## 14.2 Scalar Line Integrals:

Let  $C: [a, b] \to \mathbb{R}^n$  be a smooth curve.  $f: \mathbb{R}^n \to R$ , a scalar field.

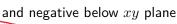
$$\begin{split} \Delta s_k &= \text{length of kth segment of path} \\ &= \int_{t_{k-1}}^{t_k} ||\mathbf{C}'(t)|| dt = ||\mathbf{C}'(t_k^*)||(t_k - t_{k-1}) = ||\mathbf{C}'(t_k^*)|| \Delta t_k \\ &\quad \text{for some } t_k^{**} \in [t_{k-1}, t_k] \end{split}$$

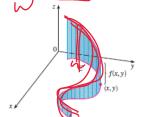
$$\int_{\mathbf{C}} f \ d\mathbf{r} \sim \sum_{i=1}^{n} f \left( \mathbf{C}(t_k^*) \right) \Delta s_k = \sum_{i=1}^{n} f(\mathbf{C}(t_k^*)) ||\mathbf{C}'(t_k^{**})|| \Delta t_k$$

Thus 
$$\int_{\mathbf{C}} f \ ds = \int_{a}^{b} f \left( \mathbf{C}(t) \right) ||\mathbf{C}'(t)|| dt$$

$$\int_{\mathbf{C}} f \ ds = \text{area under curve } f(\mathbf{C})$$

where area is positive above xy plane





https://brilliant.org/wiki/line-integral

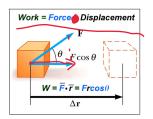
### 14.2 Vector Line integrals:

Let  $\mathbf{C}:[a,b]\to\mathbf{R}^n$  be a smooth path.  $F:\mathbf{R}^n\to R^n$ , a vector field.

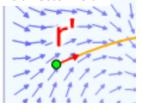
$$\mathbf{C}'(t_k^*) \sim \frac{\Delta \mathbf{C}_k}{\Delta t_k}$$

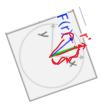
$$\int_{\mathbf{C}} F \cdot d\mathbf{r} \sim \sum_{i=1}^{n} F(\mathbf{C}(t_k^*)) \cdot \Delta \mathbf{C}_k = \sum_{i=1}^{n} F(\mathbf{C}(t_k^*)) \cdot \mathbf{C}'(t_k^*) \Delta t_k$$

Thus 
$$\int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_a^b F(\mathbf{C}(t)) \mathbf{0} \mathbf{C}'(t) dt$$



**F** is a vector field.





http://physicssimplified for you.blog spot.com/

https://en.wikipedia.org/wiki/Line\_integral

Thm: Let  $\mathbf{C}:[a,b]\to\mathbf{R}^n$  be a piecewise smooth path and let  $\mathbf{D}:[c,d]\to\mathbf{R}^n$  be a reparametrization of  $\mathbf{C}$ . Then

## Scalar line integral:

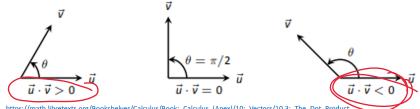
If  $f: \mathbf{R}^n \to \mathbf{R}$  is continuous, then  $\int_{\mathbf{D}} f \ ds = \int_{\mathbf{C}} f \ ds$  since area under curve does not depend on parametrization.

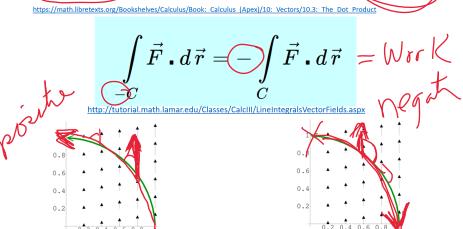
## Vector line integral

If  $F: \mathbf{R}^n \to \mathbf{R}^n$  is continuous, then

$$\int_{\mathbf{D}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} F \cdot d\mathbf{r}$$
 if  $\mathbf{D}$  is orientation-preserving.

$$\int_{\mathbf{D}} F \cdot d\mathbf{r} + \int_{\mathbf{C}} F \cdot d\mathbf{r}$$
 if  $\mathbf{D}$  is orientation-reversing.





