[8] 3.) Suppose a computer program uses the Breadth first search algorithm to determine which vertices are reachable from v_1 where the computer program gives lower indexed vertices priority (i.e., if the program must choose a vertex from a set of vertices, it will choose the one with lowest index). What would be the output if the input is the following adjacency matrix for a directed graph? You do not need to show work.

$$\begin{pmatrix} 0 & 0 & 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 5 & 0 \\ 1 & 0 & 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The vertices reachable from v_1 are

 $v_1, v_2, v_3, v_4, v_5, v_6$

Draw the tree created by the Breadth first search algorithm. Note this problem is related to problem 4 (same weighted adjacency matrix), but the ouput is not the same.

 \exists a path from v to w (2) Bread H. First

[15] 4b.) Suppose a computer program uses Dijkstra's algorithm to find a shortest path from the vertex v_1 to the vertex v_6 where the computer program gives lower indexed vertices priority (i.e., if the program must choose a vertex from a set of vertices, it will choose the one with lowest index). What would be the output if the input is the following adjacency matrix for a directed graph?

$$\begin{pmatrix}
0 & 0 & 2 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 5 & 0 \\
1 & 0 & 0 & 0 & 0 & 3 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Show your work:

$$S = \{v_1, v_3, v_4, v_2, v_6, v_5\}$$

The table showing length of shortest paths found at each step:

Note that every vertex is reachable from the vertex v_1 . Thus Dikstra's algorithm outputs a spanning tree when starting at v_1 . Draw this spanning tree:

What is a shortest path from the vertex v_1 to the vertex v_6 ?

$$v_1, <\overrightarrow{v_1,v_3}>, v_3, <\overrightarrow{v_3,v_2}>, v_2, <\overrightarrow{v_2,v_6}>, v_6$$