1.) Solve the following system of equations by finding the reduced echelon form of an augmented matrix.

$$-x_2 + x_3 + 2x_4 = b_1$$

$$2x_1 + 6x_3 = b_2$$

$$4x_1 + 3x_2 + 8x_3 + x_5 = b_3$$

$$x_3 - 6x_4 - x_5 = b_4$$

[7] 1a.) when $(b_1, b_2, b_3, b_4) = (1, 0, 1, -4)$.

Answer 1a.)

[3] 1b.) when $(b_1, b_2, b_3, b_4) = (2, 0, 2, -8)$.

Answer 1b.) _____

[2] 1c.) Find two vectors (b_1, b_2, b_3, b_4) for which there does not exist a solution to the above system of equations.

Answer 1c.)

[2] 1d.) If A is the coefficient matrix for the above system of equations, find two vectors, \mathbf{x} ,

such that
$$A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}$$

Answer 1c.) ______

(see next page for room for scratch work)

Scratch work page for solving

$$-x_2 + x_3 + 2x_4 = b_1$$

$$2x_1 + 6x_3 = b_2$$

$$4x_1 + 3x_2 + 8x_3 + x_5 = b_3$$

$$x_3 - 6x_4 - x_5 = b_4$$

when
$$(b_1, b_2, b_3, b_4) = (1, 0, 1, -4)$$
. or $(b_1, b_2, b_3, b_4) = (2, 0, 2, -8)$.

[12] 2.) Given that
$$\begin{bmatrix} 3 & -6 & -3 \\ 2 & 0 & 6 \\ -4 & 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 4 & 0 \\ -4 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix},$$

solve the following system of equations by LU factorization

$$3x_1 - 6x_2 - 3x_3 = -3$$
$$2x_1 + 6x_3 = 22$$
$$-4x_1 + 7x_2 + 4x_3 = 2$$

Answer:			
	Anguron		
	A IIS WELL		

[12] 3.) Find an LU factorization of $A = \begin{bmatrix} 3 & 3 & 0 & 9 \\ 1 & 2 & 6 & 0 \\ 0 & 0 & 2 & 0 \\ 2 & 2 & 6 & 1 \end{bmatrix}$

L =

 $U = \underline{\hspace{1cm}}$

4.) Find the determinant of
$$A = \begin{bmatrix} 3 & 3 & 0 & 3 \\ 1 & 2 & 6 & 0 \\ 0 & 5 & 2 & 0 \\ 2 & 0 & 2 & 3 \end{bmatrix}$$

[10] 4a.)
$$det(A) =$$

[3] 4c.) Solve
$$A\mathbf{x} = \mathbf{0}$$
. Answer 4c.):

[7] 5.) Prove by giving a specific example that AB = AC does not imply B = C.

6.) Let
$$D = \begin{bmatrix} 2 & 1 & 60 & 4 & 7 & 6 & 3 \\ 0 & 5 & 89 & 8 & 9 & 5 & 5 \\ 0 & 0 & 10 & 9 & 2 & 4 & 7 \\ 0 & 0 & 0 & 1 & 4 & 7 & 8 \\ 0 & 0 & 0 & 0 & 3 & 3 & 7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
 and $E = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 0 & 1 \end{bmatrix}$

- [2] 6a.) det D =_____.
- [2] 6b.) How many solutions does $D\mathbf{x} = \mathbf{0}$ have? _____.
- [2] 6c.) Is *D* invertible? _____.
- [2] 6d.) $det E = \underline{\hspace{1cm}}$.
- [2] 6e.) How many solutions does $E\mathbf{x} = \mathbf{0}$ have?
- [2] 6f.) Is E invertible?

$$\begin{bmatrix} 5 \end{bmatrix} \ \ 7.) \ \ \text{If} \ A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \ \text{and} \ B = \begin{bmatrix} 23 & 13 & 20 & 44 & 73 & 65 & 34 & 83 & 70 & 46 & 53 & 49 \\ 93 & 54 & 82 & 83 & 94 & 54 & 85 & 93 & 28 & 94 & 72 & 45 \\ 59 & 74 & 10 & 92 & 20 & 49 & 67 & 46 & 26 & 34 & 79 & 35 \end{bmatrix},$$

then the third column of AB =

- [2] 8.) If A is a 2×2 matrix and det A = 10, then $det [3A] = \underline{\hspace{1cm}}$
- [2] 9.) If A is a 4×4 matrix and det A = 10, then $det [3A] = \underline{\hspace{1cm}}$
- [2] 10.) If A is a 4×4 matrix, $det\ A = 10$ and B is a matrix obtained from A by multiplying the 2nd row of A by 3, then $det\ B = \underline{\hspace{1cm}}$.
- [5] 11.) A unit vector in the same direction as the vector (2, 10, 5) is _____.

- 12.) Circle T for true and F for False.
- [3] 12a.) The LU method for solving equations can only be applied to square matrices.

 ${
m T}$ ${
m F}$

- [3] 12b.) A system of equations with more variables than equations cannot have a unique solution. ${\bf T}$
- [3] 12c.) A system of equations with more variables than equations can have no solution. ${
 m T}$ F
- [3] 12d.) If $A\mathbf{x} = \mathbf{b}$ has a unique solution, then $A\mathbf{x} = \mathbf{0}$ has a unique solution.
- [3] 12e.) If $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions, then $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions.