SQUARE COEF MATRIX n prots in each row in each Thm 8': If A is a SQUARE $n \times n$ matrix, then the following A-1 Ax = A-16 un 19 ue are equivalent. a.) A is invertible b.) The row-reduced echelon form of A is I_n , the identity matrix. c.) An echelon form of A has n leading entries I.e., every column of an echelon form of A is a leading entry column – no free variables]. (A square \Rightarrow A has leading entry in every column if and only if A has leading entry in every row). ad.) The column vectors of A are linearly independent. Digit in each e.) Ax = 0 has only the trivial solution. \nearrow f.) Ax = b has at most one sol'n for any b. (x) = b has a unique sol'n for any ah.) Ax = b is consistent for every $n \times 1$ matrix b. \geqslant i.) Ax = b has at least one sol'n for any b. \geqslant j.) The column vectors of A span \mathbb{R}^n . every vector in \mathbb{R}^n can be written as a linear combination of the columns of A]. $^{\mathbf{u}}$ k.) There is a square matrix C such that CA = I. m.) A^{T} is invertible. = 2 Same = 4 of = 1 of = 1. n.) = A is expressible. 2 1.) There is a square matrix D such that $AD = I_{\odot}$ -n.) A is expressible as a product of elementary matrices. VARE

Thm: Let A be a square matrix. If there exists a square matrix B such that AB = I, then BA = Iand thus $B = A^{-1}$

Thm: If A is invertible, then its inverse is unique. Proof: Suppose AB = I and CA = I. Then, B = IB = CAB = CI = C.

Defn: $A^0 = I$, and if n is a positive integer $A^n = AA \cdots A \text{ and } A^{-n} = A^{-1}A^{-1} \cdots A^{-1}$

Thm: If r, s integers, $A^rA^s = A^{r+s}$, $(A^r)^s = A^{rs}$

Thm: If A^{-1} and B^{-1} exist, then

i.) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

- ii.) A^{-1} is invertible and $(A^{-1})^{-1} = A$ 0 6 10 0 10 10 10AA-1ZT
- iii.) A^r is invertible and $(A^r)^{-1} = (A^{-1})^r$ where r is any integer
- iv.) For any nonzero scalar k, kA is invertible and $(kA)^{-1} = \frac{1}{k}A^{-1}$
- v.) A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Augmented n x (n+1) n pivots A has do NOT have 400 To always have always have 50/9 2.8 Subspaces of R^n .

Example: The n^{n} .

2.8 Subspaces of
$$R^n$$
.

Example: The nullspace of A is the solution set of $A\mathbf{x} = \mathbf{0}$. $= nul(A) = null(A)$

$$Solve$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ R_2 - 2R_1 \rightarrow R_2, R_3 - 3R_1 \rightarrow R_3, R_4 - R_1 \rightarrow R_4 \end{bmatrix}$$

Nullspace of A= Solution space of $\begin{bmatrix}1&2&3&4\\2&5&6&8\\3&7&9&12\\\vdots&\ddots&\ddots&\vdots\\x_3\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\mathbf{0}$

$$=\begin{bmatrix} -3.7 \\ 0 \end{bmatrix} X_3 + \begin{bmatrix} -47 \\ 0 \end{bmatrix} X_4$$

Nullspace of A = Solution set of Ar= O $= \begin{cases} \begin{bmatrix} -3 \\ 0 \end{bmatrix} \times_3 + \begin{bmatrix} -4 \\ 0 \end{bmatrix} \times_4 = \mathbb{R} \end{cases}$ Eset fall linear combite of 2 leading = Span \[\bigcirc \b Basis for Null (A) = {[-1] [-47] Nullspace is a. 2-dim R plane in R Note Life RY since it has 4 coordinates

