14.2 Scalar Line Integrals:

Let $\mathbf{C}:[a,b]\to\mathbf{R}^n$ be a smooth curve. $f:\mathbf{R}^n\to R$, a scalar field.

$$\begin{split} \Delta s_k &= \text{length of kth segment of path} \\ &= \int_{t_{k-1}}^{t_k} ||\mathbf{C}'(t)|| dt = ||\mathbf{C}'(t_k^*)||(t_k - t_{k-1}) = ||\mathbf{C}'(t_k^*)|| \Delta t_k \\ &\quad \text{for some } t_k^{**} \in [t_{k-1}, t_k] \end{split}$$

$$\int_{\mathbf{C}} f \ d\mathbf{r} \sim \Sigma_{i=1}^n f \ (\mathbf{C}(t_k^*)) \Delta s_k = \Sigma_{i=1}^n f(\mathbf{C}(t_k^*)) ||\mathbf{C}'(t_k^{**})|| \Delta t_k$$
 Thus
$$\int_{\mathbf{C}} f \ ds = \int_a^b f \ (\mathbf{C}(t)) ||\mathbf{C}'(t)|| dt$$

$$\int_{\mathbf{C}} f \ ds = \text{area under curve } f(\mathbf{C})$$
 where area is positive above xy plane and negative below xy plane

https://brilliant.org/wiki/line-integral

14.2 Vector Line integrals:

Let $\mathbf{C}:[a,b]\to\mathbf{R}^n$ be a smooth path. $F:\mathbf{R}^n\to R^n$, a vector field.

$$\mathbf{C}'(t_k^*) \sim \frac{\Delta \mathbf{C}_k}{\Delta t_k}$$

$$\int_{\mathbf{C}} F \cdot d\mathbf{r} \sim \sum_{i=1}^{n} F(\mathbf{C}(t_{k}^{*})) \cdot \Delta \mathbf{C}_{k} = \sum_{i=1}^{n} F(\mathbf{C}(t_{k}^{*})) \cdot \mathbf{C}'(t_{k}^{*}) \Delta t_{k}$$

$$\text{Thus } \int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_{a}^{b} F(\mathbf{C}(t)) \bullet \mathbf{C}'(t) dt$$

$$\text{F is a vector field.}$$

http://physicssimplified for you.blog spot.com/

https://en.wikipedia.org/wiki/Line_integral

Thm: Let $\mathbf{C}:[a,b]\to\mathbf{R}^n$ be a piecewise smooth path and let $\mathbf{D}:[c,d]\to\mathbf{R}^n$ be a reparametrization of \mathbf{C} . Then

Scalar line integral:

If $f: \mathbf{R}^n \to \mathbf{R}$ is continuous, then $\int_{\mathbf{D}} f \ ds = \int_{\mathbf{C}} f \ ds$ since area under curve does not depend on parametrization.

Vector line integral

If $F: \mathbf{R}^n o \mathbf{R}^n$ is continuous, then

$$\int_{\mathbf{D}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} F \cdot d\mathbf{r}$$
 if \mathbf{D} is orientation-preserving.

$$\int_{\mathbf{D}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} F \cdot d\mathbf{r}$$
 if \mathbf{D} is orientation-reversing.

Another notation (differential form): For simplicity, we will work in ${\bf R}^2$, but the following generalizes to any dimension.

Let
$$C(t) = (x(t), y(t))$$
. Let $F(x, y) = (P(x, y), Q(x, y))$

where
$$x = x(t), y = y(t)$$
. Note $x'(t) = \frac{dx}{dt}$, $y'(t) = \frac{dy}{dt}$

Thus
$$dx = x'(t)dt$$
 and $dy = y'(t)dt$. Also, $d\mathbf{r} = (dx, dy)$

$$\int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} \underbrace{(P(x,y), Q(x,y)) \cdot (dx, dy)}_{\mathbf{C}} \cdot \int_{\mathbf{C}} F \cdot d\mathbf{r} = \int_{\mathbf{C}} \underbrace{P(x,y)dx}_{\mathbf{C}} + \underbrace{Q(x,y)dy}_{\mathbf{C}} + \underbrace{Q(x,y)dy}_{\mathbf{C}}$$

$$= \int_{\mathbf{C}} P(x(t), y(t)) x'(t) dt + \underbrace{Q(x(t), y(t))y'(t)}_{\mathbf{C}} dt$$