Another notation (differential form): For simplicity, we will work in  $\mathbb{R}^2$ , but the following generalizes to any dimension.

Let 
$$\mathbf{C}(t) = (x(t), y(t))$$
. Let  $F(x, y) = (P(x, y), Q(x, y))$ 

where 
$$x=x(t),y=y(t)$$
. Note  $x'(t)=\frac{dx}{dt}$   $y'(t)=\frac{dy}{dt}$ 

Thus dx = x'(t)dt and dy = y'(t)dt. Also,  $d\mathbf{r} = (dx, dy)$ 

$$\int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} (P(x,y),Q(x,y)) \cdot (dx,dy)$$

$$\int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} P(x,y) dx + Q(x,y) dy$$

$$= \int_{a}^{b} P(x(t),y(t)) x'(t) dt + Q(x(t),y(t)) y'(t) dt$$

$$\text{Work in } Y - dx$$

$$\left(\frac{1}{2}\right) - \left(0\right)$$

$$G_2(t) = (1, t) 0 \le t \le 1$$

#### Notation 1: Work definition

$$\int_C F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r}$$

$$= \int_0^1 F(\mathbf{C}_1(t)) \cdot \mathbf{C}_1'(t)dt + \int_0^1 F(\mathbf{C}_2(t)) \cdot \mathbf{C}_2'(t)dt$$

$$= \int_0^1 F(t,0) \cdot (1,0) dt + \int_0^1 F(1,t) \cdot (0,1) dt$$

$$\int_0^1 (t,0) \cdot (1,0) dt + \int_0^1 (1,t) \cdot (0,1) dt$$

$$= \int_0^1 t dt + \int_0^1 t dt = 2(\frac{1}{2}t^2)|_0^1 = 1$$

$$0 \le t \le 1$$
  
 $c_1(t) = (1,6)$ 

Let 
$$F(x,y)=(x,y)$$
, let  $C(t)=C_1(t)\cup C_2(t)$ 

$$C_1(t)=(t,0), \ 0\leq t\leq 1$$

$$C_2(t)=(1,t), \ 0\leq t\leq 1$$

$$C_1(t)=(1,0), \ 0\leq t\leq 1$$

$$C_2(t)=(1,t), \ 0\leq t\leq$$

Can use any parametrization for the path C. For example:

$$\mathbf{C}_1:[0,1]
ightarrow\mathbf{R}^2$$
,  $\mathbf{C}_1(t)=(t^2,0)$ ,  $\mathbf{C}_2:[0,1]
ightarrow\mathbf{R}^2$ ,  $\mathbf{C}_2(t)=(1,t^3)$ 

#### Notation 1: Work definition

$$\int_{C} F \cdot d\mathbf{r} = \int_{C_{1}} F \cdot d\mathbf{r} + \int_{C_{2}} F \cdot d\mathbf{r} 
= \int_{0}^{1} F(\mathbf{C}_{1}(t)) \cdot \mathbf{C}'_{1}(t)dt + \int_{0}^{1} F(\mathbf{C}_{2}(t)) \cdot \mathbf{C}'_{2}(t)dt 
= \int_{0}^{1} F(t^{2}, 0) \cdot (2t, 0)dt + \int_{0}^{1} F(1, t^{3}) \cdot (0, 3t^{2})dt 
= \int_{0}^{1} (t^{2}, 0) \cdot (2t, 0)dt + \int_{0}^{1} (1, t^{3}) \cdot (0, 3t^{2})dt 
= \int_{0}^{1} 2t^{3}dt + \int_{0}^{1} 3t^{5}dt = \frac{1}{2}t^{4}|_{0}^{1} + \frac{1}{2}t^{6}|_{0}^{1} = 1$$



Can use any parametrization for the path C. For example:

$$\mathbf{C}_1:[0,1]\to\mathbf{R}^2,\ \mathbf{C}_1(t)=(t^2,0)$$

$${f C}_2:[0,1] o {f R}^2$$
,  ${f C}_2(t)=(1,t^3)$ 

#### Notation 2: differential form

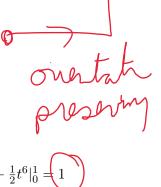
$$\int_C F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r}$$

$$= \int_{C_1} F \cdot (dx, dy) + \int_{C_2} F \cdot (dx, dy)$$

$$=\int_{C_1} (x,y) \cdot (dx,dy) + \int_{C_2} (x,y) \cdot (dx,dy)$$

$$=\textstyle\int_{C_1}[xdx+ydy]+\textstyle\int_{C_2}[xdx+ydy]$$

$$= \int_0^1 t^2 (2t)dt + \int_0^1 1(0) + t^3 3t^2 dt = \frac{1}{2} t^4 \Big|_0^1 + \frac{1}{2} t^6 \Big|_0^1 = 1$$



Methods for special cases:

Method: 14.3 Suppose  $F = \nabla f$ 

Claim  ${\cal F}$  has path independent line integrals.

Method: 14.4 For closed curves, can use Green's Theorem

A path  $\mathbf{C}:[a,b]\to\mathbf{R}^n$  is closed if  $\mathbf{C}(a)=\mathbf{C}(b)$ .

If curve is not closed, canNOT use Green's Theorem

In <u>Calculus</u> I we had the **Fundamental Theorem of Calculus** that told us how to evaluate definite integrals. This told us,

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

Suppose that C is a **smooth** curve given by  $\vec{r}(t)$ ,  $a \leq t \leq b$ . Also suppose that f is a function whose gradient vector,  $\nabla f$ , is continuous on C. Then,  $\int \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$ 

$$\int_{C} \nabla f \cdot d \, \vec{r} = \int_{a}^{b} \nabla f \left( \vec{r} \left( t \right) \right) \cdot \vec{r} \left( t \right) \, dt$$

$$= \int_{a}^{b} \frac{d}{dt} \left[ f \left( \vec{r} \left( t \right) \right) \right] \, dt \quad \text{by the chain rule}$$

$$= f \left( \vec{r} \left( b \right) \right) - f \left( \vec{r} \left( a \right) \right) \quad \text{by FTC}$$

$$\frac{1}{x}(\frac{1}{z}x^2+\sqrt{y})$$

Find 
$$f$$
 such that  $\nabla f = F(x,y) = (x,y)$ 

If 
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

$$\frac{\partial f(x,y)}{\partial x} = x$$
 implies

$$\frac{\partial f(x,y)}{\partial x}$$

If 
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then 
$$\frac{\partial f(x,y)}{\partial x} = x \text{ implies } \int \frac{\partial f(x,y)}{\partial x} dx = \int x dx \text{ implies } f(x,y) = \frac{x^2}{2} + k(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} \left( \frac{x^2}{2} + \frac{x^2}$$

Let  $F(x,y) = \langle x,y \rangle$ , let  $C(t) \neq path$  from (0,0) to (1,1) traveling first along x axis to (1, 0) and then traveling vertically to (1, 1). If  $F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u})$ , then  $\frac{\partial f(x,y)}{\partial x} = x$  implies  $\int \frac{\partial f(x,y)}{\partial x} dx = \int x dx$  implies  $f(x,y) = \frac{x^2}{2}$  $\frac{\partial f}{\partial u} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial u} = k'(y) = y$  Hence  $k(y) = \frac{y^2}{2} + \text{constant}$ Thus if we let f(x,y) =then  $\nabla f =$ 

If 
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
 , then

$$\frac{\partial f(x,y)}{\partial x}=x$$
 implies  $\int \frac{\partial f(x,y)}{\partial x}dx=\int xdx$  implies  $f(x,y)=\frac{x^2}{2}+k(y)$ 

$$\frac{\partial f}{\partial y} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial y} = k'(y) = y$$
. Hence  $k(y) = \frac{y^2}{2} + \text{constant}$ 

Thus if we let 
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$
, then  $\nabla f = (\underline{x},y) = F$ .

