Math 3550 Midterm 1

Name:

March 3, 2020Show all work.Circle section number:91 (9:30 am)131 (1:30pm)

1.) For the plane curve, x(t) = t, y(t) = ln(t),

[6] 1a.) State the integral that gives the arclength from t = 1 to t = e (you do not need to calculate the integral).

curve = r(t) = (t, lnt)

velocity vector  $= r'(t) = (1, \frac{1}{t})$ 

speed = length of velocity vector =  $\sqrt{1 + \frac{1}{t^2}}$ 

Answer: 
$$\int_1^e \sqrt{1 + \frac{1}{t^2}} dt$$

[8] 1b.) Find the unit tangent and unit normal to this curve at the point (e, 1).

The point (e, 1) occurs at time t = e since r(e) = (e, ln(e)) = (e, 1)

1

velocity vector  $= r'(e) = (1, \frac{1}{e})$ 

speed = length of velocity vector =  $\sqrt{1 + \frac{1}{e^2}}$ 

To create unit vector, divide by length. Note can take any vector that is a positive multiple of the velocity vector. For example  $(e, 1) = e(1, \frac{1}{e})$ 

$$\mathbf{T} = \frac{(e,1)}{\sqrt{1+e^2}}$$

Answer: 
$$\mathbf{T} = \underline{\frac{(e,1)}{\sqrt{1+e^2}}}$$
 and  $\mathbf{N} = \underline{\frac{(1,-e)}{\sqrt{1+e^2}}}$ 

2.) Circle T for true and F for false.

[2] 2a.) If **a** and **b** represent adjacent sides of a parallelogram PQRS, so that  $\mathbf{a} = \overrightarrow{RQ}$  and  $\mathbf{b} = \overrightarrow{RS}$ , then the area of PQRS is  $|\mathbf{a} \cdot \mathbf{b}|$ .

[2] 2b.) If **a** and **b** represent adjacent sides of a parallelogram PQRS, so that  $\mathbf{a} = \overrightarrow{RQ}$  and  $\mathbf{b} = \overrightarrow{RS}$ , then the area of PQRS is  $|\mathbf{a} \times \mathbf{b}|$ .

[2] 2c.) If f is integrable, then the Riemann sum  $\sum_{i=1}^{k} f(x_i^*, y_i^*) \Delta A_i$  can be made arbitrarily close to the value of the double integral  $\int \int_R f(x, y) dA$  by choosing an inner partition of R with sufficiently small norm.

3.) Match the function to its graph by circling the appropriate letter. Recall  $(r, \theta, z)$  refers to cylindrical coordinates, while  $(\rho, \theta, \phi)$  refers to spherical coordinates.

F

D

- [3] 3i.) r = 4
- [3] 3ii.)  $\rho = 4$ .
- [3] 3iii.)  $\theta = \frac{\pi}{4}$  A
- [3] 3iv.)  $\phi = \frac{\pi}{4}$













0

C

Н





4.) For the surface  $f(x, y) = x^3 - 3x^2 + 3xy^2 - 3y^2$ ,

[4] 4a.) 
$$\nabla f = (-3x^2 - 6x + 3y^2), \quad 6xy - 6y > (-6x^2 - 6x^2 - 6x^2)$$

[2] 4b.) If f represents elevation, the direction of steepest ascent starting at (x, y) = (1, 2) is

 $< 3(1)^2 - 6(1) + 3(2)^2$ , 6(1)(2) - 6(2) > = < 3 - 6 + 12, 12 - 12 > = < 9, 0 >(or any positive multiple of < 9, 0 >, for example < 1, 0 >)

[2] 4c.) If f represents elevation, the direction of steepest descent starting at the point (x, y) = (1, 2) is < -9, 0 > (or any negative multiple of < 9, 0 > such as < -1, 0 >) [5] 4d.) The equation of the tangent plane at (1, 2, -2) is  $\underline{9x - z = 11}$ Normal vector to tangent plane  $= < \frac{\partial z}{\partial x}(1, 2), \ \frac{\partial z}{\partial y}(1, 2), -1 > = < 9, 0, -1 >$ Equation of plane:  $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$   $< 9, 0, -1 > \cdot < x - 1, \ y - 2, \ z + 2 > = 9(x - 1) + 0(y - 2) - 1(z + 2) = 0$ 9x - z = 9 + 2 = 11

[4] 4e.) Use differentials to estimate f(1.1, 1.8).

9x + 0y - z = 11 Thus z = 9x + 0y - 11z(1.1, 1.8) = 9(1.1) + 0(1.8) - 11 = 9 + 0(2) - 11 + 9(0.1) + 0(-0.2)= -2 + 9(0.1) + 0(-0.2) = -2 + 0.9 + 0 = -1.1

4 continued.) For the surface  $f(x, y) = x^3 - 3x^2 + 3xy^2 - 3y^2$ ,

[8] 4f.) Find and classify the critical points using the 2nd derivative test.

 $\nabla f = \langle 3x^2 - 6x + 3y^2, 6xy - 6y \rangle = \langle 0, 0 \rangle$  $3x^2 - 6x + 3y^2 = 0$  and 6xy - 6y = 0 $6xy - 6y^2 = 0$  implies 6y(x - 1) = 0Thus y = 0 or x = 1If y = 0, then  $3x^2 - 6x + 3y^2 = 3x^2 - 6x = 3x(x-2)0$ . Thus x = 0, 2If x = 1, then  $3x^2 - 6x + 3y^2 = 3(1)^2 - 6(1) + 3y^2 = -3 + 3y^2 = 0$ . Thus  $y^2 = 1$  and  $y = \pm 1$ Thus critical points are (0, 0), (2, 0), (1, -1), (1, 1) $\nabla f = \langle 3x^2 - 6x + 3y^2, 6xy - 6y \rangle$ Thus  $det(D^2f) = \begin{vmatrix} 6x - 6 & 6y \\ 6y & 6x - 6 \end{vmatrix} = (6x - 6)^2 - 36y^2 = 6^2(x - 1)^2 - 36y^2 = 36[(x - 1)^2 - y^2]$  $det(D^2f(0,0)) = 36[(0-1)^2 - (0)^2] > 0$ . Thus local min or max.  $f_{xx} = 6(0) - 6 < 0$ . Thus local max.  $det(D^2f(2,0)) = 36[(2-1)^2 - (0)^2] > 0$ . Thus local min or max  $f_{xx} = 6(2) - 6 > 0$ . Thus local min.  $det(D^2f(1,-1)) = 36[(1-1)^2 - (-1)^2] < 0$ . Thus saddle.  $det(D^2f(1,1)) = 36[(1-1)^2 - (1)^2] < 0$  Thus saddle. The critical point (0,0) is a <u>local maximum</u> The critical point (2,0) is a <u>local minimum</u> The critical point (1, -1) is a <u>saddle</u>

The critical point (1,1) is a <u>saddle</u>

[15] 5.) Use the method of Lagrange multipliers to find the point(s) on the surface z = 3xy + 6 closest to the origin.

Since surface is in  $\mathbb{R}^3$ , we want the point (x, y, z) closest to the origin (0, 0, 0)Minimizing distance squared =  $d^2 = f(x, y, z) = (x - 0)^2 + (y - 0)^2 + (z - 0)^2 = x^2 + y^2 + z^2$ subject to constraint g(x, y, z) = 3xy + 6 - z = 0 $\nabla f = \langle 2x, 2y, 2z \rangle, \quad \nabla g = \langle 3y, 3x, -1 \rangle$ The equation  $\nabla g = \langle 3y, 3x, -1 \rangle = \langle 0, 0, 0 \rangle$  has no solution, so just need to solve  $\nabla f = \lambda \nabla q$  $\langle 2x, 2y, 2z \rangle = \lambda \langle 3y, 3x, -1 \rangle$  subject to constraint g(x, y, z) = 3xy + 6 - z = 0 $2x = \lambda(3y), \quad 2y = \lambda(3x), \quad 2z = \lambda(-1)$ Thus  $\lambda = -2z$  and 2x = (-2z)(3y), 2y = (-2z)(3x)Thus x = -3zy,  $y = -3zx = -3z(-3zy) = 9z^2y$ . Thus  $y = 9z^2y$  and if  $y \neq 0$ ,  $z = \pm \frac{1}{3}$ x = -3zy implies  $x = -3(\pm \frac{1}{3})y = \mp y$ Or alternatively,  $2x = \lambda(3y), \quad 2y = \lambda(3x), \quad 2z = \lambda(-1)$  $2x^2 = \lambda(3xy), \quad 2y^2 = \lambda(3xy), \quad -6xyz = \lambda(3xy)$ Thus  $2x^2 = 2y^2 = -6xyz$ .  $2x^2 = 2y^2$  implies  $x = \pm y$  $2y^2 = -6xyz = -6(\pm y)yz = \mp 6y^2z$  implies  $1 = \mp 3z$ . Thus  $z = \mp \frac{1}{3}$ Plugging into constraint:  $3(\pm y)y + 6 - (\mp \frac{1}{3}) = 0$  $9y^2 \pm 18 + 1 = 0$ . Thus  $y^2 = \frac{-1 \pm 18}{9} = \frac{17}{9}$  and x = -y. Thus  $y = \frac{\pm \sqrt{17}}{3}$  and  $x = \frac{\pm \sqrt{17}}{3}$ , and  $z = \frac{1}{3}$ Note  $d^2 = \frac{17}{9} + \frac{17}{9} + \frac{1}{9} = \frac{35}{9}$ If y = 0, then x = 0 and z = 6, but  $f(0, 0, 6) = 36 > \frac{35}{9}$ Answer:  $\left(-\frac{\sqrt{17}}{3}, \frac{\sqrt{17}}{3}, \frac{1}{3}\right), \left(\frac{\sqrt{17}}{3}, -\frac{\sqrt{17}}{3}, \frac{1}{3}\right)$ 

Note: you were required to use Lagrange multiplier, but in real life, you could use simpler method for this problem since you can plug in the constraint to obtain a simpler unconstrained optimization problem. But in real life, constraints can be more interesting, and thus one cannot always turn a constrained optimization problem into an unconstrained optimization problem.

