7.2: Quadratic Forms Q(x) = xT Ax where A is symmetric.

Example: Q : R> - R

Qx,y) = mT [; ;] m =lz vl [é g] [::S]

{x2+4xy+3y2}
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T Ax where A is symmetric.

X

(x) =

Q
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Defn and theorem:

A symmetric matrix A is positive definite
if and only if the x? Ax > 0 for all x # 0

if and only if all the eigenvalues of A are positive.

A symmetric matrix A is negative definite
if and only if the x? Ax < 0 for all x # 0

if and only if all the eigenvalues of A are negative.

A symmetric matrix A is indefinite
if and only if the x? Ax has both positive and negative values.

if and only if A are positive and negative eigenvalues.

A symmetric matrix A is positive semidefinite
if and only if the x Ax > 0

if and only if all the eigenvalues of A are non-negative.

A symmetric matrix A is negative semidefinite
if and only if the x? Ax < 0

if and only if all the eigenvalues of A are non-positive.



Change of variable:
Let x = Py.
Q(x) =xTAx = (Py)T APy = y"PT APy = y"(PT AP)y

Suppose A = PDP~! = PDP” where A is a symmetric matrix,
D is diagonal, and P is orthonormal (i.e., P~! = PT),

A = PDPT implies PY AP = P'PDPTP =D

Qly) =y"(P"AP)y =y’ Dy
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Make a change of variable that transforms the following qua-
dratic form into a quadratic form with no cross-product term:

cwnan=[2] [3 3 [2] =0 =1s 3] 2]

Step 1: Orthogonally diagonalize A = [; Z]

See section 7.1:
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Step 2: Let x = Py

—9 1 —2 1
[an][\{g \égl [ylll\{gy1+\égy2]
To 7= | LY ﬁymtﬁyz

After change of variable:

Qy1,y2) = [‘z;r [8 g] [z;] =Ly v [8 g] [Z;]
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