Hence 
$$\int_{C} F \cdot d\vec{r} = \int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

$$f(1,1) - f(0,0)$$

If 
$$F(x,y)=\nabla f=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$$
 , then

$$\frac{\partial f(x,y)}{\partial x}=x$$
 implies  $\int \frac{\partial f(x,y)}{\partial x}dx=\int xdx$  implies  $f(x,y)=\frac{x^2}{2}+k(y)$ 

$$\frac{\partial f}{\partial y} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial y} = k'(y) = y$$
. Hence  $k(y) = \frac{y^2}{2} + \text{constant}$ 

Thus if we let 
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$
, then  $\nabla f = (x,y) = F$ .

Hence 
$$\int\limits_C F \centerdot d\, \vec{r} = \int\limits_C \nabla f \centerdot d\, \vec{r} = f\left(\vec{r}\left(b\right)\right) - f\left(\vec{r}\left(a\right)\right)$$

$$= f(1,1) - f(0,0) = \frac{1^2}{2} + \frac{1^2}{2} - 0 = 1$$



F is called *conservative* if  $F = \nabla f$ . In this case f is called a potential function for the vector field F.

Suppose F is continuously differentiable in an open region. The following are equivalent:

brace F is conservative  $lap{6}$ 

$$F = \nabla f$$

 $\int_C F \cdot d\mathbf{r} = \int_a^b f(\mathbf{C}(t)) ||\mathbf{C}'(t)|| dt \text{ is independent of the path taken from } \mathbf{r}(\mathbf{r}) \text{ to } \mathbf{C}(\mathbf{r}). \text{ That is } \int_C F \cdot d\mathbf{r} = \int_D F \cdot d\mathbf{r} \text{ for any } \mathbf{r}$ 

paths A, D that begin at y(0) and end at r(1)

 $\int_C F \cdot d{f r} = f({f q}) - f({f p})$  where the path C begins at  ${f p}$  and ends at

If 
$$F = (P(x,y), Q(x,y))$$
, the  $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ 

$$(3x)$$
  $3y$ 

# Method 14.3 Check if F has path independent line integrals

submethod 1)  $F(\text{nd } f \text{ such } \text{that } \nabla f = F$ 

Submethod 1) Find 
$$f$$
 such that  $\nabla f = F$ 

$$F(x,y) = (x,y) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = \nabla f = \nabla (\frac{1}{2}x^2 + \frac{1}{2}y^2).$$
I.e.,  $f(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$ .
$$\int_C F \cdot d\mathbf{r} = f(1,1) - f(0,0) = \frac{1}{2} + \frac{1}{2} - 0 = 1.$$

## Method 14.3 Check if F has path independent line integrals

submethod 2: Check if  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ , where F = (P, Q).

$$\frac{\partial y}{\partial x} = 0 = \frac{\partial x}{\partial y}$$

Thus can choose any path starting at (0, 0) and ending at (1, 1)

Ex: Let 
$$C : [0,1] \to \mathbf{R}^2$$
,  $C(t) = (t,t)$ .

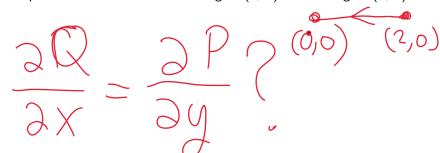
$$\int_C F \cdot d\mathbf{r} = \int_0^1 F(\mathbf{C}(t)) \cdot \mathbf{C}'(t) dt$$

$$=\int_0^1 F(t,t) \cdot (1,1)dt$$

$$= \int_0^1 (t,t) \cdot (1,1)dt = \int_0^1 2t dt = t^2 \Big|_0^1 = 1$$



Let 
$$F(x,y)=(e^{-y}-2x,-xe^{-y}-sin(y))=(P(x,y),Q(x,y))$$
 Find  $\int_C (e^{-y}-2x)dx+(-xe^{-y}-sin(y))dy$ , where  $C$  is a piecewise smooth curve starting at  $(2,0)$  and ending at  $(0,0)$ .



