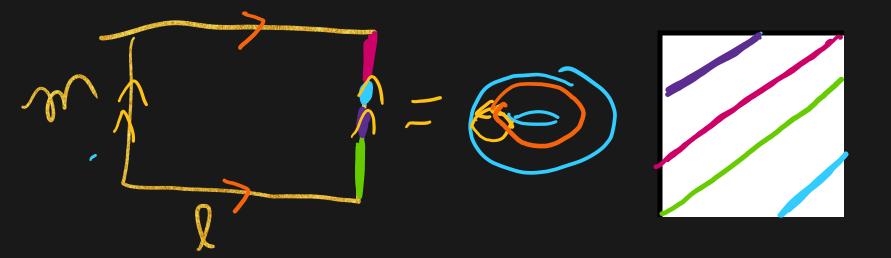
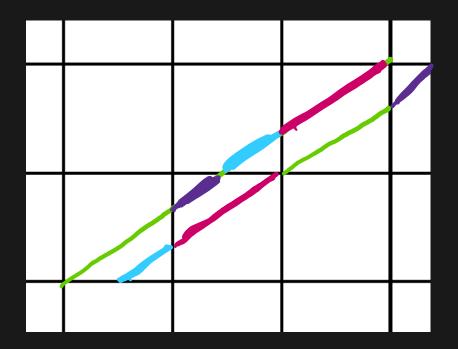
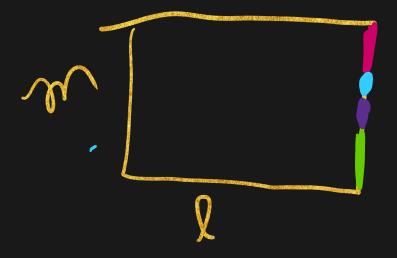
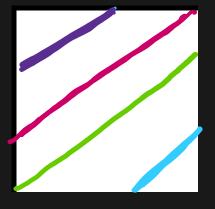


