
14.2 Scalar Line Integrals:

Let C : [a, b] → Rn be a smooth curve. f : Rn → R, a scalar field.

∆sk = length of kth segment of path
=

∫ tk
tk−1

||C′(t)||dt = ||C′(t∗k)||(tk − tk−1) = ||C′(t∗k)||∆tk
for some t∗∗k ∈ [tk−1, tk]∫

C f dr ∼ Σn
i=1f (C(t∗k))∆sk = Σn

i=1f(C(t∗k))||C′(t∗∗k )||∆tk

Thus
∫
C f ds =

∫ b
a f (C(t))||C′(t)||dt∫

C f ds = area under curve f(C)

where area is positive above xy plane
and negative below xy plane

https://en.wikipedia.org/wiki/Line_integral
https://brilliant.org/wiki/line-integral

14.2 Vector Line integrals:

Let C : [a, b] → Rn be a smooth path. F : Rn → Rn, a vector
field.

C′(t∗k) ∼
∆Ck
∆tk∫

C F · dr ∼ Σn
i=1F (C(t∗k)) ·∆Ck = Σn

i=1F (C(t∗k)) ·C′(t∗k)∆tk

Thus
∫
C F · dr =

∫ b
a F (C(t)) ·C′(t)dt

http://physicssimplifiedforyou.blogspot.com/ https://en.wikipedia.org/wiki/Line_integral

Thm: Let C : [a, b] → Rn be a piecewise smooth path and
let D : [c, d] → Rn be a reparametrization of C. Then

Scalar line integral:
If f : Rn → R is continuous, then

∫
D f ds =

∫
C f ds

since area under curve does not depend on parametrization.

Vector line integral
If F : Rn → Rn is continuous, then∫

D F · dr =
∫
C F · dr if D is orientation-preserving.∫

D F · dr = −
∫
C F · dr if D is orientation-reversing.



Another notation (differential form): For simplicity, we will work
in R2, but the following generalizes to any dimension.

Let C(t) = (x(t), y(t)). Let F (x, y) = (P (x, y), Q(x, y))

where x = x(t), y = y(t). Note x′(t) = dx
dt , y′(t) = dy

dt

Thus dx = x′(t)dt and dy = y′(t)dt. Also, dr = (dx, dy)∫
C
F · dr =

∫
C
(P (x, y), Q(x, y)) · (dx, dy)

∫
C
F · dr =

∫
C
P (x, y)dx+Q(x, y)dy

=

∫ b

a
P (x(t), y(t))x′(t)dt+Q(x(t), y(t))y′(t)dt

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Notation 1: Work definition∫
C F · dr =

∫
C1

F · dr+
∫
C2

F · dr

=
∫ 1
0 F (C1(t)) ·C′

1(t)dt+
∫ 1
0 F (C2(t)) ·C′

2(t)dt

=
∫ 1
0 F (t, 0) · (1, 0)dt+

∫ 1
0 F (1, t) · (0, 1)dt

=
∫ 1
0 (t, 0) · (1, 0)dt+

∫ 1
0 (1, t) · (0, 1)dt

=
∫ 1
0 tdt+

∫ 1
0 tdt = 2(12 t

2)|10 = 1

Let F (x, y) = (x, y), let C(t) = C1(t) ∪ C2(t)

C1(t) = (t, 0), 0 ≤ t ≤ 1 C2(t) = (1, t), 0 ≤ t ≤ 1

C ′
1(t) = (1, 0), 0 ≤ t ≤ 1 C ′

2(t) = (0, 1), 0 ≤ t ≤ 1

Thus along C1, dx = 1dt and dy = 0dt

and along C2, dx = 0dt and dy = 1dt

Notation 2: differential form∫
C F · dr =

∫
C1

F · dr+
∫
C2

F · dr
=

∫
C1

F · (dx, dy) +
∫
C2

F · (dx, dy)

=
∫
C1
(x, y) · (dx, dy) +

∫
C2
(x, y) · (dx, dy)

=
∫
C1
(xdx+ ydy) +

∫
C2
(xdx+ ydy)

=
∫ 1
0 (tdt+ 0(0dt)) +

∫ 1
0 (1(0dt) + tdt) = 2(12 t

2)|10 = 1

Note: Both of these methods are algebraically equivalent, so it
doesn’t matter which notation you use.

