
12.9 Lagrange Multiplier Thm to solve constrained optimization problem:

If a maximum or minimum of

z = f (x, y) subject to the constraint g(x, y) = 0

occurs at point p, then either

1.) ∇g(p) = 0

2.) There exists a constant λ such that ∇f (p) = λ∇g(p)

https://en.wikipedia.org/wiki/Lagrange multiplier

Thus to find extrema for constrained optimization problem,

1.) Find all p that satisfy ∇g(p) = 0.

2.) Find all p that satisfy ∇f (p) = λ∇g(p) for some constant λ.

3.) Check if the points found in steps 1 and 2 satisfy the constraint g(x, y) =

0

Example: Find maximum z = −x2 − y2 + 25 subject to the constraint

xy − 1 = 0.

Note f (x, y) = −x2 − y2 + 25 and g(x, y) = xy − 1 = 0

Easier method 1: Since one can solve g(x, y) = 0 for y (or x), one can use

constraint to solve for y (or x) and plug into f , and then use (1) algebra or

(2) calc 1 or (3) section 12.5
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Method 2: Lagrange multiplier

Note: normally only use Lagrange multiplier when can’t (or don’t want to)

solve constraint for y (or x).

∇g =< y, x >

If ∇g =< y, x >=< 0, 0 >, then (x, y) = (0, 0), but g(0, 0) = 0 − 1 6= 0.

Thus (0, 0) does not satisfy the constraint.

∇f =< −2x,−2y >

Solve < −2x,−2y >= λ < y, x >

−2x = λy and −2y = λx

Thus −2x2 = λxy = −2y2

Thus x2 = y2

Thus (x, y) = (1, 1), (1,−1), (−1, 1), (−1,−1)

BUT only 2 of these points satisfy the constraint g(x, y) = xy − 1 = 0

g(1, 1) = 1− 1 = 0 g(1,−1) = −1− 1 6= 0

g(−1,−1) = 1− 1 = 0 g(−1, 1) = −1− 1 6= 0

Thus only (1, 1) and (-1, -1) satisfy the constraint.

Thus maximum subject to constraint occurs at (1, 1) and (-1, -1).

The maximum is f (x, y) = −(±1)2 − (±1)2 + 25 = 23
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Applications:

Find the points on the surface of z = 2
xy2

that are closest to the origin.

Minimize d2 = f (x, y, z) = (x − 0)2 + (y − 0)2 + (z − 0)2 subject to

g(x, y, z) = zxy2 − 2 = 0

2x = czy2 and 2y = c(2xyz) and 2z = c(xy2)

2x2x = 2cxzy2 and 2yy = c(2xyyz) and 2z2z = 2c(zxy2)

4x2 = 2y=4z2 implies 2x2 = y2 = 2z2

zxy2 = 2

z(±z)(2z2) = 2. Thus x = z = 1,−1, y = ±
√

2

(x, y, z) = (1,
√

2, 1), (−1,
√

2,−1), (1,−
√

2, 1), (−1,−
√

2,−1)
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12.10: 2nd order derivative test

Suppose z = f (x, y)

Recall the derivative matrix of f is Df =
[
∂f
∂x

∂f
∂y

]
Hessian matrix =

D2f =

 ∂
∂x(∂f∂x) ∂

∂y(∂f∂x)

∂
∂y(∂f∂x) ∂

∂y(∂f∂y )

 =

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

 = Hf

Determinant of the Hessian = ∂2f
∂x2

∂2f
∂y2
−

[
∂2f
∂y∂x

]2
= fxxfyy − [fxy]
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Recall fxy = (fx)y = (fy)x = fyx if 2nd order partials are continuous

Theorem 1: Two-variable second derivative test

If 2nd order partials of f are continuous in a neighborhood of a critical point

(a, b), then

1. If det(Hf (a, b)) = ∆ > 0, then

if fxx > 0, then f (a, b) is a local minimum.

if fxx < 0, then f (a, b) is a local maximum.

2. If det(Hf (a, b)) = ∆ < 0, then f (a, b) is neither a local minimum nor

a local maximum

Note if detHf (a, b) = ∆ = 0, then the 2nd derivative test gives no infor-

mation.

Example: f (x, y) = f (x, y) = x2 + y2 + pxy

See chalkboard/https://www.khanacademy.org/math/multivariable-calculus/applications-

of-multivariable-derivatives/optimizing-multivariable-functions/a/second-partial-

derivative-test
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