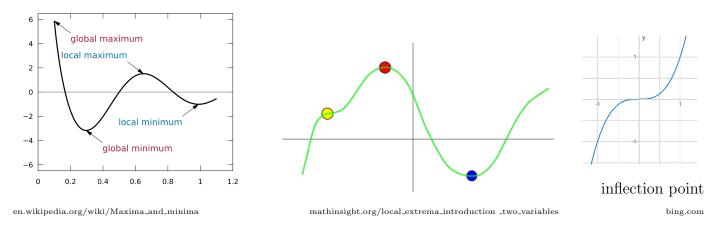
Calc 1 (one independent variables)

If $f(t_0)$ is a local maximum or local minimum, then $f'(t_0) = 0$ or DNE.

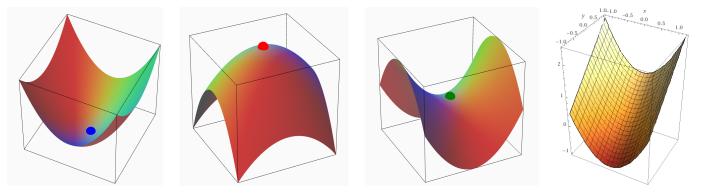


Extreme value theorem: If $f : [a, b] \to \mathbb{R}$ is continuous, then f must attain a maximum and a minimum, each at least once.

To find absolute max/min, check all t such that f'(t) = 0 or DNE as well as points on the boundary of [a, b] (i.e., also check f(a) and f(b)).

Section 12.5: Math 5 (multiple independent variables)

If $f(\mathbf{t_0})$ is a local maximum or local minimum, then for all x_i , $\frac{\partial f}{\partial x_i}(\mathbf{t_0}) = 0$ or DNE.

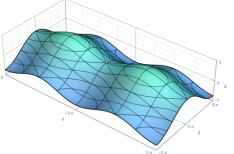


 $https://mathinsight.org/local_extrema_introduction_two_variablessing and a statement of the statement of t$

wolframalpha.com/ $z = x^2 +$

Extreme value theorem: If $f : C \to \mathbb{R}$ is continuous where C is a closed and bounded region in \mathbb{R}^n , then f must attain a maximum and a minimum, each at least once.

To find absolute max/min, check all **t** such that for all x_i , $\frac{\partial f}{\partial x_i}(\mathbf{t_0}) = 0$ or DNE as well as points on the boundary of C.



 $https://en.wikipedia.org/wiki/Surface_(topology)$

Example: Find the dimension of an open crate with volume 100 m^3 if material for bottom costs 10 cents/ m^2 while the 4 sides cost 5 cents per m^2 . Solve for one of the variables: $h = \frac{100}{lw}$ Solution: lwh = 100. Cost = 0.1lw + 0.5(2lh + 2wh = 0.1(lw + lh + wh)) $C(l,w) = 0.1(lw + lh + wh) = 0.1(lw + l(\frac{100}{lw}) + w(\frac{100}{lw}))$ Thus $C(l, w) = 0.1(lw + \frac{100}{w} + \frac{100}{l})$ $\frac{\partial C}{\partial l} = 0.1(w - \frac{100}{l^2}) = 0$ or DNE. $\frac{\partial C}{\partial w} = 0.1(l - \frac{100}{w^2}) = 0$ or DNE. Note $l \neq 0$ and $w \neq 0$ since volume $\neq 0$. $0.1(l - \frac{100}{w^2}) = 0$ implies $l = \frac{100}{w^2}$ $0.1(w - \frac{100}{l^2}) = 0$ implies $0.1(w - \frac{100}{(\frac{100}{2})^2}) = 0.1(w - \frac{100w^4}{100^2}) = 0.1(w - \frac{w^4}{100}) = 0$ Thus $w(1 - \frac{w^3}{100}) = 0$. Hence w = 0 or $1 - \frac{w^3}{100} = 0$. Thus $w^3 = 100$. Thus minimum occurs at $w = 100^{\frac{1}{3}} = 10^{\frac{2}{3}}$ $l = \frac{100}{w^2} = \frac{10^2}{10^{\frac{4}{3}}} = 10^{\frac{2}{3}}$ and $h = \frac{100}{lw} = \frac{10^2}{(10^{\frac{2}{3}})(10^{\frac{2}{3}})} = 10^{\frac{2}{3}}$ Thus dimension of box is $10^{\frac{2}{3}} \times 10^{\frac{2}{3}} \times 10^{\frac{2}{3}}$. Cost is $0.1[lw + lh + wh] = 0.1[(10^{\frac{2}{3}})(10^{\frac{2}{3}}) + (10^{\frac{2}{3}})(10^{\frac{2}{3}}) + (10^{\frac{2}{3}})(10^{\frac{2}{3}})]$ Thus cost is $\$ 0.3(10^{\frac{4}{3}}) = 0.3(10)(10^{\frac{1}{3}}) = 3(10^{\frac{1}{3}}) \sim 0.3(\frac{64}{3}) = \6.40 See 12.6 lecture to see that $\frac{64}{3}$ approximates $10^{\frac{4}{3}}$