Let 
$$F(x,y) = (e^{-y} - 2x) - xe^{-y} - sin(y) = (P(x,y), Q(x,y))$$

Does 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
?
$$\frac{\partial (-Xe^{-y} - 5/n(y))}{\partial X} = -e^{-y}$$

$$\frac{\partial (-Xe^{-y} - 5/n(y))}{\partial X} = -e^{-y}$$

Let 
$$F(x,y) = (e^{-y} - 2x, -xe^{-y} - \sin(y)) = (P(x,y), Q(x,y))$$

Does 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
?

$$\frac{\partial Q}{\partial x} = \frac{\partial (-xe^{-y} - \sin(y))}{\partial x} = -e^{-y} \qquad \qquad \frac{\partial P}{\partial y} = \frac{\partial (e^{-y} - 2x)}{\partial y} = -e^{-y}$$

Thus 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
.

Thus F is a gradient field and hence has path independent integrals.

$$F = \nabla f = \left(\frac{\partial f}{\partial x}\right)\frac{\partial f}{\partial y} = (P,Q) = (e^{-y} - 2x, xe^{-y} - \sin(y))$$

$$Thus \frac{\partial f}{\partial x} = e^{-y} - 2x$$

$$(X, y) = (Y, y) = (Y, y)$$

$$(X, y) = (Y, y)$$

$$(X, y) = (Y, y)$$

$$(Y, y) = (Y, y)$$

$$F = \nabla f = (\frac{\partial f}{\partial x} \left( \frac{\partial f}{\partial y} \right)) = (P, Q) = (e^{-y} - 2x, -xe^{-y} - \sin(y))$$
Thus  $\frac{\partial f}{\partial x} = e^{-y} - 2x$ 
Hence  $f(x, y) = \int (e^{-y} - 2x) dx = xe^{-y} - x^2 + c(y)$ .

$$\frac{2f}{2y} = \frac{2}{2y} (xe^{-y} - x^2 + c(y))$$

$$= -xe^{-5/n(y)}$$

$$= -5/n(y)$$

$$F = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (P, Q) = \left(e^{-y} - 2x, -xe^{-y} - \sin(y)\right)$$

Thus 
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence 
$$f(x,y) = \int (e^{-y} - 2x) dx = xe^{-y} - x^2 + c(y)$$
.

Thus 
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

$$F = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (P, Q) = \left(e^{-y} - 2x, -xe^{-y} - \sin(y)\right)$$

Thus 
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence 
$$f(x,y) = \int (e^{-y} - 2x)dx = xe^{-y} - x^2 + c(y)$$
.

Thus 
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y).$$

Thus 
$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$$
.

$$F = \nabla f = (\tfrac{\partial f}{\partial x}, \tfrac{\partial f}{\partial y}) = (P, Q) = (e^{-y} - 2x, -xe^{-y} - \sin(y))$$

Thus 
$$\frac{\partial f}{\partial x}=e^{-y}-2x$$

Hence 
$$f(x,y) = \int (e^{-y} - 2x)dx = xe^{-y} - x^2 + c(y)$$
.

Thus 
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

Thus 
$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$$
.

Thus 
$$-xe^{-y}-\sin(y)=\frac{\partial f}{\partial y}=-xe^{-y}+c'(y).$$
 Thus  $c'(y)=-\sin(y)$  and  $c(y)=\int (-\sin(y))dy=\cos(y)+k$ 

$$f(x,y) = xe^{-y} - x^{2} + cos(y) + 2$$

$$F = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (P, Q) = \left(e^{-y} - 2x, -xe^{-y} - \sin(y)\right)$$

Thus 
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence 
$$f(x,y) = \int (e^{-y} - 2x) dx = xe^{-y} - x^2 + c(y)$$
.

Thus 
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

Thus 
$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$$
.

Thus 
$$c'(y) = -sin(y)$$
 and  $c(y) = \int (-sin(y))dy = cos(y) + k$ 

Hence 
$$f(x,y) = 2e^{-\sqrt{2} - x^2 + \cos(y) + k}$$

Since 
$$F$$
 is a gradient field,  $\int_C (e^{-y}-2x)dx + (-xe^{-y}-\sin(y))dy = f(0,0) - f(2,0) = 0 - 0 + 1 + k - [2-4+1+k] = 2$ 





Alternatively,

Alternatively, let 
$$X:[0,2]\to {\bf R}^2$$
,  $X(t)=(2-t,0)=(x(t),y(t))$ . Then  $X(0)=(2,0)$  and  $X(2)=(0,0)$ 

$$x(t) = 2 - t$$
 implies  $dx = -dt$ 

$$y(t) = 0$$
 implies  $dy = 0$ .

$$\int_C (e^{-y}-2x)dx + (-xe^{-y}-\sin(y))dy$$

Alternatively, let 
$$X:[0,2]\to {\bf R}^2$$
,  $X(t)=(2-t,0)=(x(t),y(t))$ . Then  $X(0)=(2,0)$  and  $X(2)=(0,0)$ 

$$x(t) = 2 - t$$
 implies  $dx = -dt$ 

$$y(t) = 0$$
 implies  $dy = 0$ .

$$\int_C (e^{-y}-2x)dx + (-xe^{-y}-\sin(y))dy$$

$$= \int_0^2 (1 - 2(2 - t))(-dt) = \int_0^2 (3 - 2t)dt = 3t - t^2|_0^2 = 6 - 4 = 2.$$



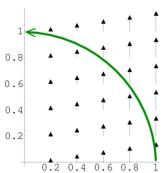
 $\int_C F \cdot d\mathbf{r} = 0$  since C is a closed curve and F is conservative.

If a force is given by  $\mathbf{F}(x,y) = (0,x)$ ,

compute the work done by the force field on a particle that moves along the curve C that is the counterclockwise quarter unit circle in the first quadrant. In the below picture, the curve C is plotted by th long green curved arrow. The vector field  $\mathbf{F}$  is represented by the vertical black arrows.

Choose a parametrization of the curve:

$$\mathbf{c}(t) = (\cos t, \sin t), \quad 0 \le t \le \frac{\pi}{2}.$$



https://mathinsight.org/line integral vector examples

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{\pi/2} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$= \int_{0}^{\pi/2} \mathbf{F}(\cos t, \sin t) \cdot (-\sin t, \cos t) dt$$

$$= \int_{0}^{\pi/2} (0, \cos t) \cdot (-\sin t, \cos t) dt$$

$$= \int_{0}^{\pi/2} \cos^{2} t \, dt$$

$$= \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2t) dt$$

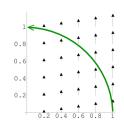
$$= \frac{1}{2} \left( t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\pi/2} = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}.$$

https://mathinsight.org/line\_integral\_vector\_examples

Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

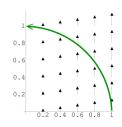


Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

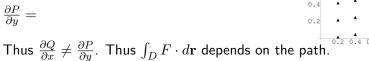
Thus  $\frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y}$ .



Suppose 
$$F(x,y) = (0,x) = (P,Q)$$

$$\frac{\partial Q}{\partial x} =$$

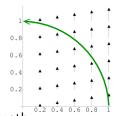
$$\frac{\partial P}{\partial y} =$$



Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$



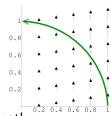
Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} =$$

Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$



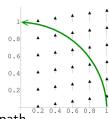
Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$



Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

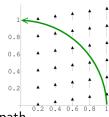
Let E(t) = path from (1, 0) to (0, 1) traveling first vertically to (1, 1) and then traveling horizontally to (0, 0).

$$\int_E F \cdot d\mathbf{r} =$$

Suppose 
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$



Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

Let E(t) = path from (1, 0) to (0, 1) traveling first vertically to (1, 1) and then traveling horizontally to (0, 0).

$$\int_{E} F \cdot d\mathbf{r} = \int_{0}^{1} (0, 1) \cdot (0, 1) dt + 0 = 1$$