1. (1 pt) local/Library/UI/Fall14/HW7\_4.pg

Determine if the subset of  $\mathbb{R}^2$  consisting of vectors of the form  $\begin{bmatrix} a \\ b \end{bmatrix}$ , where *a* and *b* are integers, is a subspace.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION The vector  $\begin{bmatrix} 1\\0 \end{bmatrix}$  is included in the set, but the vector  $(1/2) * \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1/2\\0 \end{bmatrix}$  is not included in the set. *Correct Answers:* • A • B • B

2. (1 pt) local/Library/UI/Fall14/HW7\_5.pg

Determine if the subset of  $\mathbb{R}^3$  consisting of vectors of the  $\begin{bmatrix} a \end{bmatrix}$ 

form  $\begin{vmatrix} b \\ c \end{vmatrix}$ , where  $a \ge 0, b \ge 0$ , and  $c \ge 0$  is a subspace.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

• A. True

• B. False

This set is a subspace

- A. True
- B. False

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION The vector  $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$  is included in the set, but the vector  $(-1)*\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} -1\\0\\0 \end{bmatrix}$  is not included in the set. *Correct Answers:* • A • B • B • B

3. (1 pt) local/Library/UI/Fall14/HW7\_6.pg

If *A* is an  $n \times n$  matrix and  $\mathbf{b} \neq 0$  in  $\mathbb{R}^n$ , then consider the set of solutions to  $A\mathbf{x} = \mathbf{b}$ .

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

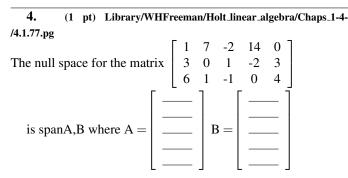
**Solution:** (*Instructor solution preview: show the student solution after due date.* )

#### SOLUTION

 $A\mathbf{0} = \mathbf{0} \neq \mathbf{b}$ , so the zero vector is not in the set and it is not a subspace.

Correct Answers:

- B
- B
- B
- B



**Solution:** (*Instructor solution preview: show the student solution after due date.* )

#### SOLUTION:

We can use a CAS to get

. -

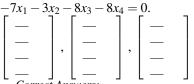
Correct Answers:

- 0.428571428571429
- -1.85714285714286
- 0.714285714285714
- 1
- 0

• -0.767857142857143

- 0.0892857142857143
- -0.696428571428571
- 0
- 1

5. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur\_la\_10\_26.pg Find a basis of the subspace of  $\mathbb{R}^4$  defined by the equation



Correct Answers:

• \(\displaystyle\left.\begin{array}{c}
 \mbox{-3} \cr
 \mbox{7} \cr
 \mbox{0} \cr
 \mbox{0} \cr
 \end{array}\right.\),\(\displaystyle\]
 \mbox{-8} \cr
 \mbox{0} \cr
 \mbox{7} \cr

\end{array}\right.\)

| 6. (1 pt) local/Library/UI/6a.pg                                         |    |   |    |  |
|--------------------------------------------------------------------------|----|---|----|--|
|                                                                          | 2  | 0 | 5  |  |
|                                                                          | -1 | 6 | 2  |  |
| <b>6.</b> (1 pt) local/Library/UI/6a.pg<br>The null space for the matrix | 4  | 4 | -1 |  |
|                                                                          | 5  | 1 | 0  |  |
|                                                                          | 4  | 1 | 1  |  |
|                                                                          | -  |   |    |  |



**Solution:** (*Instructor solution preview: show the student solution after due date.* )

# SOLUTION:

$$\begin{bmatrix} -0.767857142857143\\ 0.6892857142857143\\ -0.69642857142857143\\ -0.696428571428571\\ 4 & 4 & 0^{-1}\\ 5 & 1 & 10\\ 4 & 1 & 1 \end{bmatrix} = \left\{ \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \right\}$$
  
*Correct Answers:*  
• 0  
• 0  
• 0  
• 0  
• 0  
• 7. (1 pt) Library/WHFreeman/Holt\_linear\_algebra/Chaps\_1-4-  
/4.2.32a.pg  
Find a basis for the null space of matrix A.

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

## SOLUTION:

Row-reduce the matrix which has the given vectors as columns.

 $\frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of the } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions of } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has solutions } \frac{|ar_{A}a_{A}|^{2}}{ar_{A}a_{A}} = 0 \ \text{has s$ 

| (IIIDOX { 0 } / CL                                     |                                     |   |          |         |  |
|--------------------------------------------------------|-------------------------------------|---|----------|---------|--|
| \mbox{7} \cr                                           |                                     | 4 |          | 14 ]    |  |
| <pre>\mbox{0} \cr</pre>                                |                                     | 0 |          | 14<br>3 |  |
| <pre>\end{array}\right.\) ,\(\displaystyle\left.</pre> | array}{c}                           | 1 |          |         |  |
| \mbox{-8} \cr                                          | $\mathbf{x} = s_1$                  | 1 | $+s_{2}$ | 0<br>-3 |  |
| <pre>\mbox{0} \cr</pre>                                |                                     | 0 |          | -3      |  |
| \mbox{0} \cr                                           |                                     | 0 |          | 1       |  |
| \mbox{7} \cr                                           | so that a basis for the subspace is |   |          |         |  |
|                                                        |                                     |   |          |         |  |

| $\begin{cases} \left[\begin{array}{c} 4\\0\\1\\0\end{array}\right], \left[\begin{array}{c} 14\\3\\0\\-3\\1\end{array}\right] \right\}$ Correct Answers: $ \cdot \left\{ \left( \text{displaystyle} \text{left.} \text{begin} \{ \text{array} \} \{ c \} \right. \\ \left. \text{whox}\{4 \setminus \text{cr} \\ \text{whox}\{4 \setminus \text{cr} \\ \text{whox}\{1 \in \text{cr} \\ \text{whox}\{1\} \in \text{cr} \\ \text{whox}\{0\} \in \text{cr} \\ \text{whox}\{0\} \in \text{cr} \\ \text{whox}\{3\} = \text{cr} \\ \text$ | • J. none of the above<br>Solution: (Instructor solution preview: show the student solution after due date. )<br>SOLUTION:<br>Row reduce A to get:<br>$\begin{bmatrix} 2 & 1 & 0 & 7 \\ -2 & 2 & x & -7 \\ 3 & 7 & 4 & 28 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 0 & 7 \\ 0 & 4 & x & 7 \\ 0 & 12 & 12 & 21 \end{bmatrix}$<br>Since two pivots are needed, $x = 4$<br>Correct Answers:<br>• I<br>array/fel<br>10. (1 p) local/Library/Ul/Fal11/HW7.12.pg<br>Suppose that A is a 8 × 6 matrix which has a null space of dimension 6. The rank of A=<br>• A4<br>• B3<br>• C2<br>• D1<br>• E. 0<br>• F. 1<br>• G. 2<br>• H. 3<br>• I. 4<br>• J. none of the above<br>Solution: (Instructor solution preview: show the student solution after due date. )<br>SOLUTION<br>Using the Rank-Nullity theorem, if the dimensions of A is n x m, rank(A) = m - nullity(A) = 6 - 6 = 0<br>Correct Answers:<br>• E<br>Suppose A is a 5 × 4 matrix. If rank of $A = 1$ , then nullity of $A =$<br>• A4<br>B3<br>• C2<br>• D1<br>E. 0<br>• F. 1<br>• E. 0<br>• F. 1<br>• C. 2<br>• D1<br>• E. 0<br>• F. 1<br>• G. 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>E. 0</li> <li>F. 1</li> <li>G. 2</li> <li>H. 3</li> <li>I. 4</li> <li>J. none of the above</li> </ul> <i>Correct Answers:</i> <ul> <li>H</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

The vector  $\vec{b}$  is NOT in *ColA* if and only if  $A\vec{v} = \vec{b}$  does NOT have a solution

- A. True
- B. False

Correct Answers:

• A

The vector  $\vec{b}$  is in *ColA* if and only if  $A\vec{v} = \vec{b}$  has a solution

- A. True
- B. False

Correct Answers:

• A

The vector  $\vec{v}$  is in *NulA* if and only if  $A\vec{v} = \vec{0}$ 

- A. True
- B. False

Correct Answers:

• A

If the equation  $A\vec{x} = \vec{b_1}$  has at least one solution and if the equation  $A\vec{x} = \vec{b_2}$  has at least one solution, then the equation  $A\vec{x} = -1\vec{b_1} - 3\vec{b_2}$  also has at least one solution.

