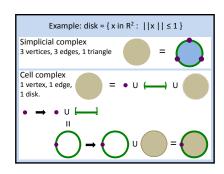
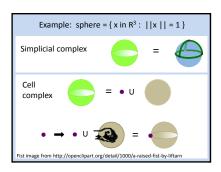
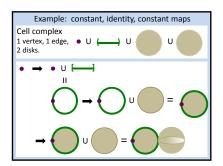
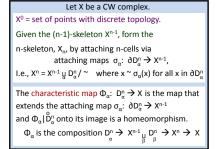


 $\begin{aligned} & \text{Cell complex} = \text{CW complex} \\ & \text{Building block: } \text{n-cells} = \left\{ x \text{ in } R^n : \mid \mid x \mid \mid < 1 \right. \right\} \\ & \text{Examples: } \text{0-cell} = \left\{ x \text{ in } R^0 : \mid \mid x \mid \mid < 1 \right. \right\} \\ & \text{1-cell = open interval} = \left\{ x \text{ in } R : \mid \mid x \mid \mid < 1 \right. \right\} \\ & \text{2-cell = open disk} = \left\{ x \text{ in } R^2 : \mid \mid x \mid \mid < 1 \right. \right\} \\ & \text{X}^0 = \text{set of points with discrete topology.} \\ & \text{Given the (n-1)-skeleton } X^{n-1}, \text{ form the} \\ & \text{n-skeleton, } X_n, \text{ by attaching n-cells via} \\ & \text{maps } \sigma_\alpha \colon \partial D^n \to X^{n-1}, \\ & \text{I.e., } X^n = X^{n-1} \coprod_{\Omega} D^n_\alpha / ^{\infty} \quad \text{where } x \sim \sigma_\alpha(x) \text{ for all } x \text{ in } \partial D^n_\alpha \end{aligned}$









Your name homology 3 ingredients: 1.) Objects 2.) Grading 3.) Boundary map

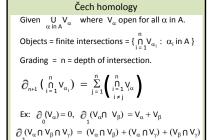
Grading

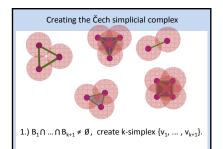
Grading: Each object is assigned a unique grade.

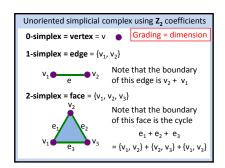
Let $X_n = \{x_1, ..., x_k\}$ = generators of grade n.

Extend grading on the set of generators to the set of n-chains: $C_n = \text{set of n-chains} = R[X_n]$

Normally n-chains in C_n are assigned to the grade n.



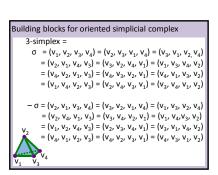




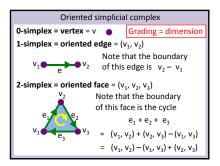
Nerve Lemma: If V is a finite collection of subsets of X with all non-empty intersections of subcollections of V contractible, then N(V) is homotopic to the union of elements of V.

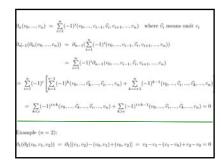
http://www.math.upenn.edu/~ghrist/EAT/EATchapter2.pdf

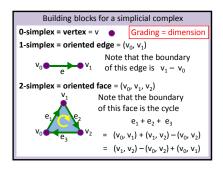
 $= \frac{\text{null space of M}_n}{\text{column space of M}_{n+1}}$ $\text{Rank H}_n = \text{Rank Z}_n - \text{Rank B}_n$

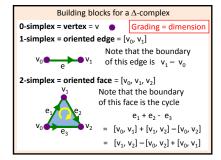


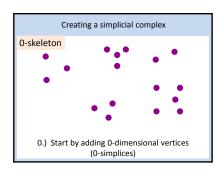
$$\begin{split} & \underbrace{\text{Čech homology}} \\ & \text{Given} \underbrace{ \bigcup_{\alpha \text{ in A}} V_{\alpha} \quad \text{where } V_{\alpha} \text{ open for all } \alpha \text{ in A}.}_{\alpha \text{ in In A}} \\ & \text{Objects = finite intersections} = \{ \bigcap_{i=1}^n V_{\alpha_i} : \ \alpha_i \text{ in A} \} \\ & \text{Grading} = n = \text{depth of intersection.} \\ & \underbrace{\partial_{n+1} \left(\bigcap_{i=1}^n V_{\alpha_i} \right) = \sum_{j=1}^n \left(\bigcap_{\substack{i=1 \\ i \neq j}}^n V_{\alpha_i} \right)}_{i \neq j} \\ & \text{Ex: } \underbrace{\partial_{0} (V_{\alpha}) = 0}_{0}, \ \underbrace{\partial_{1} (V_{\alpha} \cap V_{\beta}) = V_{\alpha} + V_{\beta}}_{1} \\ & \underbrace{\partial_{2} (V_{\alpha} \cap V_{\beta} \cap V_{\gamma}) = (V_{\alpha} \cap V_{\beta}) + (V_{\alpha} \cap V_{\gamma}) + (V_{\beta} \cap V_{\gamma})}_{1} \end{split}$$

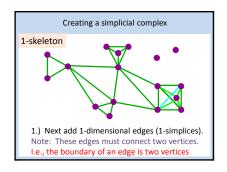


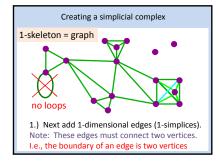


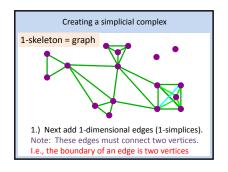


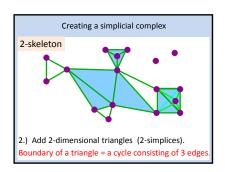


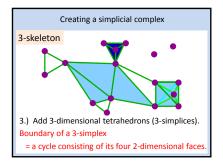


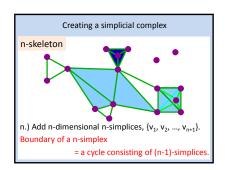


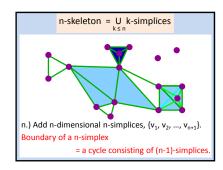












Let $\{v_0, v_1, ..., v_n\}$ be a simplex.

A subset of $\{v_0, v_1, ..., v_n\}$ is called a face of this simplex.

Ex: The faces of

are $\{v_1, v_2\}$, $\{v_2, v_3\}$, $\{v_1, v_3\}$, $\{v_1\}$, $\{v_2\}$, $\{v_3\}$

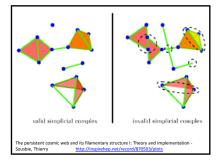
A simplicial complex \boldsymbol{K} is a set of simplices that satisfies the following conditions:

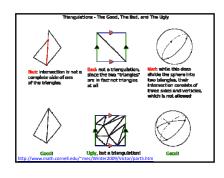
- 1. Any face of a simplex from \boldsymbol{K} is also in $\boldsymbol{K}.$
- 2. The intersection of any two simplices in K is either empty or a face of both the simplices.

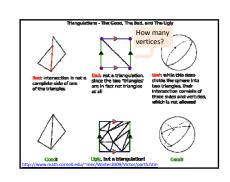
A simplicial complex $\boldsymbol{K}\;$ is a set of simplices that satisfies the following conditions:

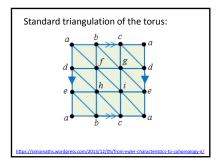
- 1. Any face of a simplex from \boldsymbol{K} is also in \boldsymbol{K} .
- 2. The intersection of any two simplices in K is either empty or a face of both the simplices.

simplex = convex hull









A simplicial complex \boldsymbol{K} is a set of simplices that satisfies the following conditions:

- 1. Any face of a simplex from K is also in K.
- 2. The intersection of any two simplices in K is either empty or a face of both the simplices.