$$C_{\mathcal{H}} = (1 + 1)$$

Notation 1: Work definition

$$\int_{C} F \cdot d\mathbf{r} = \int_{C_{1}} F \cdot d\mathbf{r} + \int_{C_{2}} F \cdot d\mathbf{r}
= \int_{0}^{1} F(\mathbf{C}_{1}(t)) \cdot \mathbf{C}_{1}'(t)dt + \int_{0}^{1} F(\mathbf{C}_{2}(t)) \cdot \mathbf{C}_{2}'(t)dt
= \int_{0}^{1} F(t,0) \cdot (1,0)dt + \int_{0}^{1} F(1,t) \cdot (0,1)dt
= \int_{0}^{1} (t,0) \cdot (1,0)dt + \int_{0}^{1} (1,t) \cdot (0,1)dt
= \int_{0}^{1} tdt + \int_{0}^{1} tdt = 2(\frac{1}{2}t^{2})|_{0}^{1} = 1$$

$$C_1(t) = (t,0), \quad 0 \le t \le 1$$

$$C_1(t) = (1,0), \quad 0 \le t \le 1$$

$$C_2(t) = (1,t), \quad 0 \le t \le 1$$

$$C_2(t) = (0,1), \quad 0 \le t \le 1$$
Thus along C_1 , $dx = 1dt$ and $dy = 0dt$
and along C_2 , $dx = 0dt$ and $dy = 1dt$

$$Notation 2: \text{ differential form}$$

$$\int_C F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r}$$

$$= \int_{C_1} F \cdot (dx, dy) + \int_{C_2} F \cdot (dx, dy)$$

$$= \int_{C_1} (x, y) \cdot (dx, dy) + \int_{C_2} (x, y) \cdot (dx, dy)$$

$$= \int_{C_1} (x dy) + \int_{C_2} (x dx + y dy)$$

$$= \int_0^1 (t dt + 0(0dt)) + \int_0^1 (1(0dt) + t dt) = 2(\frac{1}{2}t^2)|_0^1 = 1$$
Note: Both of these methods are algebraically equivalent, so it doesn't matter which notation you use.

Let F(x,y) = (x,y) let $C(t) = C_1(t) \cup C_2(t)$

Can use any parametrization for the path C. For example:

$$\mathbf{C}_1:[0,1] \to \mathbf{R}^2$$
, $\mathbf{C}_1(t) = \underline{(t^2,0)}$

$$\mathbf{C}_2:[0,1]\to\mathbf{R}^2,\ \mathbf{C}_2(t)=(1,t^3)$$

Notation 1: Work definition

$$\int_C F \cdot d\mathbf{r} = \int_{C_1} F \cdot d\mathbf{r} + \int_{C_2} F \cdot d\mathbf{r}$$

$$= \int_0^1 F(\mathbf{C}_1(t)) \cdot \mathbf{C}_1'(t)dt + \int_0^1 F(\mathbf{C}_2(t)) \cdot \mathbf{C}_2'(t)dt$$

$$= \int_0^1 F(t^2, 0) \cdot (2t, 0)dt + \int_0^1 F(1, t^3) \cdot (0, 3t^2)dt$$

$$= \int_0^1 (t^2, 0) \cdot (2t, 0) dt + \int_0^1 (1, t^3) \cdot (0, 3t^2) dt$$

$$= \int_0^1 2t^3 dt + \int_0^1 3t^5 dt = \frac{1}{2}t^4 \Big|_0^1 + \frac{1}{2}t^6 \Big|_0^1 = 1$$

Can use any parametrization for the path C. For example:

$$\mathbf{C}_1:[0,1]\to\mathbf{R}^2$$
, $\mathbf{C}_1(t)=(t^2,0)$

$$\mathbf{C}_2:[0,1]\to\mathbf{R}^2$$
, $\mathbf{C}_2(t)=(1,t^3)$

Notation 2: differential form

$$\int_{C} F \cdot d\mathbf{r} = \int_{C_{1}} F \cdot d\mathbf{r} + \int_{C_{2}} F \cdot d\mathbf{r}$$

$$= \int_{C_{1}} F \cdot (dx, dy) + \int_{C_{2}} F \cdot (dx, dy)$$

$$= \int_{C_{1}} (x, y) \cdot (dx, dy) + \int_{C_{2}} (x, y) \cdot (dx, dy)$$

$$= \int_{C_{1}} [xdx + ydy] + \int_{C_{2}} [xdx + ydy]$$

$$= \int_{0}^{1} t^{2}(2t)dt + \int_{0}^{1} 1(0) + t^{3}3t^{2}dt = \frac{1}{2}t^{4}|_{0}^{1} + \frac{1}{2}t^{6}|_{0}^{1} = 1$$

Methods for special cases:

Method: 14.3 Suppose $F = \nabla f$

 ${\sf Claim}\ F\ {\sf has\ path\ independent\ line\ integrals}.$

A path $C : [a, b] \to \mathbb{R}^n$ is *closed* if C(a) = C(b).

If curve is not closed canNOT use Green's Theorem.

In Calculus I we had the **Fundamental Theorem of Calculus** that told us how to evaluate definite integrals. This told us,

Suppose that C is a **smooth** curve given by $\vec{r}(t)$, $a \leq t \leq b$. Also suppose that f is a function whose gradient vector ∇f , s continuous on C. Then, $\int \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$

$$\int_{C} \nabla f \cdot d\vec{r} = \int_{a}^{b} \nabla f(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} [f(\vec{r}(t))] dt \quad \text{by the chain rule}$$

$$= f(\vec{r}(b)) - f(\vec{r}(a)) \quad \text{by FTC}$$

$$F = (x, y) = (3x, 3y) = X$$

Find
$$f$$
 such that $\nabla f = F(x,y) = (x,y)$

If
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

$$\underbrace{\frac{\partial f(x,y)}{\partial x}} = x \text{ implies} \underbrace{\left(\frac{\partial f(x,y)}{\partial x}\right)}_{x} = \underbrace{\left(x - \frac{\partial f(x,y)}{\partial x}\right)}_{x}$$

$$f(x,y) = \frac{1}{2}x^2 + k(y)$$

254

Let F(x,y) = (x,y) / let C(t) = path from (0, 0) to (1, 1) traveling first along x axis to (1, 0) and then traveling vertically to (1, 1).

If
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

If
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

$$\frac{\partial f(x,y)}{\partial x} = x \text{ implies } \int \frac{\partial f(x,y)}{\partial x} dx = \int x dx \text{ implies } f(x,y) = \frac{x^2}{2} + k(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial y} = k'(y) = y.$$
 Hence $k(y) = \frac{y^2}{2} + \text{constant}$

Thus if we let
$$f(x,y) = \underbrace{\chi}_{1} + \underbrace{\chi}_{2}$$
 then $\nabla f = \underbrace{\chi}_{1} + \underbrace{\chi}_{2}$

If
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

$$\frac{\partial f(x,y)}{\partial x}=x$$
 implies $\int \frac{\partial f(x,y)}{\partial x}dx=\int xdx$ implies $f(x,y)=\frac{x^2}{2}+k(y)$

$$\frac{\partial f}{\partial y} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial y} = k'(y) = y$$
. Hence $k(y) = \frac{y^2}{2} + \text{constant}$

Thus if we let
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$
, then $\nabla f = (x,y) = F$.

Hence
$$\int_{\mathbf{r}} F \cdot d\vec{r} = \int_{\mathbf{r}} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

$$= f((1,1)) - f((0,0)) = \frac{1}{2} + \frac{1}{2} - (\frac{0}{2} + \frac{1}{2})$$

If
$$F(x,y) = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$
, then

$$\frac{\partial f(x,y)}{\partial x} = x$$
 implies $\int \frac{\partial f(x,y)}{\partial x} dx = \int x dx$ implies $f(x,y) = \frac{x^2}{2} + k(y)$

$$\frac{\partial f}{\partial y} = \frac{\partial (\frac{x^2}{2} + k(y))}{\partial y} = \underline{k'(y) = y}$$
. Hence $k(y) = \frac{y^2}{2} + \text{constant}$

Thus if we let
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$$
, then $\nabla f = (x,y) = F$.

Hence
$$\int\limits_{C}F \cdot d\vec{r} = \int\limits_{C}\nabla f \cdot d\vec{r} = f\left(\vec{r}\left(b\right)\right) - f\left(\vec{r}\left(a\right)\right)$$

$$= f(1,1) - f(0,0) = \frac{1^2}{2} + \frac{1^2}{2} - 0 = 1$$

F is called *conservative* if $F = \nabla f$. In this case f is called a potential function for the vector field F.

Suppose F is continuously differentiable in an open region. The following are equivalent:

lowing are equivalent:
$$F = \nabla f$$

$$\int_C F \cdot d\mathbf{r} = \int_a^b f(\mathbf{C}(t))||\mathbf{C}'(t)||dt \text{ is independent of the path taken from } \mathbf{r}(a) \text{ to } \mathbf{r}(b).$$
 That is
$$\int_C F \cdot d\mathbf{r} = \int_D F \cdot d\mathbf{r} \text{ for any paths } C, D \text{ that begin at } \mathbf{r}(a) \text{ and end at } \mathbf{r}(b).$$

$$\int_C F \cdot d\mathbf{r} = f(\mathbf{q}) - f(\mathbf{p}) \text{ where the path } C \text{ begins at } \mathbf{p} \text{ and ends at } \mathbf{q}$$
 If
$$F = (P(x,y), Q(x,y)), \text{ then } \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Method 14.3 Check if F has path independent line integrals

submethod 1: Find f such that $\nabla f = F$

$$F(x,y) = (x,y) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = \nabla f = \nabla(\frac{1}{2}x^2 + \frac{1}{2}y^2).$$

$$1.e \underbrace{f(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2}. \qquad \qquad \downarrow \emptyset \qquad \qquad \downarrow \emptyset$$

$$\int_C F \cdot d\mathbf{r} = f(1,1) - f(0,0) = \frac{1}{2} + \frac{1}{2} - 0 = 1.$$

vector line integral

Let F(x,y)=(x,y), let C(t)= path from (0,0) to (1,1) traveling first along x axis to (1,0) and then traveling vertically to (1,1).

Method 14.3 Check if F has path independent line integrals

$$\frac{\partial y}{\partial x} = 0 = \frac{\partial x}{\partial y}$$

where
$$F = (P, Q)$$
.

Thus can choose any path starting at (0, 0) and ending at (1, 1)

Ex: Let
$$\mathbf{C}:[0,1] \to \mathbf{R}^2$$
, $\mathbf{C}(t) = \underline{(t,t)}$.

$$\int_{C} F \cdot d\mathbf{r} = \int_{0}^{1} F(\underline{\mathbf{C}}(t)) \cdot \underline{\mathbf{C}}'(t) dt$$

$$= \int_{0}^{1} F(t, t) \cdot (1, 1) dt$$

$$= \int_0^1 (t,t) \cdot (1,1)dt = \int_0^1 2t dt = t^2 \Big|_0^1 = 1$$

Let
$$F(x,y) = (e^{-y} - 2x, -xe^{-y} - \sin(y)) = (P(x,y), Q(x,y))$$

$$\frac{\partial Q}{\partial \dot{x}} = \frac{\partial P}{\partial y}$$

Let
$$F(x,y) = (e^{-y} - 2x) - xe^{-y} - \sin(y) = (P(x,y), Q(x,y))$$

Does
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
?

$$\frac{\partial}{\partial x} \left(-xe^{-y} \right) = -\frac{y}{y}$$

$$\frac{\partial}{\partial y} \left(e^{-y} \right) = -\frac{y}{y}$$

Let
$$F(x,y) = (e^{-y} - 2x, -xe^{-y} - \sin(y)) = (P(x,y), Q(x,y))$$

Does
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
?

$$\frac{\partial Q}{\partial x} = \frac{\partial (-xe^{-y} - \sin(y))}{\partial x} = -e^{-y}$$

$$\text{Thus } \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

$$\frac{\partial P}{\partial y} = \frac{\partial (e^{-y} - 2x)}{\partial y} = -e^{-y}$$

$$\frac{\partial P}{\partial y} = \frac{\partial (e^{-y} - 2x)}{\partial y} = -e^{-y}$$

Thus F is a gradient field and hence has path independent \bigvee integrals.

$$F = \nabla f = (\frac{\partial f}{\partial x})\frac{\partial f}{\partial y}) = (P,Q) = (e^{-y} - 2x) - xe^{-y} - \sin(y))$$

$$Thus \frac{\partial f}{\partial x} = e^{-y} - 2x$$

$$(e^{-y} - 2x) + 2(y)$$

$$+ (x, y) = xe^{-y} - xe^{-y}$$

$$F = \nabla f = (\frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) - (P, Q) = (e^{-y} - 2x, -xe^{-y} - \sin(y))$$

Thus $\frac{\partial f}{\partial x} = e^{-y} - 2x$

Hence
$$f(x,y) = \int (e^{-y} - 2x) dx = xe^{-y} - x^2 + c(y)$$
.

$$F = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (P, Q) = \left(e^{-y} - 2x, -xe^{-y} - \sin(y)\right)$$

Thus
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence
$$f(x,y) = \int (e^{-y} - 2x)dx = xe^{-y} - x^2 + c(y)$$
.

Thus
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

$$F = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (P, Q) = (e^{-y} - 2x, -xe^{-y} - \sin(y))$$

Thus
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence
$$f(x,y) = \int (e^{-y} - 2x)dx = xe^{-y} - x^2 + c(y)$$
.

Thus
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

Thus
$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$$
.

$$F = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (P, Q) = \left(e^{-y} - 2x, -xe^{-y} - \sin(y)\right)$$

Thus
$$\frac{\partial f}{\partial x} = e^{-y} - 2x$$

Hence
$$f(x,y) = \int (e^{-y} - 2x)dx = xe^{-y} - x^2 + c(y)$$
.