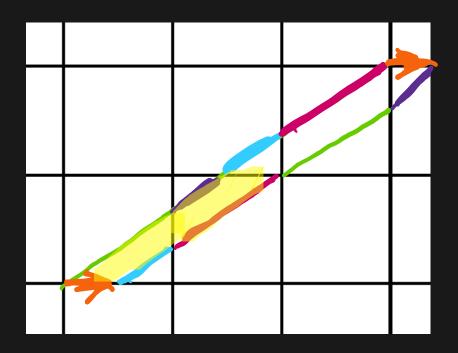
m -> 3 l+2m



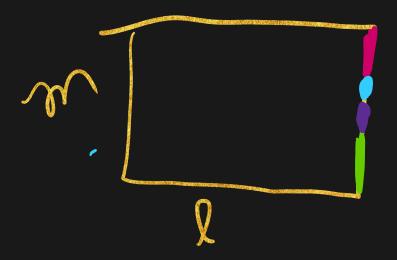


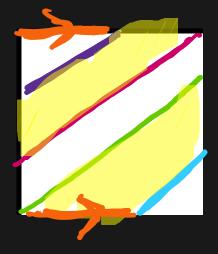


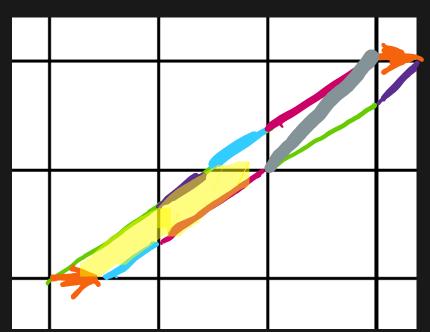




 $m \rightarrow 3l + 2m$



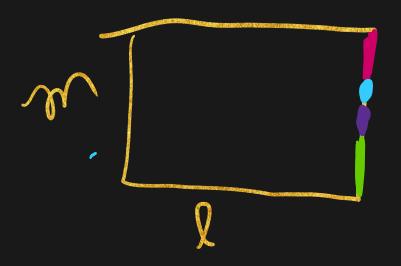


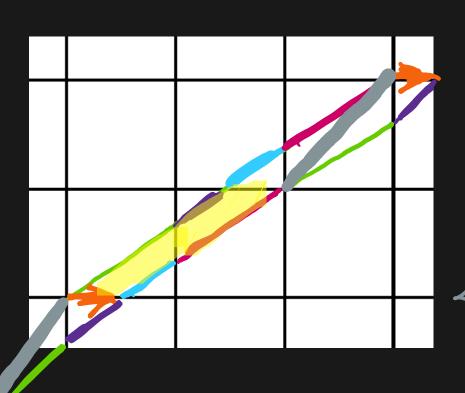


$$m \rightarrow 3l + 2m$$
 $l \rightarrow l + m$

$$l \rightarrow l + m$$

$$\Delta(m, l) = |3| 2| = 3-2$$

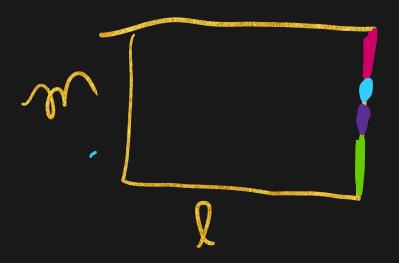


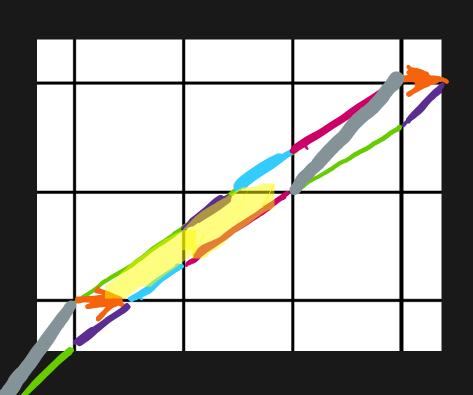


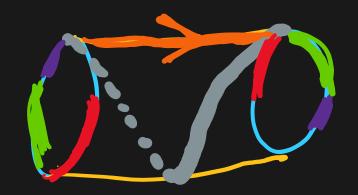
$$m \rightarrow 3l + 2m$$
 $l \rightarrow l + m$

$$l \rightarrow l + m$$

$$\Delta(m,l) = |3| 2| = 3-2$$

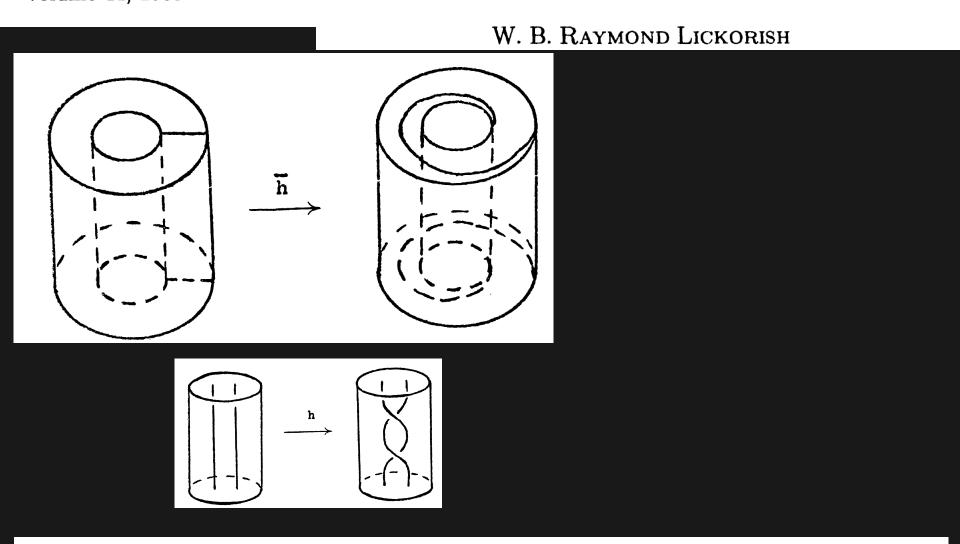






m->3m+2l l->m+2l l->m+l Contemporary Mathematics Volume 44, 1985

THE UNKNOTTING NUMBER OF A CLASSICAL KNOT



LEMMA 1. If k has unknotting number equal to one, then M_k is obtained by n/2-surgery on some knot in S^3 , n being an odd integer.

