Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

1. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg

Give a geometric description of the following systems of equations

$$\begin{array}{rcl}
-16x + 16y & = -16 \\
-12x + 12y & = -12 \\
-28x + 28y & = -28
\end{array}$$

2. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg

Let
$$A = \begin{bmatrix} 3 & -3 & 4 \\ -3 & -1 & -1 \\ -4 & -5 & 3 \end{bmatrix}$$
 and $x = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$

? 1. What does Ax mean?

$\begin{array}{lll} \textbf{3.} & \textbf{(1 pt)} & \textbf{Library/WHF} \textbf{reeman/Holt_linear_algebra/Chaps_1-4-} \\ \textbf{/2.2.57.pg} & \end{array}$

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- D. There is no easy way to determine if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 .
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- F. none of the above

4. (1 pt) UI/Fall14/lin_span.pg

Let
$$A = \begin{bmatrix} 3 \\ -8 \\ -7 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 \\ -11 \\ -9 \end{bmatrix}$, and $C = \begin{bmatrix} -3 \\ 5 \\ 5 \end{bmatrix}$.

Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in R^3
- B. 1-dimensional line in R^3
- C. 2-dimensional plane in R^3
- D. R³

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship **always** holds.

$$A + B + C = 0.$$

${\bf 5.} \quad (1\ pt)\ local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/3.pg$

Check the true statements below:

- A. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- B. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.
- C. The column space of a matrix A is the set of solutions of Ax = b.
- D. If $H = Span\{b_1,...,b_p\}$, then $\{b_1,...,b_p\}$ is a basis for H
- E. A basis is a spanning set that is as large as possible.

6. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A = \begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & -4 \end{bmatrix}$.

What is null(A)?

• A. span
$$\left\{ \begin{bmatrix} 1\\0\\+7 \end{bmatrix}, \begin{bmatrix} 0\\1\\+4 \end{bmatrix} \right\}$$

- B. span $\left\{ \begin{bmatrix} +4 \\ +7 \end{bmatrix} \right\}$
- \bullet \mathbb{R}^2
- D. span $\left\{ \begin{bmatrix} +7\\+4\\1 \end{bmatrix} \right\}$
- E. span $\left\{ \begin{vmatrix} +4\\+7\\1 \end{vmatrix} \right\}$
- F. span $\left\{ \begin{vmatrix} +7 \\ +4 \end{vmatrix} \right\}$
- G R
- H. none of the above

1

7. (1 pt) local/Library/UI/Fall14/HW7_12.pg

Suppose that A is a 8×9 matrix which has a null space of dimension 5. The rank of A=

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

8. (1 pt) local/Library/UI/Fall14/HW8_5.pg

Find the determinant of the matrix

$$A = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 \\ -8 & 7 & 2 & 0 \\ -6 & 8 & 1 & -6 \end{bmatrix}$$

$$\det(A) =$$

- A. -400
 - B. -360
 - C. -288
 - D. -120
 - E. 0
 - F. 120
 - G. 60
 - H. 240
 - I. 360
 - J. 400
 - K. None of those above

If *A* is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some *b* in \mathbb{R}^m , then *A* cannot have a pivot position in every row.

- A. True
- B. False

If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

11. (1 pt) local/Library/UI/Fall14/volume1.pg

Find the volume of the parallelepiped determined by vectors

$$\begin{bmatrix} -5 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$$

- A. 38
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above

Suppose $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

14. (1 pt) local/Library/UI/problem7.pg

A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then det A = 0.

- A. True
- B. False

det(A+B) = detA + detB.

- A. True
- B. False

The vector \vec{b} is in *ColA* if and only if $A\vec{v} = \vec{b}$ has a solution

- A. True
- B. False

The vector \vec{v} is in *NulA* if and only if $A\vec{v} = \vec{0}$

- A. True
- B. False

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{0}$, then $5\vec{x_1} + 4\vec{x_2}$ is also a solution to $A\vec{x} = \vec{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Is NulA a subspace? Is NulA closed under linear combinations?

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{b}$, then $-3\vec{x_1} + 9\vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Is the solution set to $A\vec{x} = \vec{b}$ a subspace even when \vec{b} is not $\vec{0}$? Is the solution set to $A\vec{x} = \vec{b}$ closed under linear combinations even when \vec{b} is not $\vec{0}$?