- A. True
- B. False

Correct Answers:

• A

If  $\vec{x_1}$  and  $\vec{x_2}$  are solutions to  $A\vec{x} = \vec{0}$ , then  $8\vec{x_1} - 1\vec{x_2}$  is also a solution to  $A\vec{x} = \vec{0}$ .

• A. True

• B. False

Correct Answers:

• A

If  $\vec{x_1}$  and  $\vec{x_2}$  are solutions to  $A\vec{x} = \vec{b}$ , then  $2\vec{x_1} - 9\vec{x_2}$  is also a solution to  $A\vec{x} = \vec{b}$ .

• A. True

• B. False

Correct Answers:

• B

Suppose *A* is a  $4 \times 2$  matrix. Then *nul A* is a subspace of  $R^k$  where k =

• A. -4

- B. -3
- C. -2
- D. -1 • E. 0
- E. 0
- G. 2
- G. 2 • H. 3
- I. 4
- J. none of the above

Correct Answers:

• G

Suppose *A* is a 2 × 6 matrix. Then *col A* is a subspace of  $R^k$  where k =

- A. -4
- B. -3
- C. -2
- D. -1 • E. 0
- E. 0 • F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

```
Correct Answers:
```

• G

20. (1 pt) Library/TCNJ/TCNJ\_BasesLinearlyIndependentSet-/problem5.pg

|                       | [ 1 ] |   | 1 |   | 1 |   |
|-----------------------|-------|---|---|---|---|---|
| Let $W_1$ be the set: | 0     | , | 1 | , | 1 | . |
| Let $W_1$ be the set: | 0     |   | 0 |   | 1 |   |

Determine if  $W_1$  is a basis for  $\mathbb{R}^3$  and check the correct answer(s) below.

- A.  $W_1$  is a basis.
- B.  $W_1$  is not a basis because it does not span  $\mathbb{R}^3$ .
- C.  $W_1$  is not a basis because it is linearly dependent.

Let  $W_2$  be the set:  $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ ,  $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ ,  $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ .

Determine if  $W_2$  is a basis for  $\mathbb{R}^3$  and check the correct answer(s) below.

- A.  $W_2$  is not a basis because it does not span  $\mathbb{R}^3$ .
- B.  $W_2$  is a basis.

• C.  $W_2$  is not a basis because it is linearly dependent.

Correct Answers:

AAC

**21.** (1 pt) local/Library/UI/Fall14/HW7\_25.pg Indicate whether the following statement is true or false? If  $S = \text{span}u_1, u_2, u_3$ , then dim(S) = 3.

- A. True
- B. False

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION: FALSE. For example, suppose  $S = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\},$ then dim(S) < 3 *Correct Answers:* • B

22. (1 pt) local/Library/TCNJ/TCNJ\_BasesLinearlyIndependentSet-/3.pg

Check the true statements below:

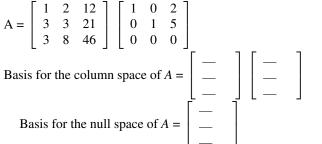
- A. The columns of an invertible *n* × *n* matrix form a basis for ℝ<sup>n</sup>.
- B. If  $H = Span\{b_1, ..., b_p\}$ , then  $\{b_1, ..., b_p\}$  is a basis for H.
- C. If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for *ColA*.
- D. The column space of a matrix *A* is the set of solutions of *Ax* = *b*.

• E. A basis is a spanning set that is as large as possible. *Correct Answers:* 

• A

# 23. (1 pt) local/Library/UI/4.3.1a.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.



**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION: A basis for the column space, determined from the pivot columns 1 and 2, is 3 3 3 Solve  $A\mathbf{x} = \mathbf{0}$ , to obtain  $\mathbf{x} = s \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$ , and so the nullspace 5 basis is Correct Answers: • \(\displaystyle\left.\begin{array}{c} \mbox{1} \cr \mbox{3} \cr \mbox{3} \cr \end{array}\right.\) , \ (\displaystyle\left.\begin{array}{c \mbox{2} \cr \mbox{3} \cr \mbox{8} \cr \end{array}\right.\) \(\displaystyle\left.\begin{array}{c} \mbox{2} \cr \mbox{5} \cr  $mbox{1} \cr$ \end{array}\right.\)

24. (1 pt) Library/WHFreeman/Holt\_linear\_algebra/Chaps\_1-4-/4.1.22.pg

Find the null space for  $A = \begin{bmatrix} 3 & 2 \\ 1 & -9 \end{bmatrix}$ . What is null(A)?

• A. span 
$$\left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$$
  
• B. span  $\left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$   
• C.  $\mathbb{R}^2$   
• D. span  $\left\{ \begin{bmatrix} -2 \\ 3 \end{bmatrix} \right\}$   
• E.  $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$   
• F. span  $\left\{ \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$   
• G. span  $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\}$   
• H. none of the above

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

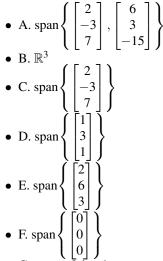
#### SOLUTION

A row reduces to the identity matrix.

Thus  $A\mathbf{x} = \mathbf{0}$  has only the trivial solution  $\begin{bmatrix} 0\\0 \end{bmatrix}$ , and thus, null(A) =  $\begin{bmatrix} 0\\0 \end{bmatrix}$ . *Correct Answers:*  $\bullet$  E

25. (1 pt) Library/WHFreeman/Holt\_linear\_algebra/Chaps\_1-4-/4.1.30.pg

Find the null space for  $A = \begin{bmatrix} 2 & -3 & 7 \\ 6 & 3 & -15 \\ 3 & 5 & -18 \end{bmatrix}$ . What is null(A)?



• G. none of the above

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION A is row reduces to  $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ . The basis of the null space

has one element for each column without a leading one in the row reduced matrix.

Thus  $A\mathbf{x} = \mathbf{0}$  has a one dimentional null space, and null(A) is the subspace generated by  $\begin{bmatrix} 1\\3\\1 \end{bmatrix}$ .

Correct Answers:

• D

26. (1 pt) Library/WHFreeman/Holt\_linear\_algebra/Chaps\_1-4-/4.1.28.pg

Find the null space for  $A = \begin{bmatrix} 2 & 6 \\ 7 & 21 \\ 4 & 12 \end{bmatrix}$ .

What is null(A)?

• A. 
$$\mathbb{R}^{3}$$
  
• B. span  $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$   
• C.  $\mathbb{R}^{2}$   
• D. span  $\left\{ \begin{bmatrix} 12\\4 \end{bmatrix} \right\}$   
• E. span  $\left\{ \begin{bmatrix} -3\\1 \end{bmatrix} \right\}$   
• F. span  $\left\{ \begin{bmatrix} 2\\7\\4 \end{bmatrix} \right\}$   
• G. span  $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$   
• H. none of the above

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION  
A is row reduces to 
$$\begin{bmatrix} 2 & 6 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. The basis of the null space has

one element for each column without a leading one in the row reduced matrix.

Thus  $A\mathbf{x} = \mathbf{0}$  has a one dimentional null space,

and null(A) is the subspace generated by  $\begin{bmatrix} -6\\ 2 \end{bmatrix}$ . *Correct Answers:* 

# 27. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.

**Solution:** (*Instructor solution preview: show the student solution after due date.* )

SOLUTION:

6

A basis for the column space, determined from the pivot columns 1 and 2, is

$$\left\{ \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} \right\}$$
  
Solve  $A\mathbf{x} = \mathbf{0}$ , to obtain  $\mathbf{x} = s_1 \begin{bmatrix} +5\\ -5\\ 1\\ 0 \end{bmatrix} + s_2 \begin{bmatrix} +4\\ +1\\ 0\\ 1 \end{bmatrix}$ , and so  
the nullspace basis is  $\left\{ \begin{bmatrix} +5\\ -5\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} +4\\ +1\\ 0\\ 1 \end{bmatrix} \right\}$ .  
Correct Answers:  
• \(\displaystyle\left.\begin{array}{c}

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

 $mbox{1} \cr$ 

```
mbox{-2} \ cr
 \mbox{0} \cr
  \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
  \mbox{0} \cr
 mbox{1} \cr
 mbox{1} \cr
 \end{array}\right.\)
• \(\displaystyle\left.\begin{array}{c}
 mbox{5} \cr
 mbox{-5} \cr
 mbox{1} \cr
 \mbox{0} \cr
 \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
 \mbox{4} \cr
 \mbox{1} \cr
 \mbox{0} \cr
  mbox{1} \cr
  \end{array}\right.\)
```