Thus
$$\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$$

Thus
$$-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$$
.

Thus
$$c'(y) = -sin(y)$$
 and $c(y) = \int (-sin(y))dy = cos(y) + k$

$$F = \nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (P, Q) = (e^{-y} - 2x, -xe^{-y} - sin(y))$$
 Thus $\frac{\partial f}{\partial x} = e^{-y} - 2x$ Hence $f(x, y) = \int (e^{-y} - 2x) dx = xe^{-y} - x^2 + c(y)$. Thus $\frac{\partial f}{\partial y} = \frac{\partial (xe^{-y} - x^2 + c(y))}{\partial y} = -xe^{-y} + c'(y)$ Thus $-xe^{-y} - sin(y) = \frac{\partial f}{\partial y} = -xe^{-y} + c'(y)$. (2) Thus $c'(y) = -sin(y)$ and $c(y) = \int (-sin(y)) dy = cos(y) + k$ Hence $f(x, y) = xe^{-y} - x^2 + cos(y) + k$ Since F is a gradient field, $\int_C (e^{-y} + 2x) dx + (-xe^{-y} - sin(y)) dy = f(0, 0) - f(2, 0) = 0 - 0 + 1 + k - [2 - 4 + 1 + k] = 2$

Alternatively,

Alternatively, let
$$X:[0,2]\to {\bf R}^2$$
, $X(t)=(2-t,0)=(x(t),y(t))$. Then $X(0)=(2,0)$ and $X(2)=(0,\overline{0})$

$$x(t) = 2 - t$$
 implies $dx = -dt$

$$y(t) = 0$$
 implies $dy = 0$.

$$\textstyle \int_C (e^{-y}-2x)dx + (-xe^{-y}-\sin(y))dy$$

Alternatively, let
$$X:[0,2]\to {\bf R}^2$$
, $X(t)=(2-t,0)=(x(t),y(t))$. Then $X(0)=(2,0)$ and $X(2)=(0,0)$

$$x(t) = 2 - t$$
 implies $dx = -dt$

$$y(t) = 0$$
 implies $dy = 0$.

$$\int_C (e^{-y}-2x)dx + (-xe^{-y}-\sin(y))dy$$

$$= \int_0^2 (1 - 2(2 - t))(-dt) = \int_0^2 (3 - 2t)dt = 3t - t^2|_0^2 = 6 - 4 = 2.$$

 $\int_C F \cdot d\mathbf{r} = 0$ since C is a closed curve and F is conservative.

If a force is given by $\mathbf{F}(x,y) = (0,x)$,

compute the work done by the force field on a particle that moves along the curve C that is the counterclockwise quarter unit circle in the first quadrant. In the below picture, the curve C is plotted by th long green curved arrow. The vector field \mathbf{F} is represented by the vertical black arrows.

Choose a parametrization of the curve:

$$\mathbf{c}(t) = (\cos t, \sin t), \quad 0 \le t \le \frac{\pi}{2}.$$

https://mathinsight.org/line integral vector examples

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{\pi/2} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$= \int_{0}^{\pi/2} \mathbf{F}(\cos t, \sin t) \cdot (-\sin t, \cos t) dt$$

$$= \int_{0}^{\pi/2} (0, \cos t) \cdot (-\sin t, \cos t) dt$$

$$= \int_{0}^{\pi/2} \cos^{2} t \, dt$$

$$= \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\pi/2} = \frac{1}{2} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi}{4}.$$

https://mathinsight.org/line integral vector examples

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Thus $\frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y}$.

Suppose
$$F(x,y) = (0,x) = (P,Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y}$$
 =

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} =$$

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

Let E(t) = path from (1, 0) to (0, 1) traveling first vertically to (1, 1) and then traveling horizontally to (0, 0).

$$\int_E F \cdot d\mathbf{r} =$$

Suppose
$$F(x, y) = (0, x) = (P, Q)$$

$$\frac{\partial Q}{\partial x} =$$

$$\frac{\partial P}{\partial y} =$$

Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to (0, 0) and then traveling vertically to (1, 1).

$$\int_D F \cdot d\mathbf{r} = 0 + \int 0 \cdot d\mathbf{r} = 0$$

Let E(t) = path from (1, 0) to (0, 1) traveling first vertically to (1, 1) and then traveling horizontally to (0, 0).

$$\int_{E} F \cdot d\mathbf{r} = \int_{0}^{1} (0, 1) \cdot (0, 1) dt + 0 = 1$$