
To define a homology, one only needs

1.) Objects = basis for R-module, R[objects]
2.) Grading
3.) Boundary map

Note (1) is an unneeded restriction. More generally, one only needs a
chain complex, a sequence of abelian groups (or modules) connected
by homomorphisms ∂ such that ∂2 = 0:

...
∂−→ Cn+1

∂−→ Cn
∂−→ Cn−1

∂−→ ...

To create long exact sequences (of pair, of triple, meyer-vietoris), one
only needs appropriate short exact sequences.

Thus homology is algebra, not topology.

You don’t need any topology to do homology.

A homology theory requires that homology respect certain aspects
of the topology of a space.

Categories:

1.) Topological spaces w/morphisms = continuous maps f : X → Y .

2.) Chain complexes with morphism = chain maps:

· · · → Cn+1
∂n+1−−−−−−−−−−→ Cn

∂n−−−−−−−−−→ Cn−1 → · · ·
fn+1

?

fn
?

fn−1
?

· · · →Dn+1
δn+1−−−−−−−→ Dn

δn−−−−−−→ Dn−1→ · · ·
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3.)
⊕

Hn(C) with morphism = homomorphism preserving grading.

Note we have covariant functors taking (1) to (2) to (3).

4.)
⊕

Hn(C) with morphism = homomorphism preserving grading.

Note we have a contravariant functor taking (1) to (4).

Example: The continuous map f : X → X × X , f (x) = (x, x)
induces a homomorphism f ∗ : Hn(X ×X)→ Hn(X) by
if φ : Cn(X ×X)→ R, then φ ◦ f : Cn(X)→ R.

Thus in cohomology, we can create a product via the cross product
(external cup product):

p1 : X × Y → X .
p∗1 : Hk(X)→ Hk(X × Y ), p∗1(φ) = φ ◦ p1 : Ck(X × Y )→ R

That is p∗1(k−cocycle in X) = k−cocycle in X × Y .

Hk(X)×H`(Y )→ Hk+`(X × Y ).

a× b→ p∗1(a) ` p∗2(b)

(p∗1(a) ` p∗2(b))(σ) = p∗1(a)(σ|[v0,...,vk]) · p
∗
2(b)(σ|[vk,...,vk+`]).

5.) [X ] such that X1 ∼ X2 if there is a homotopy equivalence
h : X1 → X2 with morphisms [f ] where f is a continuous map and
f ∼ g if f is homotopic to g.

Note Hn is a covariant functor taking (5) to (3), while Hn is a con-
travariant functor taking (5) to (4)
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Defn: Let (A,+) and (B,+) be abelian groups. Then the tensor
product is the abelian group (A⊗B,+) such that

1. There is a bilinear map i : A×B → A⊗B and

2. Given any bilinear map f : A×B → C, there is a unique linear
map Lf : A⊗B → C such that Lf ◦ i = f .

Defn: A⊗B =< a⊗ b | (a1 + a2)⊗ b = a1 ⊗ b + a2 ⊗ b,
a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2 >

Defn: Let R be a commutative ring and (A,+) and (B,+) be R-
modules. Then the tensor product is the R-module (A ⊗R B,+)
such that

1. There is a bilinear map i : A×B → A⊗R B and

2. Given any bilinear map f : A×B → C, there is a unique linear
map Lf : A⊗R B → C such that Lf ◦ i = f .

Defn: A⊗R B =< a⊗R b | (a1 + a2)⊗R b = a1 ⊗R b + a2 ⊗R b,
a⊗R (b1 + b2) = a⊗R b1 + a⊗R b2, ra⊗R b = a⊗R rb >

Ex: If R has an identity 1, R⊗R A ∼= R.

φ(r1 ⊗ a) = r1a. with inverse ψ : R→ R⊗R A, ψ(a) = 1⊗ a.

φ(ψ(a)) = φ(1⊗ a) = a.

ψ(φ(r ⊗ a) = ψ(ra) = 1⊗ ra = r ⊗ a.
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Useful facts:

1.) A⊗B ∼= B ⊗ A.

2.) (
⊕
i

Ai)⊗B ∼=
⊕
i

(Ai ⊗B).

3.) (A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

4.) Z⊗ A ∼= A via isomorphism φ(n⊗ a) = na.

with inverse ψ : A→ Z⊗ A, ψ(a) = 1⊗ a.

φ(ψ(a)) = φ(1⊗ a) = a.

ψ(φ(n⊗ a) = ψ(na) = 1⊗ na = n⊗ a.

5.) Zn ⊗ A ∼= A/nA via the isomorphism φ(n⊗ a) = na.

Ex: Zn ⊗ Z ∼= Zn while Zn ⊗Q ∼= 0

6.) Homomorphisms fi : Ai → Bi induce a homomorphism
f1⊗ f2 : A1⊗A2 → B1⊗B2, (f1⊗ f2)(a1⊗ a2) = f1(a1)⊗ f2(a2).