X

Building blocks for an abstract simplicial complex

0-simplex = vertex = {v}

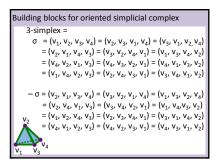
1-simplex = edge = $\{v_1, v_2\}$

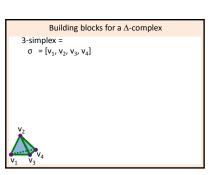
n-simplex = $\{v_0, v_1, ..., v_n\}$

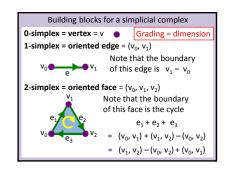
Let V be a finite set.

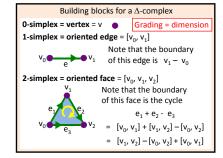
A finite abstract simplicial complex is

- a subset A of P(V) such that
 - 1.) v in V implies {v} in A, then
 - 2.) if X is in A and if $Y \subset X$, then Y is in A









 $\Delta^n = [v_0, v_1, ..., v_n], \quad \overset{\circ}{\Delta}^n = \text{interior of } \Delta^n$ $A \ \, \underline{\Lambda}\text{-complex structure} \text{ on a space } X \text{ is a collection of maps} \\ \sigma_\alpha \colon \Delta^n \to X, \text{ with } n \text{ depending on the index } \alpha, \text{ such that:}$ $\text{(i)} \quad \text{The restriction } \sigma_\alpha |\overset{\circ}{\Delta}^n \text{ is injective, and each point of } X \text{ is in the image of exactly one such restriction } \sigma_\alpha |\overset{\circ}{\Delta}^n.$

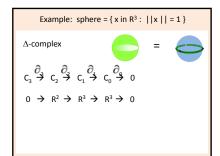
(ii) Each restriction of σ_α to an n-1 face of Δ^n is one of the maps $\sigma_\beta \colon \Delta^{n-1} \,\to\, X.$

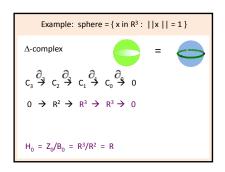
Here we identify the face of Δ^n with Δ^{n-1} by the canonical linear homeomorphism between them that preserves the ordering of the vertices.

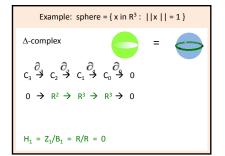
(iii) A set $A \subset X$ is open iff $\sigma_{\alpha}^{-1}(A)$ is open in Δ^{n} for each σ_{α}

Building blocks for a Δ -complex

 $X^0=$ set of points with discrete topology. Given the (n-1)-skeleton $X^{n\cdot 1}$, form the n-skeleton, X_n , by attaching n-cells via their (n-1)-faces via attaching maps $\sigma_\beta\colon D^{n\cdot 1} \to X^{n\cdot 1}$ such that $\sigma_\beta \mid \mathring{D}^{n\cdot 1}$ is a homeomorphism.







Example: sphere =
$$\{x \text{ in } \mathbb{R}^3 : ||x|| = 1\}$$

$$\Delta\text{-complex} = \begin{bmatrix} c_3 & c_2 & c_3 & c_4 & c_0 & c_0 \\ c_3 & c_2 & c_3 & c_4 & c_0 & c_0 & c_0 \\ c_3 & c_2 & c_3 & c_4 & c_0 & c_0 & c_0 & c_0 \\ c_3 & c_4 & c_4 & c_4 & c_6 & c_6 & c_6 \\ c_3 & c_4 & c_4 & c_6 & c_6 & c_6 & c_6 \\ c_3 & c_4 & c_4 & c_6 & c_6 & c_6 & c_6 \\ c_4 & c_6 & c_6 & c_6 & c_6 & c_6 & c_6 \\ c_5 & c_6 & c_6 & c_6 & c_6 & c_6 & c_6 \\ c_6 & c_6 & c_6 & c_6 & c_6 & c_6 & c_6 \\ c_7 & c_8 & c_6 & c_6 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_6 & c_6 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_6 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_6 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_6 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_8 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_8 & c_6 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_6 & c_6 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 \\ c_8 & c_8 & c_8 & c_8 \\ c_8 & c$$