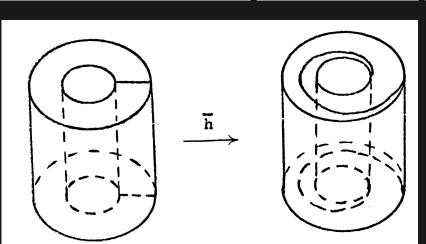
PROOF. Let A be the annulus $\{re^{i\theta}: 1 \le r \le 2\} \subset \mathbb{C}$, and let $\tau: A \to A$ be the twisting homeomorphism defined by

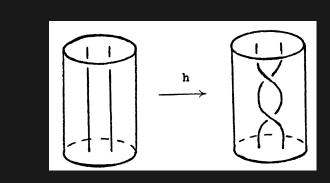
$$\tau(re^{i\theta}) = re^{i(\theta + 2\pi r)},$$

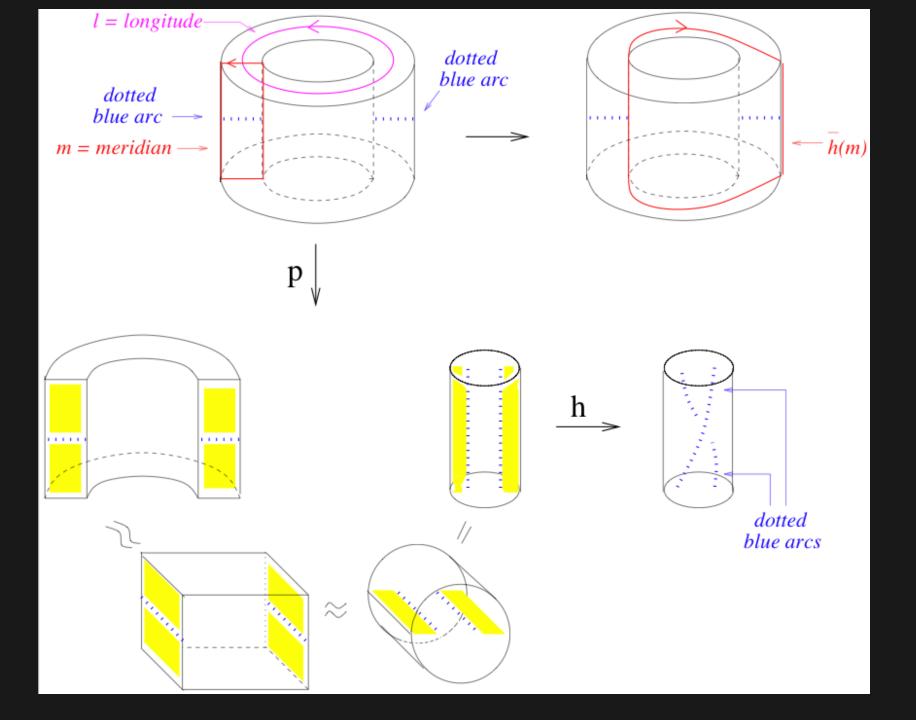
Let ρ be the rotation about the real axis of the solid torus $T = A \times [-1, 1] \subset \mathbb{C} \times \mathbb{R}$ given by $\rho(re^{i\theta}, t) = (re^{-i\theta}, -t)$. Define a homeomorphism \overline{h} from the boundary of T to itself by

$$\overline{h}(re^{i\theta}, 1) = (\tau re^{i\theta}, 1)$$
 $\overline{h}(re^{i\theta}, -1) = (\tau^{-1}re^{i\theta}, -1)$

 \overline{h} being the identity on the remainder of ∂T . This \overline{h} commutes with $\rho | \partial T$ and so induces a homeomorphism on the quotient space $h : \partial T/\rho \to \partial T/\rho$.







