Defn: Let $\mathcal{C} = \{C_p, \partial_C\}, \ \mathcal{D} = \{D_p, \partial_D\}, \ \mathcal{E} = \{E_p, \partial_E\}$ be chain complexes. Let $f : \mathcal{C} \to \mathcal{D}$ and $h : \mathcal{D} \to \mathcal{E}$ be chain maps. Then the sequence

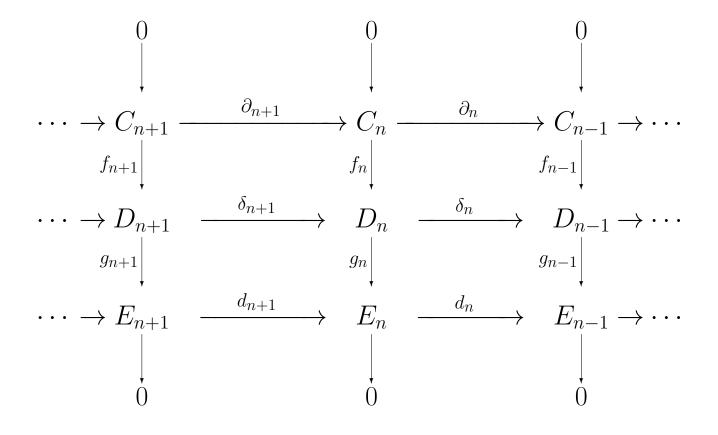
 $0 \to \mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{h} \mathcal{E} \to 0$

is a short exact sequence of chain complexes if in each dimension n, the sequence

 $0 \to C_n \xrightarrow{f} D_n \xrightarrow{h} E_n \to 0$

is an exact sequence of groups.

In other words, the following diagram commutes:



LEMMA. The Zig-Zag Lemma: Given chain complexes, $C = \{C_n, \partial_C\}, D = \{D_n, \partial_D\}, \mathcal{E} = \{E_n, \partial_E\}$ and chain maps f and g such that the following sequence is exact:

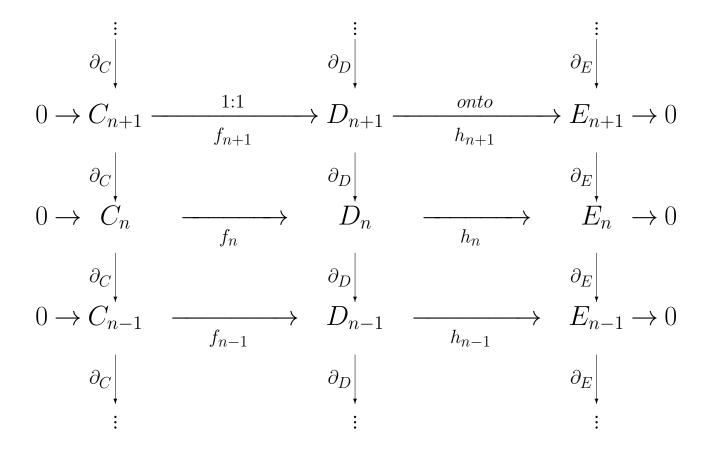
$$0 \to \mathcal{C} \xrightarrow{f} \mathcal{D} \xrightarrow{h} \mathcal{E} \to 0$$

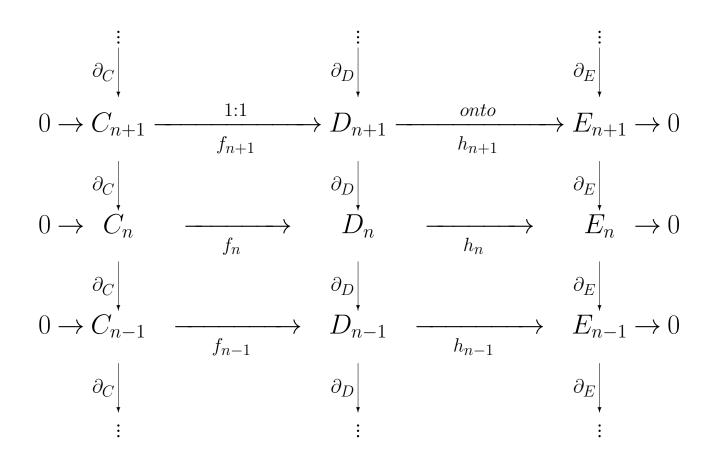
Then \exists long exact homology sequence:

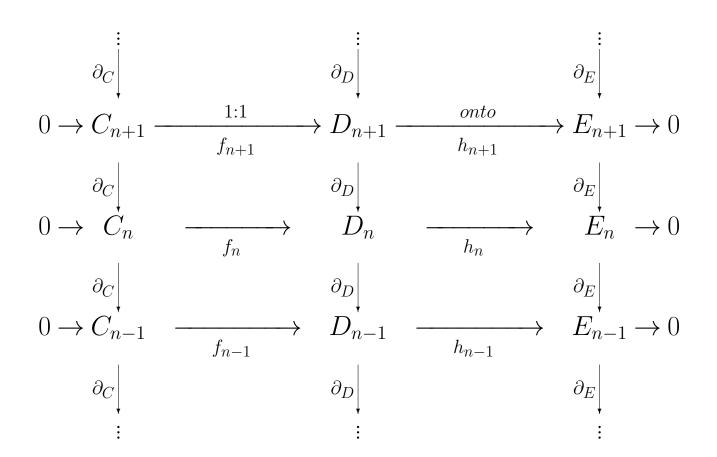
$$\cdots \to H_n(\mathcal{C}) \xrightarrow{f_*} H_n(\mathcal{D}) \xrightarrow{h_*} H_n(\mathcal{E}) \xrightarrow{\partial_*} H_{n-1}(\mathcal{C}) \xrightarrow{f_*} H_{n-1}(\mathcal{D}) \to \cdots$$

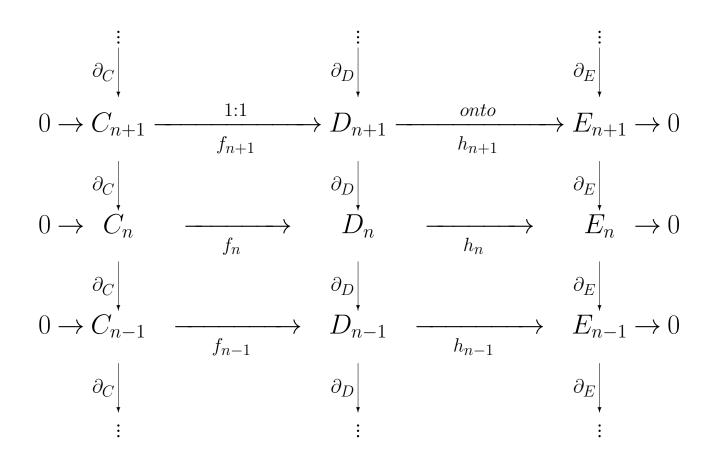
where ∂_* is induced by ∂_D . That is, $\partial_*([e_n]) = [c_{n-1}]$ where $h(d_n) = e_n$ and $f(c_{n-1}) = \partial_D(d_n)$.

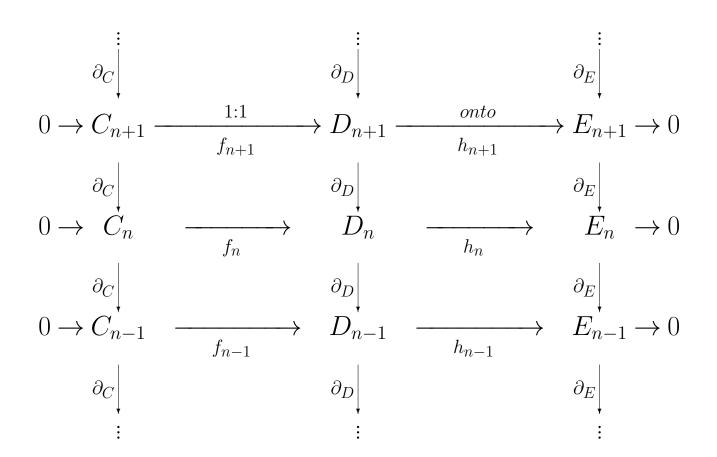
Proof. By diagram chasing.











THM (Mayer-Vietoris sequence). Let X be a topological space and suppose $X = int(A) \cup int(B)$ or

Let X be a complex and A, B subcomplexes of X such that $X = A \cup B$.

Then there is a long exact sequence as follows.

 \longrightarrow $H_n(A \cap B) \longrightarrow$ $H_n(A) \oplus H_n(B) \longrightarrow$ $H_n(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \longrightarrow$ \cdots

Proof: $0 \to \mathcal{C}(A \cap B) \xrightarrow{f} \mathcal{C}(A) \oplus \mathcal{C}(B) \xrightarrow{h} \mathcal{C}(A \cup B) \to 0$ is a short exam sequence of chain complexes.

