Problem 1. The determinant of a square matrix A is 0 if and only if the equation Ax = 0 has an infinite number of solutions.

- A. True
- B. False

Problem 2.
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

The determinant of the above matrix is

- A. -362880
- B. -40320
- C. -540
- D. -1
- E. 0
- F. 1
- G. 540
- H. 40320
- I. 362880
- J. None of the above

Problem 3. The vector \vec{b} is in *ColA* if and only if $A\vec{v} = \vec{b}$ has a solution

- A. True
- B. False

Problem 4. If $A = \begin{bmatrix} -1 & 4 \\ -7 & 5 \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, and AB = I, the identity matrix, then $b_{11} = I$

-1 47 [5/2 - 4/2] = 201 -7 5 [7/2 - 1/2]

- A. $\frac{1}{23}$
- B. $\frac{4}{23}$
- C. $\frac{5}{23}$
 - D. $\frac{7}{23}$
 - E. $-\frac{1}{23}$
 - F. $-\frac{4}{23}$
 - G. $-\frac{5}{23}$
 - H. $-\frac{7}{23}$
- I. 7
- J. None of those above

Problem 5. Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

e9 [10]

- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Problem 6. Given that $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of the matrix $A = \begin{bmatrix} 8 & -4 \\ 12 & -6 \end{bmatrix}$, determine the corresponding eigenvalue.

 $\begin{bmatrix} 8 & -9 & 1 \\ 12 & -6 & 2 \end{bmatrix} = \begin{bmatrix} 8-8 \\ 2 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. None of those above

Problem 7. Assume $\{u_1, u_2, u_3\}$ does not span \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- \bullet B. $\{u_1,u_2,u_3,u_4\}$ spans \mathbb{R}^3 unless u_4 is the zero vector.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is in span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
- E. $\{u_1, u_2, u_3, u_4\}$ never spans \mathbb{R}^3 .
- F. $\{u_1, u_2, u_3, u_4\}$ may, but does not have to, span \mathbb{R}^3 .
- G. none of the above

Problem 8.

Find the null space for $A = \begin{bmatrix} 4 & 7 \\ 7 & 5 \\ -6 & 6 \end{bmatrix}$.

What is null(A)?

Not multiples

unique Soln $= \begin{cases} 4 & 7 \\ 7 & 5 \\ -6 & 6 \end{cases}$ $= \begin{cases} 3 \times 2 \end{cases} (2 \times 1)$

- A. span $\left\{ \begin{bmatrix} -7\\4 \end{bmatrix} \right\}$ B. $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
 - D. span $\left\{ \begin{bmatrix} 7 \\ 4 \end{bmatrix} \right\}$
 - E. span $\left\{ \begin{bmatrix} 4\\7\\-6 \end{bmatrix} \right\}$
 - F. span $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$
 - G. span $\left\{ \begin{bmatrix} 4 \\ 7 \end{bmatrix} \right\}$
 - H. ℝ²
 - I. none of the above

Problem 9. If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{b}$, then $7\vec{x_1} + 1\vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.

- A. True
- B. False

Problem 10. Suppose A is a 2 \times 4 matrix. Then col A is a subspace of \mathbb{R}^k where k=

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 11. Let A be a matrix with linearly independent columns. Select the best statement.

• The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.

- The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- C. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- D'. The equation Ax = 0 never has nontrivial solutions.
- E. There is insufficient information to determine if such an equation has nontrivial solutions.
- F. The equation $A\mathbf{x} = \mathbf{0}$ always has nontrivial solutions.
- G. none of the above

Problem 12. Suppose A is a 9×8 matrix. If rank of A = 6, then nullity of A = 6

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1 • G. 2
 - H. 3
 - I. 4
 - J. none of the above

- **Problem 13.** Find all values of x for which rank(A) = 2. where A = $\begin{bmatrix} 1 & 2 & 0 & 7 \\ -2 & -2 & x & -5 \\ -3 & -8 & 3 & -30 \end{bmatrix}$
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. none of the above

$$\begin{bmatrix}
1 & 2 & 0 & 7 \\
0 & 2 & \times & 9 \\
0 & 0 & \times + 3 & 0
\end{bmatrix}$$

$$\begin{array}{c}
\times + 3 = 0 \\
3 & \times = -3
\end{array}$$