

The dimension of $e_i =$

The dimension of $v_i =$

The boundary of $v_i =$

The boundary of f =

The boundary of $e_1 = v_2 - v_1$

The boundary of $e_2 = v_3 - v_2$

The boundary of $e_4 = v_1 - v_4$

The boundary of $e_5 =$

The boundary of $e_1 + e_2 =$

The boundary of $e_1 + e_4 =$

The boundary of $e_1 + e_5 =$

The boundary of $e_1 + e_2 + e_3 =$

The boundary of $e_3 + e_4 + e_5 =$

The boundary of $-e_3 + e_4 + e_5 =$

The boundary of $e_1 + e_2 + e_4 + e_5 =$

Let $X = e_1 + e_2 + e_3$, let $Y = -e_3 + e_4 + e_5$, and let $Z = e_1 + e_2 + e_4 + e_5$. Show that Z = X + Y

Answer:

 $X + Y = (e_1 + e_2 + e_3) + (-e_3 + e_4 + e_5) = e_1 + e_2 + e_3 - e_3 + e_4 + e_5 = e_1 + e_2 + e_4 + e_5 = Z$

Consider the differences between Z and Z_{2:}

When working over Z = the set of integers, one does not have multiplicative inverses.

When working over $Z_2 = \{0, 1\}$, one has multiplicative inverses.

Also, computationally, Z_2 is much easier to work with.

