

A symmetric if $A = A^T$

$$det(A-\lambda I) = \begin{vmatrix} 1-\lambda & -1 & 1 \\ -1 & 1-\lambda & -1 \\ 1 & -1 & 1-\lambda \end{vmatrix} = \begin{vmatrix} 1-\lambda \\ -1 & 1 \\ 1-\lambda & -1 \\ 0 & -\lambda & -\lambda \end{vmatrix}$$

$$= (1-\lambda) \begin{vmatrix} 1-\lambda & -1 \\ -\lambda & -\lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & 1 \\ -\lambda & -\lambda \end{vmatrix} + 0 \begin{vmatrix} -1 & 1 \\ 1-\lambda & -1 \end{vmatrix}$$

$$= (1-\lambda)[(1-\lambda)(-\lambda) - \lambda] + [\lambda + \lambda]$$

$$= (1-\lambda)(-\lambda)[(1-\lambda) + 1] + 2\lambda = (1-\lambda)(-\lambda)(2-\lambda) + 2\lambda$$

Note I can factor out $-\lambda$, leaving only a quadratic to factor:

$$= -\lambda[(1-\lambda)(2-\lambda)-2]$$

= $-\lambda[\lambda^2 - 3\lambda + 2 - 2] = -\lambda[\lambda^2 - 3\lambda] = -\lambda^2[\lambda - 3]$

Thus their are 2 eigenvalues:

if diag $\lambda = 0$ with algebraic multiplicity 2. Since A is symmetric, \rightarrow A diag geometric multiplicity = algebraic multiplicity = 2. Thus the dimension of the eigenspace corresponding to $\lambda = 0$ [=Nul(A - 0I) = Nul(A)] is 2. 1 f v

 $\lambda = 3$ w/algebraic multiplicity = 1 = geometric multiplicity.

Thus we can find an orthogonal basis for \mathbb{R}^3 where two of the basis vectors comes from the eigenspace corresponding to eigenvalue 0 while the third comes from the eigenspace corresponding to eigenvalue 3.

symmetric, checkif diagonalyable by finding # of tree varia Po you have enough l.i.

e. vectors to create square Plangm 2

2.) Find a basis for each of the eigenspaces:

$$2a. \lambda = 0 \quad A - 0I = A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} x_2 - x_3 \ x_2 \ x_3 \end{bmatrix} = x_2 egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + x_3 egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$$

Thus a basis for eigenspace corresponding to eigenvalue 0 is

Thus a basis for eigenspace corresponding to eigenvalue

Since from value

$$\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}
\end{cases}$

Thus a basis for eigenspace corresponding to eigenvalue

 $\begin{cases}
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}
\end{cases}$

Thus a basi

$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\} 2d plane$$

We can now use Gram-Schmidt to turn this basis into an orthogonal basis for the eigenspace corresponding to eigenvalue 0 or we can continue finding eigenvalues.

3a.) Create orthonormal basis using Gram-Schmidt for the eigenspace corresponding to eigenvalue 0:

Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v_2} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

$$proj_{\mathbf{v_1}}\mathbf{v_2} = \begin{pmatrix} \mathbf{v_2} \cdot \mathbf{v_1} \\ \mathbf{v_1} \cdot \mathbf{v_1} \end{pmatrix} \mathbf{v_1} = \frac{-1+0+0}{1+1+0} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}$$

LT metric
A symmetric orthogonalize
A symmet

The vector component of
$$\mathbf{v_2}$$
 orthogonal to $\mathbf{v_1}$ is
$$\mathbf{v_2} - proj_{\mathbf{v_1}} \mathbf{v_2} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix}$$
Thus an orthogonal basis for the eigenspace corresponding to eigenvalue 0 is
$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} \right\}$$
or thogonalty
$$\mathbf{v_1} \quad \text{dot} \quad \text{To create orthonormal basis, divide each vector by its length:}$$

$$\mathbf{v_1} \quad \mathbf{v_2} = \mathbf{v_3} \quad \mathbf{v_4} \quad \mathbf{v_4} = \mathbf{v_4} \quad \mathbf{v_4} \quad \mathbf{v_4} \quad \mathbf{v_4} \quad \mathbf{v_4} \quad \mathbf{v_4} = \mathbf{v_4} \quad \mathbf{v_4$$

(4)

2b.) Find a basis for eigenspace corresponding to $\lambda = 3$:

$$A-3I = \begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for eigenspace corresponding to eigenvalue 3 is

$$\left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$$

FYI: Alternate method to find 3rd vector: Since you have two linearly independent vectors from the eigenspace corresponding to eigenvalue 0, you only need one more vector which is orthogonal to these two to form a basis for R^3 . Note since A is symmetric, any such vector will be an eigenvector of A with eigenvalue 3. Note this shortcut only works because we know what the eigenspace corresponding to eigenvalue 3 looks like: a line perpendicular to the plane representing the eigenspace corresponding to eigenvalue 0.