 $\begin{array}{l} \text{Minimizing distance squared} = d^2 = f(x,y,z) = (x-0)^2 + (y-0)^2 + (z-0)^2 = x^2 + y^2 + z^2 \\ \text{subject to constraint } z = 3xy + 6 \\ \text{Thus minimizing } h(x,y) = x^2 + y^2 + (3xy+6)^2 \\ \nabla h = & < 2x + 2(3xy+6)(3y), \ 2y + 2(3xy+6)(3x) > = & < 2x + 18xy^2 + 36y, \ 2y + 18x^2y + 36x > = & < 0, \ 0 > \\ 2x + 18xy^2 + 36y = 0 \ \text{and} \ 2y + 18x^2y + 36x = 0 \\ 2x^2 + 18x^2y^2 + 36yx = 0 \ \text{and} \ 2y^2 + 18x^2y^2 + 36xy = 0 \\ \text{Thus } 2x^2 - 2y^2 = 0. \ \text{Hence } x = \pm y \\ 2y + 18x^2y + 36x = 0 \ \text{implies} \ 2y + 18(\pm y)^2y + 36(\pm y) = 2y(1\pm 18 + 9y^2) = 0. \ \text{Hence } y = 0 \ \text{or} \ y^2 = \frac{\mp 18 - 1}{9} = \frac{17}{9} \\ \text{Thus the critical points are } (0,0), (-\frac{\sqrt{17}}{3}, \frac{\sqrt{17}}{3}), (\frac{\sqrt{17}}{3}, -\frac{\sqrt{17}}{3}) \\ h(\frac{\mp \sqrt{17}}{3}, \frac{\pm \sqrt{17}}{3}) = \frac{17}{9} + \frac{17}{9} + (-3(\frac{17}{9}) + 6)^2 = \frac{34}{9} + (-\frac{17}{3} + \frac{18}{3})^2 = \frac{34}{9} + (\frac{1}{3})^2 = \frac{34}{9} + \frac{1}{9} = \frac{35}{9} \\ h(0,0) = 36 \end{array}$ 

Answer: 
$$(-\frac{\sqrt{17}}{3}, \frac{\sqrt{17}}{3}, \frac{1}{3}), (\frac{\sqrt{17}}{3}, -\frac{\sqrt{17}}{3}, \frac{1}{3})$$

[12] 6.) Let  $R = [0,3] \times [0,1]$ . Use a partition consisting of 3 unit squares to estimate the volume of the solid under the surface z = xy + 2y and above the rectangle  $R = [0,3] \times [0,1]$  in the xy-plane. Use the upper right corner of each of the 3 unit squares to estimate the height of the 3 rectangular columns.

$$f(x_1, y_1)\Delta x\Delta y + f(x_2, y_2)\Delta x\Delta y + f(x_3, y_3)\Delta x\Delta y = f(1, 1)(1)(1) + f(2, 1)(1)(1) + f(3, 1)(1)(1)$$
$$= (1+2)(1)(1) + (2+2)(1)(1) + (3+2)(1)(1) = 3+4+5 = 12$$

Answer: 12

7.) Write the four double integrals specified below for determining the volume of the solid under the surface  $z = \frac{2y}{x^2+y^2}$  and above the region in the *xy*-plane bounded by the curves y = 0 and  $y = \sqrt{9-x^2}$ . You do NOT need to evaluate the integral. CIRCLE your answer.



[4] 7a.) Use polar coordinates, integrating first with respect to r, and then with respect to  $\theta$ .

$$\int_0^\pi \int_0^3 \frac{2sin\theta}{r} r dr d\theta$$

[4] 7b.) Use polar coordinates, integrating first with respect to  $\theta$ , and then with respect to r.

$$\int_0^3 \int_0^\pi \frac{2sin\theta}{r} r d\theta dr$$

[4] 7c.) Use Euclidean coordinates, integrating first with respect to x, and then with respect to y.

$$\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \frac{2y}{x^{2}+y^{2}} dx dy$$

[4] 7d.) Use Euclidean coordinates, integrating first with respect to y, and then with respect to x.

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \frac{2y}{x^2+y^2} dy dx$$