Classification of rational tangles is simpler:

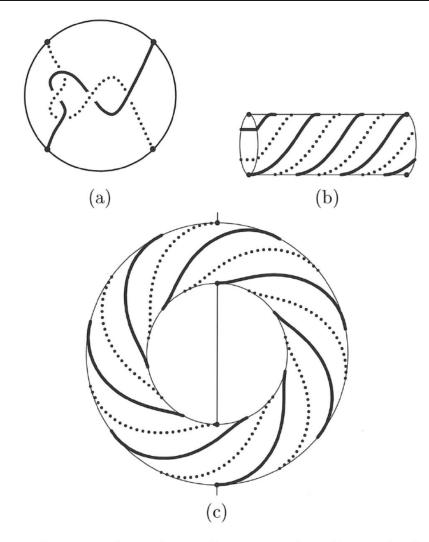
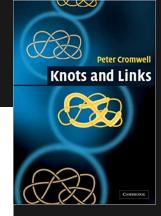
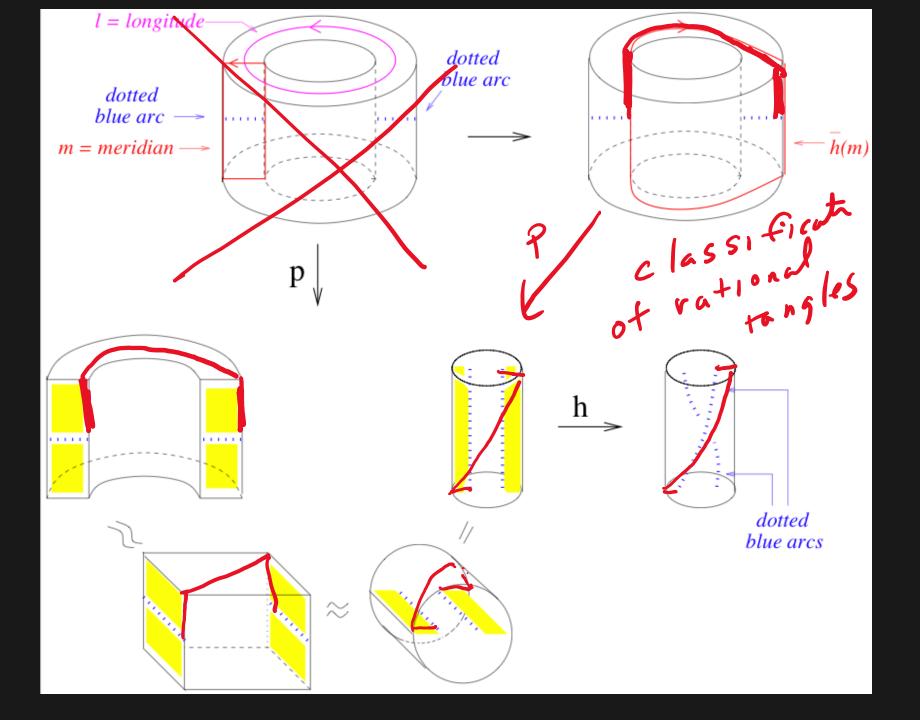