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Can use any parametrization for the path C. For example:

C1 : [0, 1] → R2, C1(t) = (t2, 0)

C2 : [0, 1] → R2, C2(t) = (1, t3)

Notation 1: Work definition∫
C F · dr =

∫
C1

F · dr+
∫
C2

F · dr

=
∫ 1
0 F (C1(t)) ·C′

1(t)dt+
∫ 1
0 F (C2(t)) ·C′

2(t)dt

=
∫ 1
0 F (t2, 0) · (2t, 0)dt+

∫ 1
0 F (1, t3) · (0, 3t2)dt

=
∫ 1
0 (t

2, 0) · (2t, 0)dt+
∫ 1
0 (1, t

3) · (0, 3t2)dt

=
∫ 1
0 2t3dt+

∫ 1
0 3t5dt = 1

2 t
4|10 + 1

2 t
6|10 = 1



Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Can use any parametrization for the path C. For example:

C1 : [0, 1] → R2, C1(t) = (t2, 0)

C2 : [0, 1] → R2, C2(t) = (1, t3)

Notation 2: differential form∫
C F · dr =

∫
C1

F · dr+
∫
C2

F · dr

=
∫
C1

F · (dx, dy) +
∫
C2

F · (dx, dy)

=
∫
C1
(x, y) · (dx, dy) +

∫
C2
(x, y) · (dx, dy)

=
∫
C1
[xdx+ ydy] +

∫
C2
[xdx+ ydy]

=
∫ 1
0 t2(2t)dt+

∫ 1
0 1(0) + t33t2dt = 1

2 t
4|10 + 1

2 t
6|10 = 1

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Methods for special cases:

Method: 14.3 Suppose F = ∇f

Claim F has path independent line integrals.

Method: 14.4 For closed curves, can use Green’s Theorem
A path C : [a, b] → Rn is closed if C(a) = C(b).
If curve is not closed, canNOT use Green’s Theorem.

http://tutorial.math.lamar.edu/Classes/CalcIII/FundThmLineIntegrals.aspx

∫
C

∇f � d r⃗ =

∫ b

a
∇f (r⃗ (t)) � r⃗′ (t) dt

=

∫ b

a

d

dt
[f (r⃗ (t))] dt by the chain rule

= f (r⃗ (b))− f (r⃗ (a)) by FTC



Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Find f such that ∇f = F (x, y) = (x, y)

If F (x, y) = ∇f = (∂f∂x ,
∂f
∂y ), then

∂f(x,y)
∂x = x implies ∂f(x,y)

∂x = x

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

If F (x, y) = ∇f = (∂f∂x ,
∂f
∂y ), then

∂f(x,y)
∂x = x implies

∫ ∂f(x,y)
∂x dx =

∫
xdx implies f(x, y) = x2

2 + k(y)

∂f
∂y =

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

If F (x, y) = ∇f = (∂f∂x ,
∂f
∂y ), then

∂f(x,y)
∂x = x implies

∫ ∂f(x,y)
∂x dx =

∫
xdx implies f(x, y) = x2

2 + k(y)

∂f
∂y =

∂(x
2

2
+k(y))

∂y = k′(y) = y. Hence k(y) = y2

2 + constant

Thus if we let f(x, y) =

then ∇f =

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

If F (x, y) = ∇f = (∂f∂x ,
∂f
∂y ), then

∂f(x,y)
∂x = x implies

∫ ∂f(x,y)
∂x dx =

∫
xdx implies f(x, y) = x2

2 + k(y)

∂f
∂y =

∂(x
2

2
+k(y))

∂y = k′(y) = y. Hence k(y) = y2

2 + constant

Thus if we let f(x, y) = x2

2 + y2

2 , then ∇f = (x, y) = F .

Hence
∫
C

F � d r⃗ =
∫
C

∇f � d r⃗ = f (r⃗ (b))− f (r⃗ (a))

= f(1, 1)− f(0, 0) = 12

2 + 12

2 − 0 = 1



F is called conservative if F = ∇f . In this case f is called a
potential function for the vector field F .

Suppose F is continuously differentiable in an open region. The
following are equivalent:

I F is conservative
I F = ∇f

I ∫
C F · dr =

∫ b
a f (C(t))||C′(t)||dt is independent of the path

taken from r(a) to r(b). That is
∫
C F · dr =

∫
D F · dr for any

paths C,D that begin at r(a) and end at r(b).
I ∫

C F · dr = f(q)− f(p) where the path C begins at p and
ends at q

I If F = (P (x, y), Q(x, y)), then ∂P
∂y = ∂Q

∂x

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Method 14.3 Check if F has path independent line integrals

submethod 1: Find f such that ∇f = F

F (x, y) = (x, y) = (∂f∂x ,
∂f
∂y ) = ∇f = ∇(12x

2 + 1
2y

2).

I.e, f(x, y) = 1
2x

2 + 1
2y

2.∫
C F · dr = f(1, 1)− f(0, 0) = 1

2 + 1
2 − 0 = 1.

Let F (x, y) = (x, y), let C(t) =path from (0, 0) to (1, 1) traveling
first along x axis to (1, 0) and then traveling vertically to (1, 1).

Method 14.3 Check if F has path independent line integrals

submethod 2: Check if ∂Q
∂x = ∂P

∂y , where F = (P,Q).
∂y
∂x = 0 = ∂x

∂y

Thus can choose any path starting at (0, 0) and ending at (1, 1)

Ex: Let C : [0, 1] → R2, C(t) = (t, t).∫
C F · dr =

∫ 1
0 F (C(t)) ·C′(t)dt

=
∫ 1
0 F (t, t) · (1, 1)dt

=
∫ 1
0 (t, t) · (1, 1)dt =

∫ 1
0 2tdt = t2|10 = 1

Let F (x, y) = (e−y − 2x,−xe−y − sin(y)) = (P (x, y), Q(x, y))

Find
∫
C(e

−y − 2x)dx+ (−xe−y − sin(y))dy, where C is a
piecewise smooth curve starting at (2, 0) and ending at (0, 0).

Does ∂Q
∂x = ∂P

∂y ?

∂Q
∂x = ∂(−xe−y−sin(y))

∂x = −e−y ∂P
∂y = ∂(e−y−2x)

∂y = −e−y

Thus ∂Q
∂x = ∂P

∂y .

Thus F is a gradient field and hence has path independent
integrals.



F = ∇f = (∂f∂x ,
∂f
∂y ) = (P,Q) = (e−y − 2x,−xe−y − sin(y))

Thus ∂f
∂x = e−y − 2x

Hence f(x, y) =
∫
(e−y − 2x)dx = xe−y − x2 + c(y).

Thus ∂f
∂y = ∂(xe−y−x2+c(y))

∂y = −xe−y + c′(y)

Thus −xe−y − sin(y) = ∂f
∂y = −xe−y + c′(y).

Thus c′(y) = −sin(y) and c(y) =
∫
(−sin(y))dy = cos(y) + k

Hence f(x, y) = xe−y − x2 + cos(y) + k

Since F is a gradient field,
∫
C(e

−y − 2x)dx+ (−xe−y − sin(y))dy
= f(0, 0)− f(2, 0) = 0− 0 + 1 + k − [2− 4 + 1 + k] = 2

Find
∫
C(e

−y − 2x)dx+ (−xe−y − sin(y))dy, where C is a
piecewise smooth curve starting at (2, 0) and ending at (0, 0).

Alternatively, let X : [0, 2] → R2, X(t) = (2− t, 0) = (x(t), y(t)).
Then X(0) = (2, 0) and X(2) = (0, 0)

x(t) = 2− t implies dx = −dt

y(t) = 0 implies dy = 0.∫
C(e

−y − 2x)dx+ (−xe−y − sin(y))dy

=
∫ 2
0 (1− 2(2− t))(−dt) =

∫ 2
0 (3− 2t)dt = 3t− t2|20 = 6− 4 = 2.

Find
∫
C(e

−y − 2x)dx+ (−xe−y − sin(y))dy, where C is a
piecewise smooth curve starting at (2, 0) and ending at (2, 0).∫
C F · dr = 0 since C is a closed curve and F is conservative.



Suppose F (x, y) = (0, x) = (P,Q)

∂Q
∂x =

∂P
∂y =

Thus ∂Q
∂x ̸= ∂P

∂y . Thus
∫
D F · dr depends on the path.

Let D(t) =path from (1, 0) to (0, 1) traveling first along x axis to
(0, 0) and then traveling vertically to (1, 1).∫
D F · dr = 0 +

∫
0 · dr = 0

Let E(t) =path from (1, 0) to (0, 1) traveling first vertically to (1,
1) and then traveling horizontally to (0, 0).∫
E F · dr =

∫ 1
0 (0, 1) · (0, 1)dt+ 0 = 1


