NOTE: all maps are assumed to be continuous unless otherwise stated.

 $r: X \to A$ is a retraction of X onto A if $r|_A$ = identity map on A.

A is a *retract* of X if \exists a retraction of X onto A.

Ex: The constant map $c: X \to x_0$, where x_0 is a point of X is a retraction.

A is a deformation retract of X if the identity map $i: X \to X$ is homotopic to a map $R: X \to X$ where R is the extension (of the codomain) of a retraction $r: X \to A$ and where each point of A remains fixed during the homotopy.

In other words, \exists homotopy $H : X \times I \to X$ such that H_0 = identity map on $X, H_1(X) \subset A$, and $H_t|_A$ = identity map on $A \forall t$.

Ex: X is a deformation retract of $X \times I$.

Ex: S^n is a deformation retract of $R^{n+1} - \{\mathbf{0}\}$.

Lemma 55.1: If A is a retract of X, then $i_*: \pi_1(A) \to \pi_1(X)$ is injective where i_* is induced by the inclusion map.

Lemma 58.3: If A is a deformation retract of X, then $i \to \pi_{i}(X)$ is an isomorphism

 $i_*: \pi_1(A) \to \pi_1(X)$ is an isomorphism where i_* is induced by the inclusion map.

Thm 70.1: Seifert-van Kampen Theorem.

Suppose U, V and $U \cap V$ are open and pathconnected. Let $i: U \cap V \to U$ and $j: U \cap V \to V$ be inclusion maps. If

$$\pi_1(U) = \langle a_1, ..., a_i \mid s_1, ..., s_l \rangle,$$

$$\pi_1(V) = \langle b_1, ..., b_j \mid t_1, ..., t_m \rangle,$$

$$\pi_1(U \cap V) = \langle c_1, ..., c_k \mid r_1, ..., r_n \rangle,$$

then
$$\pi_1(U \cup V) =$$

$$\langle a_1, ..., a_i, b_1, ..., b_j \mid s_1, ..., s_l, t_1, ..., t_m,$$

$$i(c_1) = j(c_1), ..., i(c_n) = j(c_n) \rangle$$