Application Assign classes to professors

Problem description: Math professors at Ul are asked to provide
an ordered iist of classes that they would like to teach Ina
particular semester.

The geal is te assign classes to these professors which fit thelr
preferences as much as possibie,

Vertices: The set of professors union the set of classes.
|.e., each math professor is represented by a vertex and
each section of a math class is represented by a vertex.

That is a vertex will represent either a math professor or a section
of a math class.

Ecges: An edge is drawn between a vertex representing a math
professor and all sections of a math class if that professor has listed
that math class as one of the courses they would like to teach,

Application Assign classes te professars
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Apphcation: Assign classes to piofessors
Example: Ul's mathbio group (Spr 2018)
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Math professars at Ul are asked to pravide an ordered list of classes
that they would ke to teach n a parficular semester Weighted

graph

Bipartite graphs

* In a simple graph G, if V can be partitioned into twa disjoint
sets V, and V, such that every edge in the graph connects a
vertex i V; and a vertex V, (so that no edge in G connects
either two vertices in ¥, or two vertices In V,}

Application example: Representing Blations

Represantition example: ¥y = {v, vy vghand ¥, = {v,, v, v }
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Pata VI Wha The complement of a graph G, dencted as G is the graph obtained
from G by removing all its edges and joining exactly those vertices
that were not adjacent in G.
Definftion 2.8 4 < wv g ool i by [ AR ] It should be clear that if we take a graph G and its complement G
Butgeal by % e et s " iy ) AT “together,” we obtain a complete graph.
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Which vertices of the graph are reachable from a given vertex?

2.3 Connectivity

initfon 2.8: Coynsider # gr-h G. A (v, vi l-eelk i G is an nlrrnmimg’.
ogREnCe [ o1, vz D et i) o TG s and edgs fmm & owith o =l
(& . w0, In o closed !ml’k vp = . A beail Is o ool i wkhoall e
pre diskistct; @ podle is g il in ivhich alse all voitices are distbict, A cur:h' ioa
e Ml I wlich all vertices except o and v ove distiict.

—
o1

-

e a<af>f<fc>c<cd:d<de>e<eb>b<bh>h

P

afcdebh

xists @ (1, v) — path in G. G is connected if all pairs of di.dinct wertives a

inition 2.9: T distinct vertices u and © in graph G are conneeted if the
unnech L

LBV IRRR R T P Ol g 1 115 N el

ELOTR I AL . N - LN N R asy i3

ARrfmathi, win oL 00 b

Do fe TR, ey e 0 b deid _ dwr GR gty

Walk: Vertices may repeat. Q
Edges may repeat ; oe.o
{Cpen or Closed) 645234523 ORt)

Walk: Vertices may repeat.
Edges may repeat
[Open or Closed)

O
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Trail: Vertices may repeat.
Edges cannhot repeat
{Open}

Cireuit: Vertices may repeat.
Edges cannot repeat
(Closed} .

Path: Vertlces cannot repeat.
Edges cannot repeat
{Cpen}
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Cyele: Vertices cannot repeat.
Edges cannot repeat
(Closed)‘
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Trall:  Vertices may repeat.
Edges cannot repeat
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Circult: Vertices may repeat.
Edges cannot repeq1
[Closed}
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What is a planar embedding?
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Kuratowski Subgraphs
Kuratowski’s Theorem {1930) %

Kas

A graph is planar if and only if it does nat
contain a subdivision of K; or K 5.
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Euler characteristic [simple form}:

X = number of vertices — number of edges + number of faces
Qr in short-hand,

= VI

where V =set of vertices
E = set of edges
F = set of faces = set of regions

& the notation |X| = the number of elements in the set X.

|E| + |F|
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For a planar connected graph [V| - |E| + |F| =2

Defn: A tree is a connected graph that does not

contain a cycie.

A forest is a graph whose compoenents are trees.
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Lemma 2.1: Any tree with n vertices has n-1 edges.
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Euler's fomula: For a planar connected graph |V] - |E| +|F| =

where V = set of vertices, E = set of edges, F = set of faces = set of

regions
Defn: A tree [or acyclic graph) is a connected graph that does not
cohtain a cycle.

A forest is a graph whose compoenents are trees.
Lemma 2.1: Any tree with n vertices has n-1 edges.

Thm 2.8: For any connected planar graph with |V]| 22,
lE|] £3|V]-6
Cor 2.4: K, isnonplanar.

Thm 2,10: K, 5 is nonplanar.

Cor: Agraph is planar if and only if it does not contain a subdivision of
Ks or Ki.i‘




