Linear Functions

A function f is linear if $f(a\mathbf{x} + b\mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$

Or equivalently f is linear if 1.) $f(a\mathbf{x}) = af(\mathbf{x})$ and 2.) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$

Theorem: If f is linear, then $f(\mathbf{0}) = \mathbf{0}$

Proof: $f(\mathbf{0}) = f(0 \cdot \mathbf{0}) = 0 \cdot f(\mathbf{0}) = \mathbf{0}$

Example 1.) $f: R \to R, f(x) = 2x$

Proof:

$$f(ax + by) = 2(ax + by) = 2ax + 2by = af(x) + bf(y)$$

Example: $f: R \to R$, f(x) = 2x + 3 is NOT linear.

Proof: $f(2 \cdot 0) = f(0) = 3$, but $2f(0) = 2 \cdot 3 = 6$.

Hence $f(2 \cdot 0) \neq 2f(0)$

Alternate Proof: f(0+1) = f(1) = 5, but f(0) + f(1) = 3 + 5 = 8. Hence $f(0+1) \neq f(0) + f(1)$

Note confusing notation: Most lines, f(x) = mx + b are not linear functions.

Question: When is a line, f(x) = mx + b, a linear function?

Example 2.)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f((x_1, x_2)) = (2x_1, x_1 + x_2)$

Proof: Let $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2)$

$$a\mathbf{x} + b\mathbf{y} = a(x_1, x_2) + b(y_1, y_2) = (ax_1, ax_2) + (by_1, by_2) = (ax_1 + by_1, ax_2 + by_2)$$

$$f(ax_1 + by_1, ax_2 + by_2)$$

$$= (2(ax_1 + by_1), ax_1 + by_1 + ax_2 + by_2)$$

$$= (2ax_1 + 2by_1, ax_1 + ax_2 + by_1 + by_2)$$

$$= (2ax_1, ax_1 + ax_2) + (2by_1, by_1 + by_2)$$

$$= a(2x_1, ax_1 + ax_2) + b(2y_1, by_1 + by_2)$$

$$= af((x_1, x_2)) + bf((y_1, y_2))$$

Example 3.) D: set of all differential functions \rightarrow set of all functions, D(f) = f'

Proof:

$$D(af + bg) = (af + bg)' = af' + bg' = aD(f) + bD(g)$$

Example 4.) Given a, b real numbers,

I : set of all integrable functions on [a, b] $\rightarrow R$, $I(f) = \int_a^b f$

Proof:
$$I(sf + tg) = \int_a^b sf + tg = s \int_a^b f + t \int_a^b g = sI(f) + tI(g)$$

Example 5.) The inverse of a linear function is linear (when the inverse exists).

Suppose
$$f^{-1}(x) = c$$
, $f^{-1}(y) = d$.

Then
$$f(c) = x$$
 and $f(d) = y$ and $f(ac + bd) = af(c) + bf(d) = ax + by$.

Hence
$$f^{-1}(ax + by) = ac + bd = af^{-1}(x) + bf^{-1}(y)$$
.

Example 6.) D: set of all twice differential functions \rightarrow set of all functions, L(f) = af'' + bf' + cf

Proof:

$$L(sf + tg) = a(sf + tg)'' + b(sf + tg)' + c(sf + tg)$$

$$= saf'' + tag'' + sbf' + tbg' + scf + tcg$$

$$= s(af'' + bf' + cf) + t(ag'' + bg' + cg)$$

$$= sL(f) + tL(g)$$

Consequence 1: If ψ_1, ψ_2 are solutions to af'' + bf' + cf = 0, then $3\psi_1 + 5\psi_2$ is also a solution to af'' + bf' + cf = 0,

Proof: Since ψ_1, ψ_2 are solutions to af'' + bf' + cf = 0, $L(\psi_1) = 0$ and $L(\psi_2) = 0$.

Hence
$$L(3\psi_1 + 5\psi_2) = 3L(\psi_1) + 5L(\psi_2)$$

= $3(0) + 5(0) = 0$.

Thus $3\psi_1 + 5\psi_2$ is also a solution to af'' + bf' + cf = 0

Consequence 2:

If ψ_1 is a solution to af'' + bf' + cf = hand ψ_2 is a solution to af'' + bf' + cf = k, then $3\psi_1 + 5\psi_2$ is a solution to af'' + bf' + cf = 3h + 5k,

Since ψ_1 is a solution to af'' + bf' + cf = h, $L(\psi_1) = h$.

Since ψ_2 is a solution to af'' + bf' + cf = k, $L(\psi_2) = k$.

Hence
$$L(3\psi_1 + 5\psi_2) = 3L(\psi_1) + 5L(\psi_2)$$

= $3h + 5k$.

Thus
$$3\psi_1 + 5\psi_2$$
 is also a solution to $af'' + bf' + cf = 3h + 5k$