Planes: We have only covered equations of planes in \mathbb{R}^3 . The only equation we have used is

 $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ which simplifies to ax + by + cz = d.

Note $\mathbf{n} = (a, b, c)$ is any vector that is normal to the plane, \mathbf{p} is a fixed point on the plane, and \mathbf{x} is an arbitrary point on the plane.

Lines: My favorite equation of a line is $\mathbf{x} = t\mathbf{v} + \mathbf{p}$ where \mathbf{v} is a vector that specifies the direction of the line, \mathbf{p} is a fixed point on the line, and \mathbf{x} is an arbitrary point on the line. One can also write the line in parametrized form: $x_i = tv_i + p_i$ for i = 1, ..., n where the line is living in \mathbb{R}^n . Note this is an equation of a line regardless of which dimension (n) you are working in.

Tangent lines:

If y = f(x), then tangent line at (p_1, p_2) is

$$(x,y) = t < 1, \frac{\partial y}{\partial x} > + < p_1, p_2 >$$

If r(t) = (x(t), y(t)), then tangent line at (p_1, p_2) is

$$(x,y) = t < \frac{dx}{dt}, \frac{dy}{dt} > + < p_1, p_2 >$$

If r(t) = (x(t), y(t), z(t)), then tangent line at (p_1, p_2, p_3) is

$$(x,y) = t < \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} > + < p_1, p_2, p_3 >$$

If y = f(x, y), then two (of infinitely many) tangent lines at (p_1, p_2, p_2) is

$$(x, y, z) = t < 1, 0, \frac{\partial z}{\partial x} > + < p_1, p_2, p_3 > (x, y, z) = t < 0, 1, \frac{\partial z}{\partial y} > + < p_1, p_2, p_3 >$$

We can take the cross products of the tangent vectors in \mathbb{R}^3 to create a normal to the tangent plane:

$$< \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1 >$$

Compare to the gradient of $f: \nabla f = \langle \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \rangle$

Optimization:

Section 12.5:

- Local vs global extrema.
- Extreme Value theorem: Global extrema exist if domain is closed and bounded. The extrema can be found by checking
 - critical points in the interior of domain
 - boundary points
- Can turn constrained optimization problem into unconstrained optimization problem **IF** one can solve the constraint for one of the variables.
- Section 12.10: Can determine if a critical point is local extrema using the second derivative test (when it applies).

Section 12.9: Solve constrained optimization implicitly by using Lagrange multiplier: Solve $\nabla f(\mathbf{p}) = \lambda \nabla g(\mathbf{p})$. Also check p such that $\nabla g(\mathbf{p}) = 0$.

Section 12.8: Given $z = f(\mathbf{x})$, since $D_{\mathbf{u}}(f) = \nabla f \cdot \mathbf{u} = |\nabla f| \cos\theta$, we have

 $\nabla f(\mathbf{p})$ = the direction of steepest ascent at point \mathbf{p} = direction in which f increases the most rapidly from point \mathbf{p} = direction of greatest increase starting from point \mathbf{p} .

The negative of $\nabla f(\mathbf{p}) = -\nabla f(\mathbf{p})$ = the direction of steepest descent at point \mathbf{p} = direction in which f decreases the most rapidly from point \mathbf{p} = direction of greatest decrease starting from point \mathbf{p} .

 $|\nabla f(\mathbf{p})| =$ magnitude of rate of change.

NOTE: derivatives only give local information and local approximations. I.e., if you move slightly away from point **p**, then the direction of steepest ascent can be very different then the direction at point **p**. And the rate of increase = instantaneous rate of change = approximation of actual rate of change from **p** to $\mathbf{q} = \frac{f(\mathbf{q}) - f(\mathbf{p})}{\mathbf{q} - \mathbf{p}}$.