Find the area of the parallelogram determined by the vectors $\begin{bmatrix} -6 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Suppose A is a 5 \times 3 matrix. Then *nul* A is a subspace of R^k where k =

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose A is a 4 × 7 matrix. Then col A is a subspace of R^k where k =

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1G. 2
- H. 3
- I. 4

• J. none of the above

 ${\bf 22.} \qquad (1\ \ pt) \ \ Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la_4_2.pg$

The matrix $\begin{bmatrix} 8 & 1 \\ 9 & k \end{bmatrix}$ is invertible if and only if $k \neq$ ___.

 ${\bf 23.} \hspace{1cm} (1 \hspace{1cm} pt) \hspace{1cm} Library/Rochester/setLinearAlgebra 9 Dependence-/ur_la_9_7.pg$

The vectors
$$v = \begin{bmatrix} -4 \\ 11 \\ -10 \end{bmatrix}, u = \begin{bmatrix} 2 \\ -4 \\ 9+k \end{bmatrix}, \text{ and } w = \begin{bmatrix} 2 \\ -5 \\ 4 \end{bmatrix}.$$
are linearly independent if and only if $k \neq -\infty$.

${\bf 24.} \hspace{0.5cm} {\bf (1~pt)~Library/Rochester/setLinearAlgebra 23 Quadratic Forms-\\ {\bf /ur_la_23_2.pg}$

Find the eigenvalues of the matrix

$$M = \left[\begin{array}{cc} 5 & 55 \\ 55 & 5 \end{array} \right].$$

Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x) = x^T A x$:

- A. Q(x) is indefinite
- B. Q(x) is positive definite
- C. Q(x) is negative semidefinite
- D. Q(x) is negative definite
- E. Q(x) is positive semidefinite

25. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_3.pg

The matrix

$$A = \begin{bmatrix} -2.5 & -1.5 & 0 \\ -1.5 & -2.5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

has three distinct eigenvalues, $\lambda_1 < \lambda_2 < \lambda_3$,

$$\lambda_1 =$$

$$\lambda_2 = \underline{\hspace{1cm}},$$

$$\lambda_3 = \underline{\hspace{1cm}}$$

Classify the quadratic form $Q(x) = x^T Ax$:

- A. Q(x) is negative definite
- B. Q(x) is positive semidefinite
- C. Q(x) is negative semidefinite
- D. Q(x) is positive definite
- E. O(x) is indefinite

 ${\color{blue} 26. \qquad (1 \quad pt) \quad Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem5.pg}$

Let
$$W_1$$
 be the set: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is not a basis because it does not span \mathbb{R}^3 .
- B. W_1 is not a basis because it is linearly dependent.
- C. W_1 is a basis.

Let
$$W_2$$
 be the set: $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_2 is not a basis because it does not span \mathbb{R}^3 .
- B. W₂ is not a basis because it is linearly dependent.
- C. W_2 is a basis.

${\bf 27.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.42.pg$

Let *A* be a matrix with more columns than rows. Select the best statement.

- A. The columns of *A* could be either linearly dependent or linearly independent depending on the case.
- B. The columns of *A* are linearly independent, as long as they does not include the zero vector.
- C. The columns of *A* are linearly independent, as long as no column is a scalar multiple of another column in *A*
- D. The columns of A must be linearly dependent.
- E. none of the above

${\bf 28.} \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.46.pg$

Let $\{u_1, u_2, u_3\}$ be a linearly dependent set of vectors. Select the best statement.

- A. {u₁, u₂, u₃, u₄} is a linearly independent set of vectors unless u₄ is a linear combination of other vectors in the set.
- B. {**u**₁,**u**₂,**u**₃,**u**₄} could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. {u₁, u₂, u₃, u₄} is always a linearly dependent set of vectors.

- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- E. {u₁, u₂, u₃, u₄} is always a linearly independent set of vectors.
- F. none of the above

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.47.pg

Let $\{u_1, u_2, u_3, u_4\}$ be a linearly independent set of vectors. Select the best statement.

- A. {u₁, u₂, u₃} is always a linearly independent set of vectors.
- B. {**u**₁, **u**₂, **u**₃} could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is never a linearly independent set of vectors.
- D. none of the above

 ${\bf 30.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.27.pg$

Find the null space for $A = \begin{bmatrix} 1 & 7 \\ 3 & 7 \\ -4 & -7 \end{bmatrix}$.

What is null(A)?