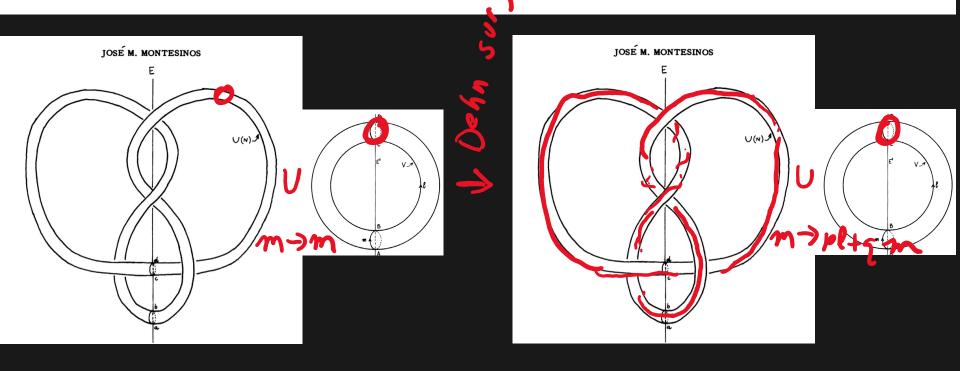
Figure 8.6. A rational tangle can be isotoped to lie on the boundary, then lifted to the covering torus.

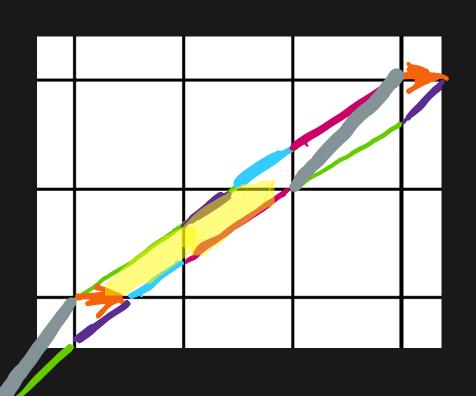


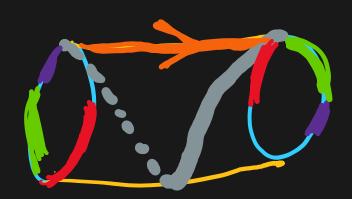


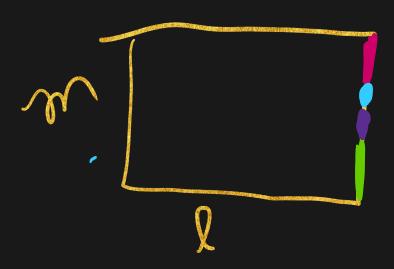
J. M. Montesinos, Surgery on links and double branched coverings of S^3 . Ann. of Math. Studies 84, (1975), 227–259.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained by doing surgery on a strongly-invertible link L of n components. Then M is a 2-fold cyclic covering of S³ branched over a link of at most n+1 components. Conversely, every 2-fold cyclic branched covering of S³ can be obtained in this fashion.



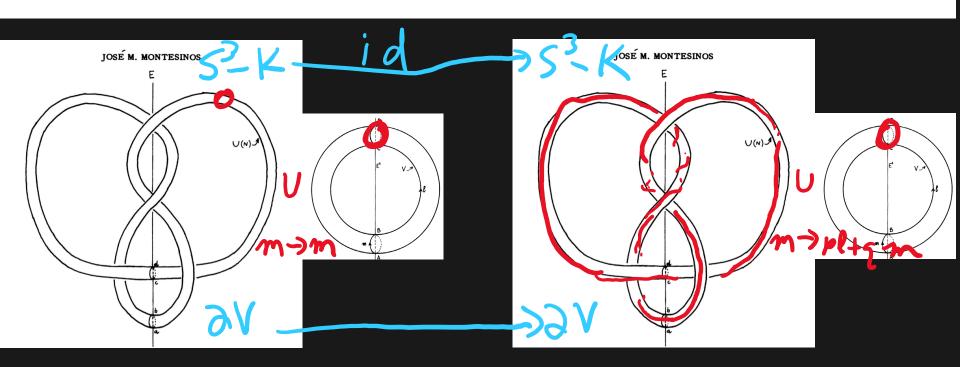






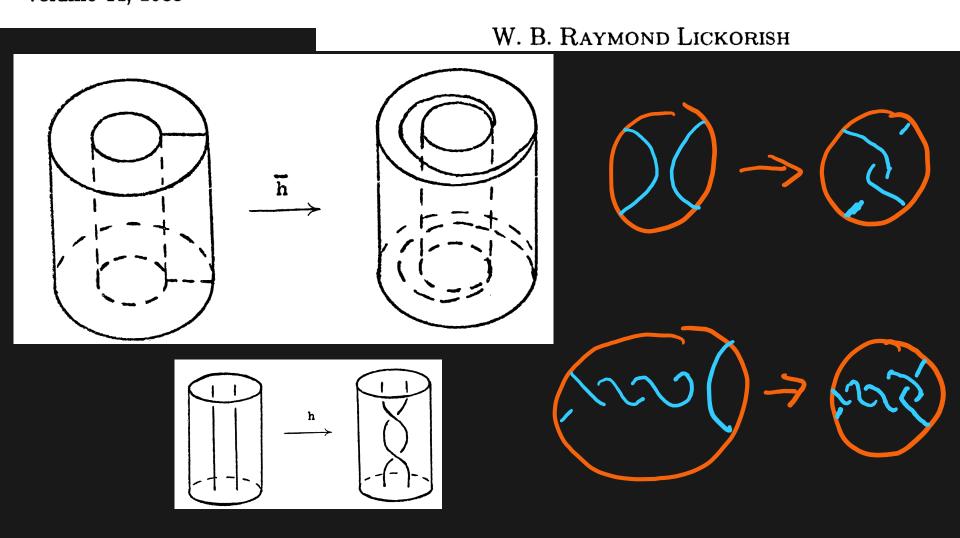
m->3m+2l l->m+2l l->m+l J. M. Montesinos, Surgery on links and double branched coverings of S^3 . Ann. of Math. Studies 84, (1975), 227–259.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained by doing surgery on a strongly-invertible link L of n components. Then M is a 2-fold cyclic covering of S³ branched over a link of at most n+1 components. Conversely, every 2-fold cyclic branched covering of S³ can be obtained in this fashion.

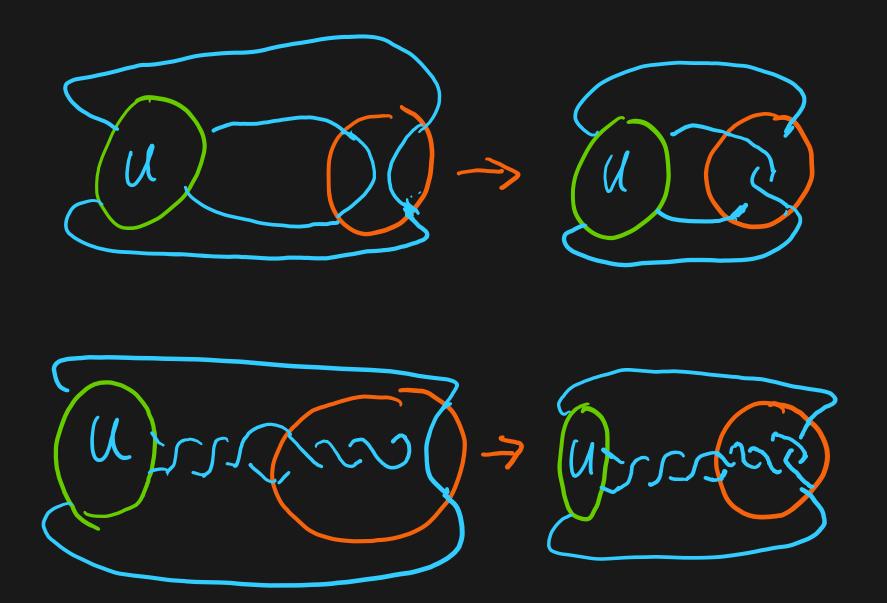


Contemporary Mathematics Volume 44, 1985

THE UNKNOTTING NUMBER OF A CLASSICAL KNOT



LEMMA 1. If k has unknotting number equal to one, then M_k is obtained by n/2-surgery on some knot in S^3 , n being an odd integer.



HW 2: Choose 1 problem

Option 2: Relate tangle equations on previous slide to double branch cover.

Hint:

