Sidenote: If $\mathbf{u} = (u_1, u_2)$, then $(u_1, u_2, D_\mathbf{u} f \mathbf{p})$ is tangent to surface z = f(x, y) for any point \mathbf{p} lying on this surface.

That is $(u_1, u_2, D_{\mathbf{u}} f \mathbf{p})$ lies in tangent plane to surface z = f(x, y) at point \mathbf{p} . Proof: $\langle u_1, u_2, D_{\mathbf{u}} f(\mathbf{p}) \rangle \cdot \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \rangle = u_1 \frac{\partial f}{\partial x} + u_2 \frac{\partial f}{\partial y} - D_{\mathbf{u}} f(\mathbf{p}) = 0$ since $D_{\mathbf{u}} f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \cdot \langle u_1, u_2 \rangle = \frac{\partial f}{\partial x} u_1 + \frac{\partial f}{\partial y} u_2$

Implicit function theorem.

If $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ are continuous and $\frac{\partial F}{\partial z} \neq 0$ and if **p** lies on surface F(x, y, z) = 0, then near **p**, the surface F(x, y, z) = 0 coincides with the surface z = f(x, y) for some function f

Thus $\nabla F(x, y, z) = \langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \rangle$ is perpendicular to surface F(x, y, z) = 0That is $\nabla F(x, y, z) = \langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \rangle$ is perpendicular to the tangent plane to surface F(x, y, z) = 0 at point **p**.

Thus $\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \rangle \cdot (\mathbf{x} - \mathbf{p})$ is the equation of the tangent plant to surface F(x, y, z) = 0 at point \mathbf{p} .