To define a homology, one only needs

1.) Objects = basis for R-module, R|objects]
2.) Grading
3.) Boundary map

Note (1) is an unneeded restriction. More generally, one only needs a
chain complex, a sequence of abelian groups (or modules) connected
by homomorphisms O such that ° = 0:

0 0 0 0
cee % Cn+1 % Cn % Cn_l % cee

To create long exact sequences (of pair, of triple, meyer-vietoris), one
only needs appropriate short exact sequences.

Thus homology is algebra, not topology:.
You don’t need any topology to do homology.

A homology theory requires that homology respect certain aspects
of the topology of a space.

Categories:
1.) Topological spaces w/morphisms = continuous maps f : X — Y.

2.) Chain complexes with morphism = chain maps:

i1 )
) _>Cn+1 - >Cn - > U1 — + 0
fn—H In Jn—1
On+1 )
- — Dy " D, Y )
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3.) @ H,(C) with morphism = homomorphism preserving grading.
Note we have covariant functors taking (1) to (2) to (3).

4.) @ H"(C') with morphism = homomorphism preserving grading.
Note we have a contravariant functor taking (1) to (4).

Example: The continuous map f : X — X x X, f(z) = (z,7)
induces a homomorphism f*: H"(X x X) — H"(X) by
if o : Cp(X x X)— R, thengpo f:C,(X)— R.

Thus in cohomology, we can create a product via the cross product
(external cup product):

P X XY = X,
pi: HYX) = HNX X Y), pi(¢) = popi : Ch(X xY) = R
That is pj(k—cocycle in X) = k—cocycle in X x Y.
HYX) x H(Y) — H*X xY).
a x b— pi(a) ~ p5(b)
(pila) ~ p5(b))(e) = pi(a)(Tjw,....00) - P5O) (O [up...vpsa])-

5.) [X] such that X; ~ X5 if there is a homotopy equivalence
h : X1 — X5 with morphisms [f] where f is a continuous map and
f ~ g it f is homotopic to g.

Note H,, is a covariant functor taking (5) to (3), while H" is a con-
travariant functor taking (5) to (4)



Defn: Let (A,+) and (B, +) be abelian groups. Then the tensor
product is the abelian group (A ® B, +) such that

1. There is a bilinear map i: A x B -+ A® B and

2. Given any bilinear map f: Ax B — (', there is a unique linear
map Ly: A® B — C such that Lyo¢ = f.

Defn: A B=<a®b|(a1+a) ®b=0a1 @b+ as® b,
a@(b1+62):a®b1+a®b2>

Defn: Let R be a commutative ring and (A, +) and (B, +) be R-
modules. Then the tensor product is the R-module (A ®z B, +)
such that

1. There is a bilinear map 7: A x B -+ A ®z B and

2. Given any bilinear map f: Ax B — (', there is a unique linear
map Ly: A®pr B — (' such that Lyov = f.

Defn: A®Rpr B=<a®grb| (a1 +as) ®pb=0a1 ®@r b+ as Qg b,
a®pr(b1+b) =a®R®rb1+a@pby,ra @pb=aQ@grb >

Ex: If R has an identity 1, R ®r A = R.
¢(ry ® a) = ria. with inverse ¢ : R - R®r A, ¥(a) =1 ® a.

o(Y(a)) = p(1®a) = a.
YV(p(r®a)=1(ra) =10 ra=rQx a.



Useful facts:
1) A® B= B® A.

2) (D A)® B= @A ®B)

3) (A B) @ C = A® (B® ()
4.) Z @ A = A via isomorphism ¢(n ® a) = na.
with inverse v : A - Z® A, ¥(a) =1® a.
¢(¢(a)) = d(1®a) = a.
Y(pn®a)=1vMna) =1®na=ng a.
5.) Zn @ A= A/nA via the isomorphism ¢(n ® a) = na.
Ex: 7, ® 2= Z, while Z,  Q = 0

6.) Homomorphisms f; : A; — B; induce a homomorphism
fi®fri Ai® Ay — B1® By, (f1® f2)(a1 ®az) = fi(a1) @ fa(az).