1.) Given the following commutative diagram

$$\begin{array}{cccc} 0 \to \mathcal{C} & \stackrel{f}{\longrightarrow} & \mathcal{D} & \stackrel{h}{\longrightarrow} & \mathcal{E} \to 0 \\ & \alpha & & \beta & & \gamma \\ 0 \to \mathcal{C}' & \stackrel{f'}{\longrightarrow} & \mathcal{D}' & \stackrel{h'}{\longrightarrow} & \mathcal{E}' \to 0 \end{array}$$

where the horizontal sequence are exact sequences of chain complexes and the α , β , γ are chain maps, show that the following diagram commutes as well:

 $\cdots \to H_n(\mathcal{C}) \xrightarrow{f_*} H_n(\mathcal{D}) \xrightarrow{h_*} H_n(\mathcal{E}) \xrightarrow{\partial_*} H_{n-1}(\mathcal{C}) \to \cdots$ $\alpha_* \Big| \qquad \beta_* \Big| \qquad \gamma_* \Big| \qquad \alpha_* \Big|$ $\cdots \to H_n(\mathcal{C}') \xrightarrow{f'_*} H_n(\mathcal{D}') \xrightarrow{h'_*} H_n(\mathcal{E}') \xrightarrow{\partial_*} H_{n-1}(\mathcal{C}) \to \cdots$

2a.) Prove the Steenrod five-lemma: Given the following commutative diagram of abelian groups where the horizontal sequence are exact, show that if f_1 , f_2 , f_4 , f_5 are isomorphisms, so is f_3 .

$$\begin{array}{c|c} A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_4 \longrightarrow A_5 \\ f_1 & f_2 & f_3 & f_4 & f_5 \\ B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow B_4 \longrightarrow B_5 \end{array}$$

2b.) Suppose one is given a commutative diagram of abelian groups as in the Five-lemma. Consider the following 8 hypotheses:

$$f_i$$
 is a monomorphism, for $i = 1, 2, 4, 5$
 f_i is a epimorphism, for $i = 1, 2, 4, 5$

Which of these hypotheses will suffice to prove that f_3 is a monomorphism? Which of these hypotheses will suffice to prove that f_3 is a epimorphism?

3.) Prove the serpent lemma: Given a homomorphism of short exact sequences of abelian groups,

$$\begin{array}{cccc} 0 \to A & \stackrel{f}{\longrightarrow} B & \stackrel{h}{\longrightarrow} C \to 0 \\ \alpha & & \beta & & \gamma \\ 0 \to A' & \stackrel{f'}{\longrightarrow} B' & \stackrel{h'}{\longrightarrow} C' \to 0 \end{array}$$

show that there is an exact sequence

$$0 \rightarrow ker\alpha \rightarrow ker\beta \rightarrow ker\gamma \rightarrow cok\alpha \rightarrow cok\beta \rightarrow cok\gamma \rightarrow 0$$

4.) Given a complex K and a short exact sequence of abelian groups

$$0 \to G_1 \to G_2 \to G_3 \to 0$$

show the following is a short exact sequence of chain complexes:

$$0 \to C_n(K;G_1) \to C_n(K;G_2) \to C_n(K;G_3) \to 0$$

This induces a long exact sequence in homology. The zig-zag homomorphism, $\beta_* : H_n(K; G_3) \to H_{n-1}(K; G_1)$ is called the **Bockstein homomorphism** associated with the given coefficient sequence.

(a.) Compute β_* for the coefficient sequences $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2 \to 0$

where |K| equals $\mathbb{R}P^2$.

(b.) Repeat (a) when |K| = Klein bottle.

5.) State and prove a Mayer-Vietoris Theorem for reduced homoloy. What condition does $A \cap B$ need to satisfy?

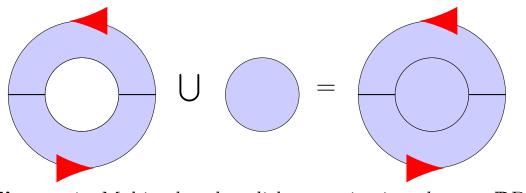


Figure 1: Mobius band \cup disk = projective plane = $\mathbb{R}P^2$

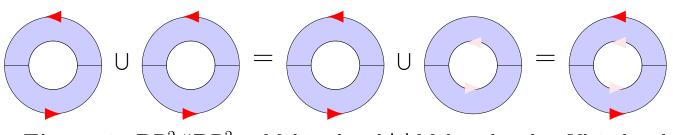


Figure 2: $\mathbb{R}P^2 \# \mathbb{R}P^2 =$ Mobius band \bigcup Mobius band = Klein bottle

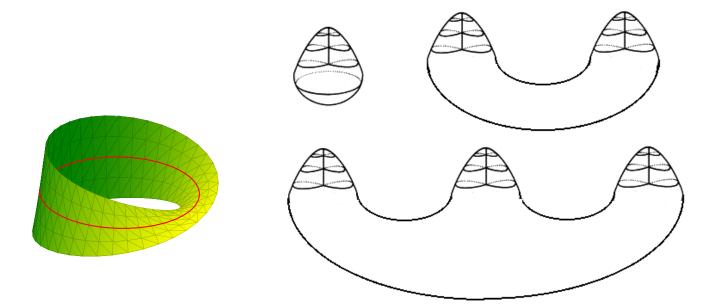


Figure 3: Right figures (connected sum of projective planes) from: people.math.osu.edu/fiedorowicz.1/math655/classification.html