SI	Space
sub space	vector
S	B
X	

	=5pan { }
	Suppose $A\mathbf{v_1} = 0$ and $A\mathbf{v_2} = 0$, then $A(c_1\mathbf{v_1} + c_2\mathbf{v_2}) = 0$
A (qi	$(1 + c_2 \vec{v_2}) = A(c_1 \vec{v_1}) + A(c_2 \vec{v_2}) = c_1 A \vec{v_1} + c_2 A \vec{v_1} = 0 + 0$
	NOTE: Nullspace of $A = \text{span}\{$ [-3,7] 2.8 Subspaces of $R^n = \text{Vector space}$ Long definition emphasizing important points: Defn: Let W be a nonempty subset of R^n . Then W is a subspace of R^n if and only if the following three conditions are satisfied:
	2.8 Subspaces of Rn. = Vector space
	Long definition emphasizing important points:
0.1	Defn: Let W be a nonempty subset of \mathbb{R}^n . Then W is a subspace
space.	i.) O is in W , ii.) if $\mathbf{v_1}, \mathbf{v_2}$ in W , then $\mathbf{v_1} + \mathbf{v_2}$ in W , iii.) if \mathbf{v} in W , then $c\mathbf{v}$ in W for any scalar c .
vector	Short definition: Let W be a nonempty subset of R^n . Then W is a subspace of R^n if $\mathbf{v_1}, \mathbf{v_2}$ in W implies $c_1\mathbf{v_1} + c_2\mathbf{v_2}$ in W ,
) R	Note that if S is a subspace, then if $\mathbf{v_1}, \mathbf{v_2},, \mathbf{v_n}$ in S , then $c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + + c_n \mathbf{v_n}$ is in S . $0\mathbf{v} = 0 \text{ is in } S.$
	Defn: Let S be a subspace of R^k . A set T is a basis for S if i.) T is linearly independent and but not overly large ii.) T spans S . Large enough the spa for span

EX; set of negative #'s

is closed under +

neg + neg = neg

They are not closed under

(-2) (-3) = +6

1 not neg

Example of closed under_

Exs of a set that is not a subspace O is not in the set of negative #'s
so the neg #'s is not a
subspace
JR $\frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}}$ The soln set to a non-homogesh $x + 2y = 3 = y = -\frac{1}{2}x + 3$ To Vis In soln set to but 20 is not what is not a sold Tis not in Solution set

SUbspaces Not Solution set $\begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 0 & 0 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 3 \end{bmatrix}$ su bspac [12][0] + [3] not in solution 2 v is not in solution set hot SULSPACE - W is 401 Doesn't contain 011917 not a subspace Subspace = Nul C $C = \begin{bmatrix} 12 \\ 00 \end{bmatrix}$ Solution set $y = -\frac{1}{2}x$ a subspace of R Any space that can be written as space that can be written as well be a span of vectors will be a sector space texamples: Nullspace and Column Space.

Let $A = [\mathbf{c_1}, \mathbf{c_2}, ..., \mathbf{c_n}]$, a $k \times n$ matrix Defn: The column space of $A = span\{c_1, c_2, ..., c_n\} = col(A)$ Thm: The column space of A is a subspace of R^k Note: Suppose B is row equivalent to A, then the column space of B need not be the same as the column space of A. The column space of $A = span \left\{ \begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} 2\\5\\7\\2 \end{bmatrix}, \begin{bmatrix} 3\\6\\9\\3 \end{bmatrix}, \begin{bmatrix} 4\\2\\12\\4 \end{bmatrix} \right\}$ Thus a basis for the column space of A is $\{$ 4

? Colum

Note we took the leading entry columns in the ORIGINAL matrix.

Why are we so interested in the column space?

Does
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$
 have a solution?

Does
$$\begin{bmatrix} 1\\2\\3\\1 \end{bmatrix} x_1 + \begin{bmatrix} 2\\5\\7\\2 \end{bmatrix} x_2 + \begin{bmatrix} 3\\6\\9\\3 \end{bmatrix} x_3 + \begin{bmatrix} 4\\2\\12\\4 \end{bmatrix} x_4 = \begin{bmatrix} b_1\\b_2\\b_3\\b_4 \end{bmatrix}$$
 have a sol'n?

Does
$$\begin{bmatrix} 1\\2\\3\\1 \end{bmatrix} x_1 + \begin{bmatrix} 2\\5\\7\\2 \end{bmatrix} x_2 = \begin{bmatrix} b_1\\b_2\\b_3\\b_4 \end{bmatrix}$$
 have a solution?

$$\operatorname{Is} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ in } \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 7 \\ 2 \end{bmatrix} \right\} = \operatorname{column space of} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} ?$$

Example 1: Does
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 9 \\ 22 \\ 31 \\ 9 \end{bmatrix} \text{ have a sol'n?}$$

Example 2: Does
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 8 \\ 3 & 7 & 9 & 12 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 8 \\ 4 \end{bmatrix}$$
 have a sol'n?

Long method for determining IF there is a solution:

Shorter method for determining IF there is a solution WHEN you know a basis for the column space: