To define a homology, one only needs

- 1.) Objects = basis for R-module, R[objects]
- 2.) Grading
- 3.) Boundary map

Note (1) is an unneeded restriction. More generally, one only needs a chain complex, a sequence of abelian groups (or modules) connected by homomorphisms ∂ such that $\partial^2 = 0$:

$$\dots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \dots$$

To create long exact sequences (of pair, of triple, meyer-vietoris), one only needs appropriate short exact sequences.

Thus homology is algebra, not topology.

You don't need any topology to do homology.

A homology theory requires that homology respect certain aspects of the topology of a space.

Categories:

- 1.) Topological spaces w/morphisms = continuous maps $f : X \to Y$.
- 2.) Chain complexes with morphism = chain maps:

$$\cdots \to C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \to \cdots$$

$$f_{n+1} \downarrow \qquad f_n \downarrow \qquad f_{n-1} \downarrow \qquad f_{n-1} \downarrow \qquad \dots$$

$$\cdots \to D_{n+1} \xrightarrow{\delta_{n+1}} D_n \xrightarrow{\delta_n} D_{n-1} \to \cdots$$

3.) $\bigoplus H_n(C)$ with morphism = homomorphism preserving grading. Note we have covariant functors taking (1) to (2) to (3).

4.) $\bigoplus H^n(C)$ with morphism = homomorphism preserving grading.

Note we have a contravariant functor taking (1) to (4).

Example: The continuous map $f : X \to X \times X$, f(x) = (x, x)induces a homomorphism $f^* : H^n(X \times X) \to H^n(X)$ by if $\phi : C_n(X \times X) \to R$, then $\phi \circ f : C_n(X) \to R$.

Thus in cohomology, we can create a product via the cross product $p_1: X \times Y \to X$. (external cup product):

$$p_1^*: H^k(X) \to H^k(X \times Y), \, p_1^*(\phi) = \phi \circ p_1: C_k(X \times Y) \to R$$

That is $p_1^*(k$ -cocycle in X) = k-cocycle in $X \times Y$.

$$\begin{split} H^k(X) \times H^\ell(Y) &\to H^{k+\ell}(X \times Y). \\ a \times b &\to p_1^*(a) \smile p_2^*(b) \\ (p_1^*(a) \smile p_2^*(b))(\sigma) &= p_1^*(a)(\sigma|_{[v_0,\dots,v_k]}) \cdot p_2^*(b)(\sigma|_{[v_k,\dots,v_{k+\ell}]}). \end{split}$$

5.) [X] such that $X_1 \sim X_2$ if there is a homotopy equivalence $h: X_1 \to X_2$ with morphisms [f] where f is a continuous map and $f \sim g$ if f is homotopic to g.

Note H_n is a covariant functor taking (5) to (3), while H^n is a contravariant functor taking (5) to (4) Defn: Let (A, +) and (B, +) be abelian groups. Then the tensor product is the abelian group $(A \otimes B, +)$ such that

- 1. There is a bilinear map $i: A \times B \to A \otimes B$ and
- 2. Given any bilinear map $f: A \times B \to C$, there is a unique linear map $L_f: A \otimes B \to C$ such that $L_f \circ i = f$.

Defn: $A \otimes B = \langle a \otimes b \mid (a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b,$ $a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2 >$

Defn: Let R be a commutative ring and (A, +) and (B, +) be R-modules. Then the tensor product is the R-module $(A \otimes_R B, +)$ such that

- 1. There is a bilinear map $i: A \times B \to A \otimes_R B$ and
- 2. Given any bilinear map $f: A \times B \to C$, there is a unique linear map $L_f: A \otimes_R B \to C$ such that $L_f \circ i = f$.
- Defn: $A \otimes_R B = \langle a \otimes_R b \mid (a_1 + a_2) \otimes_R b = a_1 \otimes_R b + a_2 \otimes_R b,$ $a \otimes_R (b_1 + b_2) = a \otimes_R b_1 + a \otimes_R b_2, ra \otimes_R b = a \otimes_R rb >$

Ex: If R has an identity 1, $R \otimes_R A \cong R$.

$$\phi(r_1 \otimes a) = r_1 a. \text{ with inverse } \psi : R \to R \otimes_R A, \ \psi(a) = 1 \otimes a.$$

$$\phi(\psi(a)) = \phi(1 \otimes a) = a.$$

$$\psi(\phi(r \otimes a) = \psi(ra) = 1 \otimes ra = r \otimes a.$$

Useful facts:

1.) $A \otimes B \cong B \otimes A$. 2.) $(\bigoplus_i A_i) \otimes B \cong \bigoplus_i (A_i \otimes B).$ 3.) $(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$ 4.) $\mathbb{Z} \otimes A \cong A$ via isomorphism $\phi(n \otimes a) = na$. with inverse $\psi: A \to \mathbb{Z} \otimes A, \ \psi(a) = 1 \otimes a.$ $\phi(\psi(a)) = \phi(1 \otimes a) = a.$ $\psi(\phi(n \otimes a) = \psi(na) = 1 \otimes na = n \otimes a.$ 5.) $\mathbb{Z}_n \otimes A \cong A/nA$ via the isomorphism $\phi(n \otimes a) = na$. Ex: $\mathbb{Z}_n \otimes \mathbb{Z} \cong \mathbb{Z}_n$ while $\mathbb{Z}_n \otimes \mathbb{Q} \cong 0$

6.) Homomorphisms $f_i : A_i \to B_i$ induce a homomorphism $f_1 \otimes f_2 : A_1 \otimes A_2 \to B_1 \otimes B_2$, $(f_1 \otimes f_2)(a_1 \otimes a_2) = f_1(a_1) \otimes f_2(a_2)$.

7.) A bilinear map $\phi : A \times B \to C$ induces a homomorphism $A \otimes B \to C$, sending $a \otimes b$ to $\phi(a, b)$.

8.) $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ exact implies $A \otimes G \xrightarrow{f \otimes i_G} B \otimes G \xrightarrow{g \otimes i_G} C \otimes G \to 0$ exact

$$\begin{array}{ccc} H^*(X;R) \times H^*(Y;R) & \xrightarrow{\times} & H^*(X \times Y;R) \\ & \otimes & & \\ & & & \\ H^*(X;R) \otimes H^*(X;R) & & \\ \end{array}$$

 $\mu(a\otimes b)=a\times b$

Let $(a \otimes b)(c \otimes d) = (-1)^{|b||c|} ac \otimes bd$ where |x| = dimension of x. $\mu((a \otimes b)(c \otimes d)) = (-1)^{|b||c|} \mu(ac \otimes bd) = (-1)^{|b||c|} (a \smile c) \times (b \smile d)$ $= (-1)^{|b||c|} p_1^*(a \smile c) \smile p_2^*(b \smile d)$ $= (-1)^{|b||c|} p_1^*(a) \smile p_1^*(c) \smile p_2^*(b) \smile p_2^*(d)$ $= (-1)^{|b||c|} (-1)^{|b||c|} p_1^*(a) \smile p_2^*(b) \smile p_1^*(c) \smile p_2^*(d)$ $= p_1^*(a) \smile p_2^*(b) \smile p_1^*(c) \smile p_2^*(d)$

Theorem 1 (Künneth formula). The cross product $H^{\bullet}(X; R) \otimes_{R} H^{\bullet}(Y; R) \to H^{\bullet}(X \times Y; R)$ is an isomorphism of rings if X and Y are CW complexes and $H^{k}(Y; R)$ is a finitely generated free R-module for all k.

The hypothesis X and Y are CW complexes is unnecessary. The result also hold in a relative setting.

Theorem 2 (Relative Künneth formula). For CW pairs (X, A)and (Y, B) the cross product homomorphism $H^{\bullet}(X, A; R) \otimes_{R} H^{\bullet}(Y, B; R) \rightarrow H^{\bullet}(X \times Y, A \times Y \cup X \times B; R)$ is an isomorphism of rings if $H^{k}(Y, B; R)$ is a finitely generated free R-module for each k.