- A. ℝ³
- B. ℝ²

• C. span
$$\left\{ \begin{bmatrix} 7\\1 \end{bmatrix} \right\}$$

• D. span $\left\{ \begin{bmatrix} 1\\3\\-4 \end{bmatrix} \right\}$
• E. span $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$

- F. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
- G. span $\left\{ \begin{bmatrix} -7\\1\\1 \end{bmatrix} \right\}$
- H. span $\left\{ \begin{bmatrix} 1 \\ 7 \end{bmatrix} \right\}$
- I. none of the above

${\bf 31.} \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.3.47.pg$

Indicate whether the following statement is true or false.

? 1. If A and B are equivalent matrices, then col(A) = col(B).

32. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If A and B are 3×2 matrices, and C is a 6×3 matrix, which of the following are defined?

- A. AC
- B. CA
- \bullet C. C^T
- D. A^TC^T
- E. A + B
- F. C + B

33. (1 pt) UI/DIAGtfproblem1.pg

A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. If A is invertible, then A is diagonalizable.
- B. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- C. If *A* is diagonalizable, then *A* has *n* distinct eigenvalues
- D. A is diagonalizable if A has n distinct eigenvectors.
- E. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- F. If A is symmetric, then A is orthogonally diagonalizable.
- G. If A is diagonalizable, then A is invertible.
- H. If A is diagonalizable, then A is symmetric.
- I. A is diagonalizable if $A = PDP^{-1}$ for some diagonal matrix D and some invertible matrix P.
- J. If A is symmetric, then A is diagonalizable.
- K. If A is orthogonally diagonalizable, then A is symmetric.
- L. If there exists a basis for \mathbb{R}^n consisting entirely of eigenvectors of A, then A is diagonalizable.
- M. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.

34. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors span \mathbb{R}^3 ?

• A.
$$\begin{bmatrix} -7 \\ 0 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$, $\begin{bmatrix} -5 \\ 4 \\ 9 \end{bmatrix}$
• B. $\begin{bmatrix} 1 \\ 9 \end{bmatrix}$, $\begin{bmatrix} -6 \\ -1 \end{bmatrix}$

- C. $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 2 \end{bmatrix}$
- D. $\begin{bmatrix} 8 \\ 3 \\ -9 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -8 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 14 \\ -5 \\ -11 \end{bmatrix}$

• E.
$$\begin{bmatrix} 6 \\ 14 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$
• F. $\begin{bmatrix} -9 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -8 \\ -2 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -7 \end{bmatrix}$

Which of the following sets of vectors are linearly independent?

• A.
$$\begin{bmatrix} -7 \\ 0 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 3 \\ 8 \end{bmatrix}$, $\begin{bmatrix} -5 \\ 4 \\ 9 \end{bmatrix}$
• B. $\begin{bmatrix} 1 \\ 9 \end{bmatrix}$, $\begin{bmatrix} -6 \\ -1 \end{bmatrix}$
• C. $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 2 \end{bmatrix}$
• D. $\begin{bmatrix} 8 \\ 3 \\ -9 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -8 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 14 \\ -5 \\ -11 \end{bmatrix}$
• E. $\begin{bmatrix} 6 \\ 14 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$
• F. $\begin{bmatrix} -9 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -8 \\ -2 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -7 \end{bmatrix}$

35. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If A is symmetric, $A\mathbf{v} = r\mathbf{v}$, $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then
- B. If $W = Span\{x_1, x_2, x_3\}$ and if $\{v_1, v_2, v_3\}$ is an orthonormal set in W, then $\{v_1, v_2, v_3\}$ is an orthonormal basis for W.
- C. If $A\mathbf{v} = r\mathbf{v}$ and $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- D. If x is not in a subspace W, then $x \text{proj}_W(x)$ is not
- E. If $\{v_1, v_2, v_3\}$ is an orthonormal set, then the set $\{v_1, v_2, v_3\}$ is linearly independent.
- F. In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- G. If v and w are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w} = 0$.

36. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

• A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.

- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly independent set of
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- F. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is never a linearly dependent set of vec-
- G. none of the above

37. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If A is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^n , then consider the set of solutions to $A\mathbf{x} = \mathbf{b}$.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

38. (1 pt) local/Library/UI/Fall14/HW7_11.pg

Find all values of x for which rank(A) = 2.

$$A = \begin{bmatrix} 1 & 1 & 0 & 7 \\ 2 & 4 & x & 21 \\ 1 & 7 & 6 & 28 \end{bmatrix}$$

- - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. none of the above

39. (1 pt) local/Library/UI/Fall14/HW8_7.pg

Suppose that a 4×4 matrix A with rows v_1 , v_2 , v_3 , and v_4 has determinant $\det A = 6$. Find the following determinants:

$$B = \begin{bmatrix} v_1 \\ v_2 \\ 9v_3 \\ v_4 \end{bmatrix} \det(B) =$$

• A. -18

- B. -15
- C. -12
- D. 54
- E. -9
- F. 0
- G. 9
- H. 12
- I. 15
- J. 18
- K. None of those above

$$C = \begin{bmatrix} v_4 \\ v_3 \\ v_2 \\ v_1 \end{bmatrix} \det(C) =$$

- A. -18
- B. 6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

$$D = \begin{bmatrix} v_1 + 3v_3 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$
$$\det(D) =$$

- A. -18
- B. 6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax = b has at least one solution.

- A. True
- B. False

Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.

- A. True
- B. False

42. (1 pt) local/Library/UI/Fall14/quiz2_9.pg

Supppose A is an invertible $n \times n$ matrix and ν is an eigenvector of A with associated eigenvalue -5. Convince yourself that ν is an eigenvector of the following matrices, and find the associated eigenvalues:

- 1. A^4 , eigenvalue =
 - A. 16
 - B. 81
 - C. 125
 - D. 216
 - E. 1024
 - F. 625
 - G. 2000
 - H. None of those above
- 2. A^{-1} , eigenvalue =
 - A. -0.5
 - B. -0.333
 - C. -0.2
 - D. -0.125
 - E. 0
 - F. 0.125
 - G. 0.333
 - H. 0.5
 - I. None of those above
- 3. $A + 9I_n$, eigenvalue =
 - A. -8
 - B. -4
 - C. -5
 - D. 0
 - E. 2
 - F. 4
 - G. 10
 - H. None of those above
- 4. 6A, eigenvalue =
 - A. -40
 - B. -36
 - C. -28

- D. -30
- E. -12
- F. 0
- G. 24
- H. 36
- I. None of those above

43. (1 pt) local/Library/UI/Fall14/quiz2_10.pg

If
$$v_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$

are eigenvectors of a matrix A corresponding to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -4$, respectively, then

a.
$$A(v_1 + v_2) =$$

- A. $\begin{bmatrix} -3 \\ 5 \end{bmatrix}$
- B. | -2 4
- C. $\begin{bmatrix} -6 \\ 5 \end{bmatrix}$
- D. $\begin{bmatrix} 10 \\ 6 \end{bmatrix}$
- E. $\begin{bmatrix} 12 \\ 4 \end{bmatrix}$
- F. $\begin{bmatrix} 11 \\ 3 \end{bmatrix}$
- G. None of those above

b. $A(3v_1) =$

- A. $\begin{bmatrix} -12 \\ -12 \end{bmatrix}$
- B. $\begin{vmatrix} -2 \\ 8 \end{vmatrix}$
- C. \[\begin{array}{c} -6 \\ 4 \end{array}
- D. $\begin{bmatrix} 10 \\ 6 \end{bmatrix}$
- E. | 9
- F. $\begin{bmatrix} 12 \\ 4 \end{bmatrix}$
- G. $\begin{bmatrix} 11\\3 \end{bmatrix}$
- H. None of those above

44. (1 pt) local/Library/UI/Fall14/quiz2_11.pg

Let
$$v_1 = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}$

be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 2$, and $\lambda_3 = 4$, respectively, and let

$$v = \begin{bmatrix} 3 \\ 5 \\ -4 \end{bmatrix}$$

Express v as a linear combination of v_1 , v_2 , and v_3 , and find Av.

