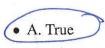
**Problem 1.** The determinant of a square matrix A is nonzero if and only if the equation Ax = 0 has a unique solution.



B. False

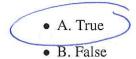
**Problem 2.** Find the volume of the parallelepiped determined by vectors  $\begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$ , and  $\begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}$ 

- $\begin{vmatrix} 2 & 0 & 6 \\ 0 & -2 & -8 \end{vmatrix} = 2 \begin{vmatrix} -2 & -5 \\ 6 & 1 \end{vmatrix}$  = 2 (-2 0) = -4• C. -2 • D. -1
- E. 0
- F. 1
- G. 2
- H. 3

• I. 4

• J. None of those above

**Problem 3.** A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax = bhas at least one solution.



**Problem 4.**  $A = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$ . If  $A^2 = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ , find  $b_{12}$ 

- A. -4
- B. -3
- C.-2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. None of those above

**Problem 5.** Suppose A is a square matrix and  $A\vec{x} = \vec{0}$  has an infinite number of solutions, then given a vector  $\vec{b}$  of the appropriate dimension,  $A\vec{x} = \vec{b}$  has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

**Problem 6.** Suppose  $A \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -12 \\ 4 \end{bmatrix}$ . Then an eigenvalue of A is

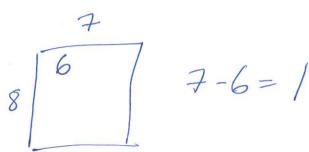
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

**Problem 7.** Let  $\mathbf{u}_4$  be a linear combination of  $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ . Select the best statement.

- A.  $\{u_1, u_2, u_3\}$  is never a linearly dependent set of vectors.
- B.  $\{u_1, u_2, u_3\}$  is a linearly dependent set of vectors unless one of  $\{u_1, u_2, u_3\}$  is the zero vector.
- C.  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$  is never a linearly independent set of vectors.
- D.  $\{u_1, u_2, u_3, u_4\}$  is always a linearly independent set of vectors.
- E.  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  is a linearly dependent set of vectors.
- F.  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$  could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- G. none of the above

**Problem 8.** Suppose that A is an  $8 \times 7$  matrix which has a null space of dimension 6. The rank of A=

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1 • G. 2
- H. 3
- I. 4
- J. none of the above



**Problem 9.** Find the null space for  $A = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & 3 \end{bmatrix}$ .  $\begin{bmatrix} -6 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 & +6 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & +3$ 

• A. span 
$$\left\{ \begin{bmatrix} 1\\0\\-6 \end{bmatrix}, \begin{bmatrix} 0\\1\\-3 \end{bmatrix} \right\}$$

- B. span  $\left\{ \begin{bmatrix} -3\\-6\\1 \end{bmatrix} \right\}$
- C.  $\mathbb{R}^3$
- D. ℝ<sup>2</sup>
- E. span  $\left\{ \begin{bmatrix} -6\\-3\\1 \end{bmatrix} \right\}$
- F. span  $\left\{ \begin{bmatrix} -6 \\ -3 \end{bmatrix} \right\}$
- G. span  $\left\{ \begin{bmatrix} -3 \\ -6 \end{bmatrix} \right\}$
- H. none of the above

$$X_1 = -6x_3$$
  
 $X_2 = -3x_3 = 7$   
 $X_3 = X_3$   $X_3 = 7$ 

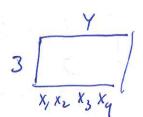
**Problem 10.** If  $\vec{x_1}$  and  $\vec{x_2}$  are solutions to  $A\vec{x} = \vec{0}$ , then  $7\vec{x_1} + 1\vec{x_2}$  is also a solution to  $A\vec{x} = \vec{0}$ .



B. False

**Problem 11.** Suppose A is a 3  $\times$  4 matrix. Then nul A is a subspace of  $\mathbb{R}^k$  where k=

- A. -4
- B. -3
- C.-2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above



**Problem 12.** Let A be a matrix with linearly independent columns. Select the best statement.

- The equation  $A\mathbf{x} = \mathbf{b}$  has a solution for all  $\mathbf{b}$  precisely when it has more rows than columns.
  - B. The equation  $A\mathbf{x} = \mathbf{b}$  has a solution for all **b** precisely when it is a square matrix.
  - C. The equation  $A\mathbf{x} = \mathbf{b}$  never has a solution for all  $\mathbf{b}$ .

hot li • The equation  $A\mathbf{x} = \mathbf{b}$  has a solution for all **b** precisely when it has more columns than rows.

- E. There is insufficient information to determine if Ax = b has a solution for all b.
- F. The equation  $A\mathbf{x} = \mathbf{b}$  always has a solution for all  $\mathbf{b}$ .
- G. none of the above

**Problem 13.** The vectors 
$$v = \begin{bmatrix} -2 \\ -2 \\ 2 \end{bmatrix}$$
,  $u = \begin{bmatrix} -3 \\ 7 \\ -17 \end{bmatrix}$ , and  $w = \begin{bmatrix} 3 \\ -3 \\ 6+k \end{bmatrix}$ . are linearly independent if and only if  $k \neq ---$ .

- A. -4
- B. -3
- C. -2
- D.-1
- E. 0
- F. 1
- G. 2
- H. 3
  - I. 4
  - J. none of the above

$$\begin{bmatrix} -2 & -3 & 3 \\ -2^{+2} & 7^{+3} & -3^{-3} \\ 2 & -17 & 6+K \\ 3 & 5 & 5 \end{bmatrix}$$

$$K-3=0=0$$

$$K=3$$