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Map Coloring
Countries with a common boundary must 
have different colors.

countries
regions
faces

ocean
infinite face



Four Color Problem
1852 letter by Augustus de Morgan to 
Sir William Hamilton: 
Four colors are required. Do 4 colors suffice?

1976: Appel and Haken proved it using an intricate 
case analysis on a computer.
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Exercise:
Draw a map that requires four colors.



3-Coloring Maps
Computer Science project by Malvika Rao (student), McGill U.

http://www.cs.mcgill.ca/~rao/cs507/MapColoring.html



The Dual is a Planar Graph.



Graph G=(V,E)
consists of a set V of objects called vertices 
and a set E of unordered pairs of vertices.

vertex
node
point

edge
link
line
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Vertex Coloring

 A k-coloring is a labeling 
f:V(G)  {1,2,…,k}.

 A k-coloring is proper if 
xyE(G) implies f(x)  f(y).

 G is k-colorable if it has a 
proper k-coloring.

 The chromatic number (G) 
is the smallest k such that 
G is k-colorable.
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Exercise:
Prove  (Moser Graph) = 4.



Party Problem

 People P1, P2, …, Pn meet for a party, 
but certain pairs are incompatible.

 Goal: Assign people to rooms so that 
no two people in the same room are 
incompatible.

 How many rooms are needed?



Solution to the Party Problem

 V(G) = {P1, P2, …, Pn}.
 Pi, PjE(G)  iff  Pi and Pj

are incompatible.
 The chromatic number
(G) is the least 
number of rooms.

Construct a conflict graph G.
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Scheduling Problem

 Five different groups of students {1,2,3}, 
{6,7}, {1,7,9}, {4,6,8}, {2,3,4} must take 
exams in the following engineering courses 
S1, S2, S3, S4, S5, respectively.

 Goal: Schedule the exams using a minimum 
number of time periods.



Solution to the Scheduling Problem

 V(G) = {S1, S2, S3, S4, S5}.
 Si, Sj E(G)  iff  Si  Sj  .
 The chromatic number (G) 

is the minimum number of 
time periods.

Construct a conflict graph G.

{1,2,3}

{4,6,8}

{2,3,4}

{6,7}{1,7,9} (G) = 3



Future Work

 Allow student to enter any arbitrary 
map or (nonplanar) graph.

 Add a map library, and allow 
transferring between map and 
corresponding graph.

 Develop algorithms with student.
 Explore applications.
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