[8] 3.) Suppose a computer program uses the Breadth first search algorithm to determine which vertices are reachable from v_1 where the computer program gives lower indexed vertices priority (i.e., if the program must choose a vertex from a set of vertices, it will choose the one with lowest index). What would be the output if the input is the following adjacency matrix for a directed graph? You do not need to show work.

 $v_1, v_2, v_3, v_4, v_5, v_6$

Draw the tree created by the Breadth first search algorithm. Note this problem is related to problem 4 (same weighted adjacency matrix), but the ouput is not the same.

[5] 4a.) Define: A vertex w is reachable from a vertex v if

 \exists a path from v to w

[15] 4b.) Suppose a computer program uses Dijkstra's algorithm to find a shortest path from the vertex v_1 to the vertex v_6 where the computer program gives lower indexed vertices priority (i.e., if the program must choose a vertex from a set of vertices, it will choose the one with lowest index). What would be the output if the input is the following adjacency matrix for a directed graph?

$$\begin{pmatrix} 0 & 0 & 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 5 & 0 \\ 1 & 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Show your work:

$$S = \{v_1, v_3, v_4, v_2, v_6, v_5\}$$

The table showing length of shortest paths found at each step:

Note that every vertex is reachable from the vertex v_1 . Thus Dikstra's algorithm outputs a spanning tree when starting at v_1 . Draw this spanning tree:

What is a shortest path from the vertex v_1 to the vertex v_6 ?

$$v_1, \langle \overrightarrow{v_1}, \overrightarrow{v_3} \rangle, v_3, \langle \overrightarrow{v_3}, \overrightarrow{v_2} \rangle, v_2, \langle \overrightarrow{v_2}, \overrightarrow{v_6} \rangle, v_6$$

[5]	5a.) Define	tournament:
-----	-----	----------	-------------

an orientation of a complete graph

I.e, a digraph D is a tournament if $\forall u, v \in V(D)$, exactly one of the arcs $\langle \overrightarrow{u}, \overrightarrow{v} \rangle$ or $\langle \overrightarrow{v}, \overrightarrow{u} \rangle$ is an arc in D.

[15] 5b.) The following is the result of a round robin tournament:

Team A beats Team D

Team B beats Team A

Team B beats Team D

Team C beats Team A

Team C beats Team B

Team D beats Team C

Draw the graph that models the above.

A Hamiltonian path in this graph is ADCB

Use this Hamiltonian path to assign 1st, 2nd, and 3rd prizes:

1st prize goes to team A. 2nd prize goes to team D. 3rd prize goes to team C.

A different Hamiltonian path in this graph is DCBA

1st prize goes to team \underline{D} . 2nd prize goes to team \underline{C} . 3rd prize goes to team \underline{B} .

A different Hamiltonian path in this graph is BADC

1st prize goes to team B. 2nd prize goes to team A. 3rd prize goes to team D.

A different Hamiltonian path in this graph is BDCA

1st prize goes to team B. 2nd prize goes to team D 3rd prize goes to team C.

A different Hamiltonian path in this graph is CBAD

1st prize goes to team \underline{C} . 2nd prize goes to team \underline{B} 3rd prize goes to team \underline{A}