

 $m \rightarrow 3l + 2m$

Contemporary Mathematics Volume 44, 1985

THE UNKNOTTING NUMBER OF A CLASSICAL KNOT

LEMMA 1. If k has unknotting number equal to one, then M_k is obtained by n/2-surgery on some knot in S^3 , n being an odd integer.

PROOF. Let A be the annulus $\{re^{i\theta}: 1 \le r \le 2\} \subset \mathbb{C}$, and let $\tau: A \to A$ be the twisting homeomorphism defined by

 $\tau(re^{i\theta}) = re^{i(\theta + 2\pi r)}$

Let ρ be the rotation about the real axis of the solid torus $V = A \times [-1, 1] \subset \mathbb{C} \times \mathbb{R}$ given by $\rho(re^{i\theta}, t) = (re^{-i\theta}, -t)$. Define a homeomorphism \overline{h} from the boundary

of to itself by

$$\overline{h(re^{i\theta},1)} = (\tau re^{i\theta},1) \qquad 5' \times D^2 = V = V^3$$

$$\overline{h(re^{i\theta},-1)} = (\tau^{-1}re^{i\theta},-1) \qquad \partial V^2 = T^2 \neq T^3$$

 \overline{h} being the identity on the remainder of ∂V . This \overline{h} commutes with $\rho | \partial V$ and so induces a homeomorphism on the quotient space $h : \partial T/\rho \to \partial T/\rho$.

Classification of rational tangles is simpler:

Figure 8.6. A rational tangle can be isotoped to lie on the boundary, then lifted to the covering torus.

J. M. Montesinos, Surgery on links and double branched coverings of S^3 . Ann. of Math. Studies 84, (1975), 227–259.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained by doing surgery on a strongly-invertible link L of n components. Then M is a 2-fold cyclic covering of S³ branched over a link of at most n+1 components. Conversely, every 2-fold cyclic branched covering of S³ can be obtained in this fashion.

J. M. Montesinos, Surgery on links and double branched coverings of S^3 . Ann. of Math. Studies 84, (1975), 227–259.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained by doing surgery on a strongly-invertible link L of n components. Then M is a 2-fold cyclic covering of S^3 branched over a link of at most n+1 components. Conversely, every 2-fold cyclic branched covering of S^3 can be obtained in this fashion. $Q N(K) = T^2 = Q V$

Contemporary Mathematics Volume 44, 1985

THE UNKNOTTING NUMBER OF A CLASSICAL KNOT

LEMMA 1. If k has unknotting number equal to one, then M_k is obtained by n/2-surgery on some knot in S^3 , n being an odd integer.

Option 2: Relate tangle equations on previous slide to double branch cover.

Hint:

M. Culler, C. Gordon, J. Luecke, P. Shalen (1987). Dehn surgery on knots. The Annals of Mathematics (Annals of Mathematics) 125 (2): https://marc-culler.info/static/home/papers/CyclicSurgery.pdf

Cyclic Surgery Theorem. Suppose that M is not a Seifert fibered space. If $\pi_1(M(r))$ and $\pi_1(M(s))$ are cyclic, then $\Delta(r,s) \leq 1$. Hence there are at most three slopes r such that $\pi_1(M(r))$ is cyclic.

M. Culler, C. Gordon, J. Luecke, P. Shalen (1987). Dehn surgery on knots. The Annals of Mathematics (Annals of Mathematics) 125 (2): https://marc-culler.info/static/home/papers/CyclicSurgery.pdf

Cyclic Surgery Theorem. Suppose that M is not a Seifert fibered space. If $\pi_1(M(r))$ and $\pi_1(M(s))$ are cyclic, then $\Delta(r,s) \leq 1$. Hence there are at most three slopes r such that $\pi_1(M(r))$ is cyclic.