3b.) Create orthonormal basis for the eigenspace corresponding to eigenvalue 3:

We only need to normalize:

ASYMMetrice
Asymmetrice
Develor
Wie-value
To e-value
To e-value
Wie-value

Thus orthonormal basis for eigenspace corresponding to eigenvalue 3 is

4.) Construct D and P

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix},$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

orthord northit

Make sure order of eigenvectors in D match order of eigenvalues in P.

5. P orthonormal implies $P^{-1} = P^T$

Thus
$$P^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}}\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Thus
$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = A = PDP^{-1} =$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

Note As A Normania

7.1: Orthogonal Diagonalization

Equivalent Questions:

- Given an $n \times n$ matrix, does there exist an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A?
- Given an $n \times n$ matrix, does there exist an orthonormal matrix P such that $P^{-1}AP = P^{T}AP$ is a diagonal matrix?
- Is A symmetric?

Defn: A matrix is symmetric if $A = A^T$.

Recall An invertible matrix P is orthogonal if $P^{-1} = P^T$

Defn: A matrix A is **orthogonally diagonalizable** if there exists an orthogonal matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Thm: If A is an $n \times n$ matrix, then the following are equivalent:

- a.) A is orthogonally diagonalizable.
- normalize of processing of 11 orthonormal management of 11 orthonormal management of 12 orthonormal management of 13 for 12 miles of 12 mi b.) There exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.
 - c.) A is symmetric.

Thm: If A is a symmetric matrix, then:

- a.) The eigenvalues of A are all real numbers.
- b.) Eigenvectors from different eigenspaces are orthogonal.
- c.) Geometric multiplicity of an eigenvalue = its algebraic multiplicity

Note A symmetric => A diag 11 A orthog diag A orthog diag = A symmetri A diag = A may. or may
not be
symmetric

(B)

A is symmetric A diagonalzely A 75 not 54 mmetric E) A may or may not be diagonalists

(depends on if am = 9 m for all e. maly A may or may be may not be symmetric A diagonaly A is orthogonally diagondfull Can choose P to have orthogonal columns

7.1 cont

They do he he he he he don's to he e don's form school of the he had be he had be he he had be h

Note if $\{\mathbf{v_1}, ..., \mathbf{v_n}\}$ are linearly independent:

- (1.) You can use the Gram-Schmidt algorithm to find an orthogonal basis for $span\{v_1, ..., v_n\}$.
- (2.) You can normalize these orthogonal vectors to create an orthonormal basis for $span\{v_1, ..., v_n\}$.
- (3.) These basis vectors are not normally eigenvectors of $A = [\mathbf{v_1}...\mathbf{v_n}]$ even if A is symmetric (note that there are an infinite number of orthogonal basis for $span\{\mathbf{v_1},...,\mathbf{v_n}\}$ even if n=2 and $span\{\mathbf{v_1},\mathbf{v_2}\}$ is just a 2-dimensional plane)

Note if A is a $n \times n$ square matrix that is diagonalizable, then you can find n linearly independent eigenvectors of A.

Each eigenvector is in col(A): If v is an eigenvector of A with eigenvalue λ , then $A\mathbf{v} = \lambda \mathbf{v}$. Thus $\frac{1}{\lambda}A\mathbf{v} = \mathbf{v}$. Hence $A(\frac{1}{\lambda}\mathbf{v}) = \mathbf{v}$. Thus \mathbf{v} is in col(A).

Thus col(A) is an n-dimensional subspace of R^n . That is $col(A) = R^n$, and you can find a basis for $col(A) = R^n$ consisting of eigenvectors of A.

But these eigenvectors are NOT usually orthogonal UNLESS they come from different eigenspaces AND the matrix A is symmetric.

If A is NOT symmetric, then eigenvectors from different eigenspaces need NOT be orthogonal.

Multiple ways to find basis for Ry

O col (A) if A has no free variety

when you have enoughlibectors ally different

Eind e. vectors was usually different

QR decomposition:

$$A = QR$$

Q is orthonormal R is upper triangular

To find QR decomposition:

- 1.) Q: Use Gram-Schmidt to find orthonormal basis for column space of A
- 2.) Let $R = Q^T A$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1.) Use Gram-Schmidt to find orthonormal basis for column space of A

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1.) Use Gram-Schmidt to find orthonormal basis for column space of A

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\}$$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1.) Use Gram-Schmidt to find orthogonal basis for column space of A

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\}$$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1.) Use Gram-Schmidt to find orthogonal basis for column space of A

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\} = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, ? \right\}$$

Find the QR decomposition of

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1.) Use Gram-Schmidt to find orthogonal basis for column space of A

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\} = span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$$

Find the length of each vector:

$$\left\| \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$\left\| \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$$

Divide each vector by its length:

$$\operatorname{col}(A) = \operatorname{span}\left\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 4\\3 \end{bmatrix}\right\} = \operatorname{span}\left\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix}\right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix} \right\}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

$$A = QR$$

unitrec

QTA = QTOR

STA = R

SINCE Sorthonormy

14

A = QR
A = QR
$Q^{-1}A = Q^{-1}QR$
$Q^{-1}A = R$
Q has orthonormal columns:
Thus $Q^{-1} = Q^T$
Thus $R = Q^{-1}A = Q^{T}A$
8

	Find the QR decomposition of	
	$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = QR$	
	$R = Q^{-1}A = Q^{T}A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$	
	$= \begin{bmatrix} \frac{5}{\sqrt{5}} & \frac{10}{\sqrt{5}} \\ \boxed{0} & \frac{5}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \sqrt{5} & 2\sqrt{5} \\ 0 & \sqrt{5} \end{bmatrix}$	
/	Note Ris upp	oer. langular

4

Thm: Let $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ be an orthogonal basis for an inner product space V. Let \mathbf{a} be an arbitrary vector in V. Then

$$\mathbf{a} = c_1 \mathbf{v_1} + ... + c_n \mathbf{v_n}$$
where $c_j = \frac{\langle \mathbf{a}, \mathbf{v_j} \rangle}{||\mathbf{v_j}||^2}$ for $j = 1, 2, ..., n$.

Note if $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ is an orthonormal basis, then $||\mathbf{v_j}|| = 1$ and $c_j = \langle \mathbf{a}, \mathbf{v_j} \rangle$

Thm: Let \mathbf{a} , \mathbf{v} be nonzero vectors in \mathbb{R}^k .

The vector component of \mathbf{a} along \mathbf{v}

= orthogonal projection of \mathbf{a} on \mathbf{v} = $proj_{\mathbf{v}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{v}}{||\mathbf{v}||^2}\mathbf{v}$

The vector component of a orthogonal to v

$$(\mathbf{a} - proj_{\mathbf{v}}\mathbf{a}) = \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{v}}{||\mathbf{v}||^2} \mathbf{v}$$

Thm: Let $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ be an orthogonal basis for subspace W of an inner product space V. Let \mathbf{a} be an arbitrary vector in V. Then

where
$$c_j = \frac{\langle \mathbf{a}, \mathbf{v_j} \rangle}{||\mathbf{v_j}||^2}$$
 for $j = 1, 2, ..., n$.

Note if $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ is an orthonormal basis, then $||\mathbf{v_j}|| = 1$ and $c_j = \langle \mathbf{a}, \mathbf{v_j} \rangle$

The vector component of \mathbf{a} orthogonal to $\mathbf{W} = \mathbf{a} - proj_{\mathbf{W}} \mathbf{a}$

a-Broja, a

Thm (Gram-Schmidt process for constructing an orthogonal basis):

Let $\mathcal{T} = \{\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}\}$ be a basis for an inner product space V. Let $\mathcal{T}' = \{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ be defined as follows:

$$egin{aligned} v_1 &= a_1 \ v_2 &= a_2 - rac{< a_2, v_1>}{< v_1, v_1>} v_1 \ v_3 &= a_3 - rac{< a_3, v_1>}{< v_1, v_1>} v_1 - rac{< a_3, v_2>}{< v_2, v_2>} v_2 \end{aligned}$$

 $v_n = a_n - \frac{\langle a_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle a_n, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \dots - \frac{\langle a_n, v_n \rangle}{\langle v_n, v_n \rangle} v_n$

Then the set \mathcal{T}' is an orthogonal basis for V.

An orthonormal basis for V is given by

$$\mathcal{T}'' = \left\{ \frac{\mathbf{v_1}}{||\mathbf{v_1}||}, \frac{\mathbf{v_2}}{||\mathbf{v_2}||}, ..., \frac{\mathbf{v_n}}{||\mathbf{v_n}||} \right\}$$