Find the volume between the surfaces: $z = x^2 + y^2 - 9$, $z = 16 - x^2 - y^2$ Need to find region over which to integrate:

Find intersection between surfaces: $x^2 + y^2 - 9 = 16 - x^2 - y^2$ Hence intersection is $2x^2 + 2y^2 = 25$

Thus (per figure) integrating over region $x^2 + y^2 \le \frac{25}{2}$

Height of columns: $16 - x^2 - y^2 - (x^2 + y^2 - 9) = 25 - 2x^2 - 2y^2$ Thus need to integrate $\int \int_R (25 - 2x^2 - 2y^2) dA$

Note: this integral is easier to compute using polar coordinates: Height of columns: $25 - 2x^2 - 2y^2 = 25 - 2r^2$ Region: $x^2 + y^2 \le \frac{25}{2}$ is equivalent to $0 \le r \le \frac{5}{\sqrt{2}}$ and $0 \le \theta \le 2\pi$ Hence $\int \int_R (25 - 2x^2 - 2y^2) (dA) = \int_0^{2\pi} \int_0^{\frac{5}{\sqrt{2}}} (25 - 2r^2) (r dr d\theta)$ $= \int_0^{\frac{5}{\sqrt{2}}} \int_0^{2\pi} (25r - 2r^3) d\theta dr = \int_0^{\frac{5}{\sqrt{2}}} \int (25r - 2r^3) \theta |_0^{2\pi} dr = \int_0^{\frac{5}{\sqrt{2}}} (25r - 2r^3) (2\pi) dr$ $= (2\pi) (\frac{25}{2}r^2 - \frac{2}{4}r^4) |_0^{\frac{5}{\sqrt{2}}} = (\pi) [25(\frac{5}{\sqrt{2}})^2 - (\frac{5}{\sqrt{2}})^4)] = (\pi) [25(\frac{5^2}{2}) - (\frac{5^4}{4})]$ $= (\pi) [\frac{2(5^4) - 5^4}{4}] = (\pi) [\frac{5^4}{4}] = \frac{625\pi}{4}$ Find the volume between the surfaces: $z = x^2 + y^2 - 9$, $z = 16 - x^2 - y^2$ Use a triple integral:

If the density of this volume is $\delta(x, y, z) = x + y + z + 1$, find the mass of this volume.

The centroid is

 $\overline{x} =$

 $\overline{y} =$

 $\overline{z} =$

Find the volume of the region bounded by $y^2 = x^2 + z^2$ and y = 3 using a triple integral.

Using Euclidean coordinates:

Integrate first with respect to z, then y, then x

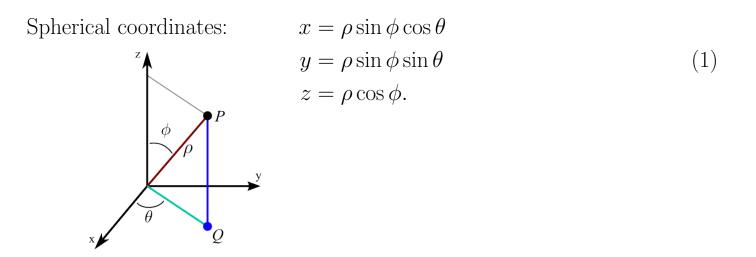
Integrate first with respect to y, then z, then x

Note the volume of the region bounded by $y^2 = x^2 + z^2$ and y = 3 is the same as the volume of the region bounded by $z^2 = x^2 + y^2$ and z = 3

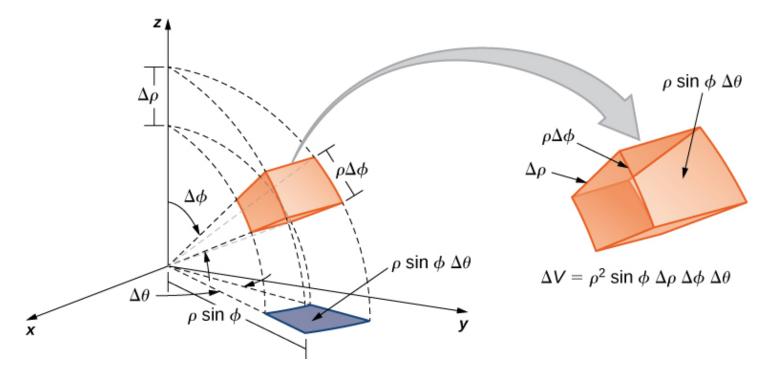
Use Cylindrical coordinates to find the volume of the region bounded by $z^2 = x^2 + y^2$ and z = 3.

Integrate first with respect to r, then θ , then z.

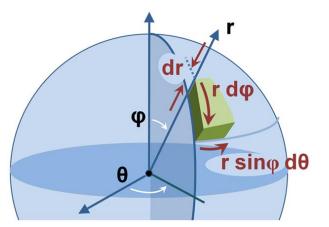
Integrate first with respect to z, then r, then θ



https://mathinsight.org/spherical_coordinates



 $https://math.libretexts.org/Bookshelves/Calculus/Map\%3A_Calculus_-_Early_Transcendentals_(Stewart)/15\% 3A_Multiple_Integrals/15.08\%3A_Triple_Integrals_in_Spherical_Coordinates$



 $https://en.wikipedia.org/wiki/File:Volume_element_spherical_coordinates.JPG$

Use spherical coordinates to find the volume between spheres of radius 3 and radius 4.