The General Künneth Formula

Theorem 3 (Künneth formula for PID). If X and Y are CW complexes and R is a principal ideal domain, then there are split short exact sequences

 $0 \to \bigoplus_i H_i(X; R) \otimes_R H_{n-i}(Y; R)$

 $\rightarrow H_n(X \times Y; R) \rightarrow \bigoplus_i \operatorname{Tor}_R(H_i(X; R), H_{n-i-1}(Y; R)) \rightarrow 0$ natural in X and Y.

Corollary 1. If F is a field and X and Y are CW complexes, then the cross product map

$$h: \bigoplus H_i(X;F) \otimes_F H_{n-i}(Y;F) \to H_n(X \times Y;F)$$

is an isomorphism for all n.

Universal Coefficients for Homology

Theorem 4 (Universal Coefficients for Homology). For each pair of spaces (X, A) there are split exact sequences

$$0 \longrightarrow H_n(X, A) \otimes G \longrightarrow H_n(X, A; G) \longrightarrow \operatorname{Tor}(H_{n-1}(X, A), G) \longrightarrow 0$$

for all n, and these sequences are natural with respect to maps $(X, A) \rightarrow (Y, B)$.

The following result enables us to compute the Tor groups.

Proposition 1.

- 1. $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(B, A)$.
- 2. Tor $(\bigoplus_i A_i, B) \cong \bigoplus_i \operatorname{Tor}(A_i, B)$.
- 3. $\operatorname{Tor}(A, B) = 0$ if A or B is free, or more generally torsion-free.
- 4. $\operatorname{Tor}(A, B) \cong \operatorname{Tor}(T(A), B)$ where T(A) is the torsion subgroup of A.
- 5. $\operatorname{Tor}(\mathbb{Z}/n, A) \cong \operatorname{Ker}(A \xrightarrow{n} A).$
- 6. For each short exact sequence $0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ there is a natural associated exact sequence

 $0 \to \operatorname{Tor}(A, B) \to \operatorname{Tor}(A, C) \to \operatorname{Tor}(A, D) \to A \otimes B \to A \otimes C \to A \otimes C$

Corollary 2.

- 1. $H_n(X; \mathbb{Q}) \cong H_n(X; \mathbb{Z}) \otimes \mathbb{Q}$, so when $H_n(X; \mathbb{Z})$ is finitely generated, the dimension of $H_n(X; \mathbb{Q})$ as a \mathbb{Q} -vector space equals the rank of of $H_n(X; \mathbb{Z})$.
- 2. If $H_n(X;\mathbb{Z})$ and $H_{n-1}(X;\mathbb{Z})$ are finitely generated, then for p prime, $H_n(X;\mathbb{Z}/p)$ consists of
 - (a) a \mathbb{Z}/p summand for each \mathbb{Z} summand of $H_n(X;\mathbb{Z})$,
 - (b) $a \mathbb{Z}/p$ summand for each \mathbb{Z}/p^k summand in $H_n(X;\mathbb{Z})$, $k \ge 1$,
 - (c) $a \mathbb{Z}/p$ summand for each \mathbb{Z}/p^k summand in $H_{n-1}(X;\mathbb{Z})$, $k \ge 1$.

Corollary 3.

- 1. $\widetilde{H}_{\bullet}(X;\mathbb{Z}) = 0$ if and only if $\widetilde{H}_{\bullet}(X;\mathbb{Q}) = 0$ and $\widetilde{H}_{\bullet}(X;\mathbb{Z}/p) = 0$ for all primes p.
- 2. A map $f: X \to Y$ induces isomorphisms on homology with \mathbb{Z} coefficients if and only if it induces isomorphisms on homology with \mathbb{Q} and \mathbb{Z}/p coefficients for all primes p.

Theorem 5 (Alexander Duality). If K is a compact, locally contractible, non-empty, proper subspace of S^n , then

$$\widetilde{H}_i(S^n \setminus K) \cong \widetilde{H}^{n-i-1}(K)$$
 for all *i*.