1. If $v = c_1v_1 + c_2v_2 + c_3v_3$, then (c_1, c_2, c_3) =

- A. (1,2,2)
- B. (-3,2,4)
- C. (-4,7,3)
- D. (-2,1,2)
- E. (0,1,2)
- F. (4,-1,5)
- G. None of above

$$2. Av =$$

- A. $\begin{bmatrix} -12 \\ 7 \\ -12 \end{bmatrix}$
- B. 12 8 -6
- C. 7 4
- D. $\begin{bmatrix} 10 \\ 0 \\ 6 \end{bmatrix}$
- E. $\begin{bmatrix} 18 \\ -10 \\ -30 \end{bmatrix}$
- F. $\begin{bmatrix} 12 \\ 8 \\ 4 \end{bmatrix}$
- G. | -7 | -3 | 12
- H. None of those above

Suppose a coefficient matrix A contains a pivot in every row. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions

- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

47. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let *A* be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A\mathbf{x} = \mathbf{0}$ never has nontrivial solutions.
- B. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- C. There is insufficient information to determine if such an equation has nontrivial solutions.
- D. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- E. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- F. The equation $A\mathbf{x} = \mathbf{0}$ always has nontrivial solutions.
- G. none of the above

48. (1 pt) local/Library/UI/eigenTF.pg

A is $n \times n$ an matrices.

Check the true statements below:

- A. 0 is an eigenvalue of A if and only if Ax = 0 has a nonzero solution
- B. 0 can never be an eigenvalue of A.
- C. The vector **0** is an eigenvector of *A* if and only if det(A) = 0
- D. The vector $\mathbf{0}$ can never be an eigenvector of A
- E. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.
- F. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- G. 0 is an eigenvalue of A if and only if det(A) = 0
- H. A will have at most n eigenvalues.
- I. The eigenspace corresponding to a particular eigenvalue of *A* contains an infinite number of vectors.
- J. A will have at most n eigenvectors.

- K. The vector **0** is an eigenvector of *A* if and only if the columns of *A* are linearly dependent.
- L. The vector $\mathbf{0}$ is an eigenvector of A if and only if Ax = 0 has a nonzero solution
- M. 0 is an eigenvalue of A if and only if Ax = 0 has an infinite number of solutions

If $\vec{v_1}$ and $\vec{v_2}$ are eigenvectors of A corresponding to eigenvalue λ_0 , then $6\vec{v_1} + 8\vec{v_2}$ is also an eigenvector of A corresponding to eigenvalue λ_0 when $6\vec{v_1} + 8\vec{v_2}$ is not $\vec{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?

Also, is $6\vec{v_1} + 8\vec{v_2}$ nonzero?

Use Cramer's rule to solve the following system of equations for *x*:

$$4x - 2y = -14$$
$$-1x + 1y = 4$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Let
$$A = \begin{bmatrix} 3 & -9 & -4 \\ 0 & 7 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$
. Is $A = \text{diagonalizable}$?

- A. yes
- B. no
- C. none of the above

Let
$$A = \begin{bmatrix} -5 & -18 & -9 \\ 0 & 1 & 3 \\ 0 & 0 & -5 \end{bmatrix}$$
. Is $A =$ diagonalizable?

- A. yes
- B. no
- C. none of the above

$$\begin{array}{c}
\text{Let } A = \begin{bmatrix} 3.13840133840134 \\ 6.46153846153846 \end{bmatrix} \\
\text{and let } P = \begin{bmatrix} -1 & 9 & 5 \\ -4 & -2 & -7 \\ 0 & 7 & -7 \end{bmatrix}.$$

Suppose $A = PDP^{-1}$. Then if d_{ii} are the diagonal entries of $D, d_{11} =$,

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4J. 5
- **Hint:** (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11} .

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4J. 5

Suppose
$$A \begin{bmatrix} 5 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} -10 \\ -8 \\ 2 \end{bmatrix}$$
. Then an eigenvalue of A

is

- A. -4
- B. -3
- C. -2 • D. -1
- D. -1
- E. 0
- F. 1

Suppose u and v are eigenvectors of A with eigenvalue 2 and w is an eigenvector of A with eigenvalue 3. Determine which of the following are eigenvectors of A and their corresponding eigenvalues.

- (a.) If 4v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. 4v need not be an eigenvector of A
- (b.) If 7u + 4v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1G. 2
 - H. 3
 - I. 4
 - J. 7u + 4v need not be an eigenvector of A
- (c.) If 7u + 4w an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
 - A. -4
 - B. -3
 - C. -2
 - D. -1

- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 7u + 4w need not be an eigenvector of A

If the characteristic polynomial of $A = (\lambda + 6)^1 (\lambda - 7)^2 (\lambda + 6)^2$, then the algebraic multiplicity of $\lambda = 7$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

If the characteristic polynomial of $A = (\lambda - 4)^5(\lambda + 3)^2(\lambda - 1)^8$, then the geometric multiplicity of $\lambda = -3$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above