Note: We will use |x| to denote absolute value of x and det M to denote the determinant of M.

Suppose **a** and **b** are vectors in \mathbb{R}^3 . Recall that the area of a parallelogram with sides **a** and **b** is the length of the vector $\mathbf{a} \times \mathbf{b}$.

Suppose (a_1, a_2) and (b_1, b_2) are vectors in \mathbb{R}^2 . Note that vectors in \mathbb{R}^2 can be embedded in \mathbb{R}^3 by adding 0 as the third component.

Thus the area of a parallelogram with sides (a_1, a_2) and (a_1, a_2) is the length of the vector

$$(a_1, a_2, 0) \times (b_1, b_2, 0) = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \end{bmatrix} = (0, 0, a_1b_2 - b_1a_2)$$

Thus the length of this vector $= \left| \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \right| = |a_1b_2 - b_1a_2|$

https://www.webmatematik.dk/lektioner/matematik-b/vektorer-i-2d/determinanter and the state of the state of

Suppose a, b, and c are vectors in \mathbb{R}^3 . The scalar triple product of these vectors is

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}.$$

Recall that the volume of the parallelepiped with sides \mathbf{a} , \mathbf{b} , and \mathbf{c} is the absolute value of the scalar triple product of these vector

$$|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = \begin{vmatrix} \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \end{vmatrix}.$$

This generalizes to any dimension. The *n*-dimensional volume of an *n*-dimensional "parallelogram" with sides $\mathbf{a_1}, ..., \mathbf{a_n}$ is the absolute value of the determinant of the matrix with rows $\mathbf{a_i}$, i = 1, ..., n.

In particular area of 2 dimensional parallelogram is

$$\left| \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \right|$$

https://www.webmatematik.dk/lektioner/matematik-b/vektorer-i-2d/determinant

And the volume of the 3-dimensional parallelepiped is

$$\begin{vmatrix} det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \end{vmatrix}$$

https://de.wikipedia.org/wiki/Parallelepiped

We will see in the recommended videos that

In 2 dimensions: $dA = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$

where
$$\frac{\partial(x,y)}{\partial(u,v)}$$
 = Jacobian of $(x(u,v),y(u,v)) = det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial w} \end{bmatrix}$

and $\left|\frac{\partial(x,y)}{\partial(u,v)}\right|$ is the absolute value of this Jacobian.

Polar coordinate example: If $(x(r,\theta),y(r,\theta))=(r\cos(\theta),r\sin(\theta))$, then

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix} = r \text{ and } dA = rdrd\theta \qquad (\text{Note: } r \ge 0)$$

Page 1 of these notes implies that this easily generalizes to 3 dimensions:

In 3 dimensions: $dV = |\frac{\partial(x,y,z)}{\partial(u,v,w)}| \ du \ dv \ dw$

where
$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \text{Jacobian of } (x(u,v,w),y(u,v,w),z(u,v,w)) = det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}$$

and $\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|$ is the absolute value of this Jacobian.

Cylindrical coordinate example:

If
$$(x(r, \theta, z), y(r, \theta, z), z(r, \theta, z)) = (r\cos(\theta), r\sin(\theta), z)$$
, then

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \det \begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = r \text{ and } dV = rdrd\theta dz \qquad (\text{Note: } r \ge 0)$$

Spherical coordinate example:

If
$$(x(\rho, \theta, \phi), y(\rho, \theta, \phi), z(\rho, \theta, \phi)) = (\rho sin(\phi)cos(\theta), \rho sin(\phi)sin(\theta), \rho cos(\phi))$$
, then

$$\frac{\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)}}{\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)}} = \det \begin{bmatrix} \sin\phi\cos\theta & -\rho\sin\phi\sin\theta & \rho\cos\phi\cos\theta \\ \sin\phi\sin\theta & \rho\sin\phi\cos\theta & \rho\cos\phi\sin\theta \\ \cos\phi & 0 & -\rho\sin\phi \end{bmatrix} = \rho^2 sin(\phi) \text{ and } dV = \rho^2 sin(\phi)d\rho d\theta d\phi$$

(Note:
$$\rho^2 sin(\phi) \ge 0$$
 since $\rho \ge 0$ and $0 \le \phi \le \pi$)

FYI: The above generalizes to higher dimensions.