11.6: Curvature

Arclength $s(t) = \int_{a}^{t} v(\tau) d\tau$ where $v(t) = |\mathbf{v}(t)|$ s(t) is an increasing function and thus $s^{-1}(t)$ exists. Let $t(s) =^{-1}(t)$. Arc-length parametrization = reparametrize by replacing t with t(s). Example: r(t) = (cos(t), sin(t), t)

Unit tangent vector
$$\mathbf{T}(t) = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|} = \frac{velocity}{speed} = \frac{d\mathbf{r}}{\frac{ds}{dt}} = \frac{d\mathbf{r}}{ds}$$

Thus if **T** is parametrized by arclength s, then $\mathbf{T}(s) = \frac{\mathbf{v}(s)}{v(s)} = \frac{velocity}{velocity} = \frac{d\mathbf{r}}{ds}$

$$\mathbf{T}(s) = \frac{\mathbf{v}(s)}{|\mathbf{v}(s)|} = \frac{velocity}{speed} = \frac{\frac{d\mathbf{r}}{ds}}{\frac{ds}{ds}} = \frac{d\mathbf{r}}{ds}$$

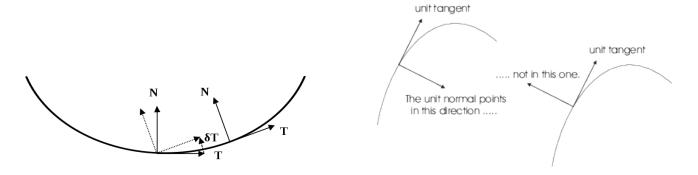
Since **T** is a unit vector, $\mathbf{T} \cdot \mathbf{T} = 1$.

Differentiate with respect to s: $2\mathbf{T} \cdot \frac{d\mathbf{T}}{ds} = 0$ Thus **T** is perpendicular to $\frac{d\mathbf{T}}{ds}$

Definition: The **principal unit normal** is $\frac{d\mathbf{T}}{\frac{d\mathbf{T}}{ds}} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}$ where

curvature
$$\kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \left|\frac{d\mathbf{T}}{dt}\frac{dt}{ds}\right| = \frac{1}{\frac{ds}{dt}}\left|\frac{d\mathbf{T}}{dt}\right| = \frac{1}{speed}\left|\frac{d\mathbf{T}}{dt}\right|$$

The unit normal points in the direction in which the curve is curving:



https://en.wikipedia.org/wiki/Curvature, http://sites.millersville.edu/bikenaga/calculus/tangent-normal-curvature.html

Example: Find the unit tangent and normal vectors to the curve $y = x^2$ at (2, 4)

In parametric form: $\mathbf{r}(t) = (t, t^2)$. Thus $\mathbf{T}(t) = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|} = \frac{(1, 2t)}{\sqrt{1+4t^2}}$

At
$$t = 2$$
, $\mathbf{T}(2) = \frac{(1,4)}{\sqrt{17}} = (\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}})$

Alternate method: one can use the slope of the tangent line to find \mathbf{T} : slope of line at x = 2 is 4.

(2, 4) is a point on the tangent line and

the direction of the line with slope $\frac{4}{+1}$ is $(\Delta x, \Delta y) = (1, 4)$.

Thus the equation of the tangent line to $y = x^2$ at (2, 4) is

$$(x, y) = (2, 4) + t(1, 4)$$

Note we only needed the direction of the tangent line which is given by the vector (1, 4).

Thus $\mathbf{T}(2) = \frac{(1,4)}{\sqrt{17}} = \left(\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right)$

The unit normal to $y = x^2$ at (2, 4) is either $\left(-\frac{4}{\sqrt{17}}\frac{1}{\sqrt{17}}, \left(\frac{4}{\sqrt{17}}, -\frac{1}{\sqrt{17}}\right)\right)$ as these are the only two vectors in R^2 that have length one and are perpendicular to **T** (check dot product).

Since the unit normal points in the direction in which the curve is curving, $\mathbf{N}(2) = \left(-\frac{4}{\sqrt{17}}\frac{1}{\sqrt{17}}\right)$ (draw picture) In 2D, if r(t) = (x(t), y(t)), let $\phi = tan^{-1}(\frac{y'(t)}{x'(t)})$

Write unit tangent in polar coordinates: $\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \mathbf{i}\cos\phi + \mathbf{j}\sin\phi$ Then $\frac{d\mathbf{T}}{ds} = (-\mathbf{i}\sin\phi + \mathbf{j}\cos\phi)\frac{d\phi}{ds}$ is obviously perpendicular to \mathbf{T} . curvature $= \kappa = |\frac{d\mathbf{T}}{ds}| = |(-\mathbf{i}\sin\phi + \mathbf{j}\cos\phi)\frac{d\phi}{ds}| = |\frac{d\phi}{ds}|$ Since $\phi = tan^{-1}(\frac{y'(t)}{x'(t)})$, then curvature $= \kappa = |\frac{d\phi}{ds}| = \frac{|x'y'' - x''y'|}{[(x')^2 + (y')^2]^{\frac{3}{2}}}$ Note if r(x) = (x, f(x)) = (x, y), then x' = 1 and x'' = 0. Thus $\kappa = \frac{|y''|}{[(1+(y')^2]^{\frac{3}{2}}} = \frac{|y''|}{|(1,y')|^3}$

Example: Find the point(s) on the curve $y = x^2$ where curvature is maximum.

$$r(x) = (x, x^2), \ \kappa = \frac{|x'y'' - x''y'|}{[(x')^2 + (y')^2]^{\frac{3}{2}}} = \frac{|y''|}{[1 + (y')^2]^{\frac{3}{2}}} = \frac{2}{[1 + 4x^2]^{\frac{3}{2}}} = 2[1 + 4x^2]^{-\frac{3}{2}}$$

$$\kappa'(x) = -3[1 + 4x^2]^{-\frac{5}{2}}(8x) = 0 \text{ iff } x = 0.$$

Note $\kappa'(x) > 0$ when $x < 0$, and $\kappa'(x) < 0$ when $x > 0$.
Thus $\kappa(x)$ has a maximum at $x = 0$.

When x = 0, y = 0. Thus maximum curvature occurs at (x, y) = (0, 0) (as expected).