7.) A bilinear map φ : A × B → C induces a homomorphism
A⊗B → C, sending a⊗ b to φ(a, b).

A×B φ−−−→ C

⊗
? �

�
�
�
�
�3

∃!φ

A⊗B
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8.) A
f−→ B

g−→ C → 0 exact implies

A⊗G f⊗iG−−−−→ B ⊗G g⊗iG−−−−→ C ⊗G→ 0 exact

H∗(X ;R)×H∗(Y ;R)
×−−−→ H∗(X × Y ;R)

⊗
? �

�
�
�
�
�3

∃!φ

H∗(X ;R)⊗H∗(X ;R)

µ(a⊗ b) = a× b

Let (a⊗ b)(c⊗ d) = (−1)|b||c|ac⊗ bd where |x| = dimension of x.

µ((a⊗ b)(c⊗d)) = (−1)|b||c|µ(ac⊗ bd) = (−1)|b||c|(a ` c)× (b ` d)

= (−1)|b||c|p∗1(a ` c) ` p∗2(b ` d)

= (−1)|b||c|p∗1(a) ` p∗1(c) ` p∗2(b) ` p∗2(d)

= (−1)|b||c|(−1)|b||c|p∗1(a) ` p∗2(b) ` p∗1(c) ` p∗2(d)

= p∗1(a) ` p∗2(b) ` p∗1(c) ` p∗2(d)

Theorem 1 (Künneth formula). The cross product
H•(X ;R) ⊗R H•(Y ;R) → H•(X × Y ;R) is an isomorphism of
rings if X and Y are CW complexes and Hk(Y ;R) is a finitely
generated free R-module for all k.

The hypothesis X and Y are CW complexes is unnecessary. The
result also hold in a relative setting.
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Theorem 2 (Relative Künneth formula). For CW pairs (X,A)
and (Y,B) the cross product homomorphism
H•(X,A;R) ⊗R H•(Y,B;R) → H•(X × Y,A × Y ∪ X × B;R)
is an isomorphism of rings if Hk(Y,B;R) is a finitely generated
free R-module for each k.

The General Künneth Formula

Theorem 3 (Künneth formula for PID). If X and Y are CW
complexes and R is a principal ideal domain, then there are split
short exact sequences

0→
⊕

iHi(X ;R)⊗R Hn−i(Y ;R)

→ Hn(X × Y ;R)→
⊕

i TorR(Hi(X ;R), Hn−i−1(Y ;R))→ 0
natural in X and Y .

Corollary 1. If F is a field and X and Y are CW complexes,
then the cross product map

h :
⊕
i

Hi(X ;F )⊗F Hn−i(Y ;F )→ Hn(X × Y ;F )

is an isomorphism for all n.

Universal Coefficients for Homology

Theorem 4 (Universal Coefficients for Homology). For each pair
of spaces (X,A) there are split exact sequences

0 //Hn(X,A)⊗G //Hn(X,A;G) //Tor(Hn−1(X,A), G) // 0

for all n, and these sequences are natural with respect to maps
(X,A)→ (Y,B).
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The following result enables us to compute the Tor groups.

Proposition 1.

1. Tor(A,B) ∼= Tor(B,A).

2. Tor(
⊕

iAi, B) ∼=
⊕

i Tor(Ai, B).

3. Tor(A,B) = 0 if A or B is free, or more generally torsion-
free.

4. Tor(A,B) ∼= Tor(T (A), B) where T (A) is the torsion sub-
group of A.

5. Tor(Z/n,A) ∼= Ker(A
n·−→ A).

6. For each short exact sequence 0→ B → C → D → 0 there
is a natural associated exact sequence

0 //Tor(A,B) //Tor(A,C) //Tor(A,D) //A⊗B //A⊗ C //A⊗D // 0.

Corollary 2.

1. Hn(X ;Q) ∼= Hn(X ;Z) ⊗ Q, so when Hn(X ;Z) is finitely
generated, the dimension of Hn(X ;Q) as a Q-vector space
equals the rank of of Hn(X ;Z).

2. If Hn(X ;Z) and Hn−1(X ;Z) are finitely generated, then for
p prime, Hn(X ;Z/p) consists of

(a) a Z/p summand for each Z summand of Hn(X ;Z),

(b) a Z/p summand for each Z/pk summand in Hn(X ;Z),
k ≥ 1,

(c) a Z/p summand for each Z/pk summand in Hn−1(X ;Z),
k ≥ 1.
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Corollary 3.

1. H̃•(X ;Z) = 0 if and only if H̃•(X ;Q) = 0 and H̃•(X ;Z/p) =
0 for all primes p.

2. A map f : X → Y induces isomorphisms on homology with
Z coefficients if and only if it induces isomorphisms on
homology with Q and Z/p coefficients for all primes p.

Theorem 5 (Alexander Duality). If K is a compact, locally con-
tractible, non-empty, proper subspace of Sn, then

H̃i(S
n \K) ∼= H̃n−i−1(K) for all i.
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