7.) A bilinear map ¢ : A x B — C induces a homomorphism
A® B — C, sending a ® b to ¢(a, b).

AXBL)C

®\ =[1%)
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8.) AL B4 0 =0 exact implies
Ao G 1Y% oG 2% 0@ G — 0 exact

H*(X;R) x H*(Y;R) —— H*(X xY;R)

®\ ¢
H*(X;R)® H*(X;R)

ula®b) =axb
Let (a ®b)(c®d) = (—1)Pllac ® bd where |z| = dimension of x.
ulla®@b)(c@d)) = (=1)"1plac@bd) = (=1)"I(a < ¢) x (b~ d)
= (=1)"Fpi(a — c) = p3(b — d)
(=1)"pi(a) < pi(c) = p3(b) = p(d)
= (=1)M(=1)"lpi(a) — p3(b) < pilc) = pi(d)
= pila) ~ p3(b) ~ pilc) - p3(d)
Theorem 1 (Kiinneth formula). The cross product
H*(X;R)®r H*(Y;R) —» H*(X x Y:R) is an isomorphism of

rings if X and Y are CW complexzes and H*(Y; R) is a finitely
generated free R-module for all k.

The hypothesis X and Y are CW complexes is unnecessary. The
result also hold in a relative setting.
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Theorem 2 (Relative Kiinneth formula). For CW pairs (X, A)
and (Y, B) the cross product homomorphism

H*(X,A;R)®pr H*(Y,B;R) - H* (X xY,AxY UX x B;R)
is an isomorphism of rings if H*(Y, B; R) is a finitely generated
free R-module for each k.

The General Kiinneth Formula

Theorem 3 (Kiinneth formula for PID). If X and Y are CW
complexes and R 1s a principal ideal domain, then there are split
short exact sequences

— H,(X xXY;R) = @, Torp(H;(X;R), H,—i—1(Y; R)) — 0
natural m X and Y .

Corollary 1. If F' 1s a field and X and Y are C'W complezes,
then the cross product map

h: @ Hi(X; F) @p Hy_i(Y; F) = Hy(X x Y3 F)

1s an 1somorphism for all n.

Universal Coefficients for Homology

Theorem 4 (Universal Coefficients for Homology). For each pair
of spaces (X, A) there are split exact sequences

0— H, (X, A) @ G— H,(X, A; G)—Tor(H,_1(X, A), G)—0

for all n, and these sequences are natural with respect to maps
(X,4) = (Y, B).



The following result enables us to compute the Tor groups.
Proposition 1.

1. Tor(A, B) = Tor(B, A).

2. Tor(6p, A, B) = 6, Tor(A;, B).

3. Tor(A, B) =0 if A or B is free, or more generally torsion-
free.

4. Tor(A, B) = Tor(T(A), B) where T(A) is the torsion sub-
group of A.

5. Tor(Z/n, A) = Ker(A &5 A).

6. For each short exact sequence 0 - B — C' — D — 0 there
1s a natural associated exact sequence

0—Tor(A, B)—Tor(A,C)—=Tor(A,D) - AR B—A®RC—-A®R

Corollary 2.
1. H,(X;Q) = H,(X;Z) ® Q, so when H,(X;Z) is finitely
generated, the dimension of H,(X;Q) as a Q-vector space
equals the rank of of H,(X;Z).

2. If Hy(X;Z) and H,_1(X;Z) are finitely generated, then for
p prime, H,(X;Z/p) consists of
(a) a Z/p summand for each Z summand of H,(X;7Z),

(b) aZ/p summand for each Z/p* summand in H,(X;7Z),
k> 1

(c) aZ/p summand for each Z/p* summand in H,_(X;Z),
k>1.



Corollary 3.

1. ﬁ.(X;Z) = 0 if and only ifﬁ.(X;@> =0 and ﬁ.(XQZ/m =
0 for all primes p.

2. Amap f: X — Y induces isomorphisms on homology with
Z. coefficients if and only if it induces isomorphisms on
homology with Q and Z/p coefficients for all primes p.

Theorem 5 (Alexander Duality). If K is a compact, locally con-
tractible, non-empty, proper subspace of S", then

Hi(S"\ K) = H" " YK) for all i.



