-zero rows.
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(Note in echelon form, I do not require that the leading entry
equa, :

The position of a leading entry is called the pivot position.

A pivot column is a column containing a leading entry.

—r—

The variable corresponding to a pivot column is called a basic

variable. -
ol

Variables that do not correspond to a pivot column are called free
variables. '
--"-—P_._-=::-‘—-
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Row-reduced echelon form (unique):

(’_'__'_—7

i.) The matrix is in echelon form.

ii.) The leading entries are all equal to 1.

—"

iii.) In each column with a leading entry, all other entries are

Z€T0.
=

REQUIRED METHOD:

@ To put a matrix in echelon form work from left to right.

-+

OTO put a matrix in row-reduced echelon form:

i.) First put in echelon form (work from left to right).

ii.) Put into reduced echelon form (work from right to left).
B e ————

You may take short-cuts, but if your method is longer than the
above, you will be penalized grade-wise.

Every matrix can be transformed by a finite sequence of elemen-
tary row operations into one that is in row-reduced echelon form.

Echelon form is not unique, but row-reduced echelon form is
unique.

A system of LINEAR equations can have

i.) No solutions (inconsistent)
ii.) Exactly one solution

iii.) Infinite number of solutions.
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True/Falsej

Two matrices are row equivalent if they have J“’// 2
the same number of rows.

Lod R )

Two equivalent linear systems can have (5 5
different solution sets. ?@“
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