1.) Determine if the system of equations corresponding to the augmented matrices below has no solution,
exactly one solution, or an infinite number of solutions. If it has an infinite number of solutions, state
the number of free variables.

1a.)	Γ0	6	3	7	$2 \rceil$	
1a.)	0	0	5	2	8	A
	0	0	0	0	4	

Answer 1a:____

1b.)
$$\begin{bmatrix} 0 & 6 & 3 & 7 & 2 \\ 0 & 0 & 5 & 2 & 8 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Answer 1b:

Answer 1c:

Answer 1d:_____

- 2.) Circle the most correct answer.
- 2a.) A system of linear equations with more variables than equations can have
- i.) no solution
- ii.) exactly one solution
- iii.) infinite number of solutions

iv.) at most one solution

- v.) at least one solution
- vi.) no solution or an infinite number of solutions.
- 2b.) A homogeneous system of linear equations with more variables than equations can have
- i.) no solution
- ii.) exactly one solution
- iii.) infinite number of solutions

iv.) at most one solution

- v.) at least one solution
- vi.) no solution or an infinite number of solutions.
- 3.) Circle T for True or F for False.
- 3a.) A system of linear equations can have exactly 3 solutions

T F

3b.) If
$$AB = AC$$
, then $B = C$

F

3b.) If
$$AB = CA$$
, then $B = C$