Math 34 Differential Equations Exam \#2
April 8, 2005
$[16]$ 1.) Find the LaPlace transform of $g(t)= \begin{cases}e^{t} & t<1 \\ 0 & 1 \leq t<3 \\ 4 & t \geq 3\end{cases}$
$[16]$ 2.) Find the inverse LaPlace transform of $\frac{8}{s^{2}-3 s-4}$

Answer :
[16] 3.) Use the LaPlace transform to solve the given initial value problem.

$$
y^{\prime \prime \prime}=2, \quad y(0)=0, \quad y^{\prime}(0)=9, \quad y^{\prime \prime}(0)=0
$$

$[16]$ 4.) Use the definition and not the table to find the LaPlace transform of $f(t)=4$. Show all steps including where you need to take limits.

Answer :
[16] 5.) A mass of 30 kg stretches a spring 2 m . The mass is acted on by an external force of $8 \cos (2 t)$ The mass is pushed upward 3 m above its equilibrium position, and then set in motion in the downward direction with a velocity of $4 \mathrm{~m} / \mathrm{sec}$. If the mass moves in a medium that imparts a viscous force of 10 N when the speed of the mass is $2 \mathrm{~m} / \mathrm{sec}$, formulate the initial value problem describing the motion of the mass.
6.) Circle T for True and F for False.
[4] 6a.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}(f g)=\mathcal{L}(f) \mathcal{L}(g)$
[4] 6b.) Suppose $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist. $\mathcal{L}(f+g)=\mathcal{L}(f)+\mathcal{L}(g)$
[4] 6c.) Initial conditions will NOT have a significant long term affect on the behavior of $u(t)$ if $u(t)$ is a solution to the initial value problem: $2 u^{\prime \prime}(t)+3 u^{\prime}(t)+4 u(t)=F(t), u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{0}^{\prime}$.
[4] 6d.) Initial conditions will NOT have a significant long term affect on the behavior of $u(t)$ if $u(t)$ is a solution to the initial value problem: $2 u^{\prime \prime}(t)-3 u^{\prime}(t)+4 u(t)=F(t) . u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{0}^{\prime}{ }^{\prime}$.
[2] 6e.) If $3 e^{r_{1} t}+4 e^{r_{2} t}$ is a solution to the initial value problem

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0 \quad u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{0}^{\prime}
$$

and ψ is a solution to the differential equation $m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{o} \cos (\omega t)$, then $3 e^{r_{1} t}+4 e^{r_{2} t}+\psi$ is a solution to the initial value problem

$$
\begin{equation*}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{o} \cos (\omega t) \quad u\left(t_{0}\right)=u_{0}, u^{\prime}\left(t_{0}\right)=u_{0}^{\prime} \tag{array}
\end{equation*}
$$

[3] 6f.) If $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ is a solution to the differential equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0
$$

and ψ is a solution to the differential equation $m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{o} \cos (\omega t)$, then $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+\psi$ is a solution to the differential equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{o} \cos (\omega t)
$$

$[2-4] \quad$ 7.) If $u(t)$ is a solution to the initial value problem:

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{o} \cos (\omega t), m, \gamma, k \geq 0, \quad u\left(t_{0}\right)=u_{0}, \quad u^{\prime}\left(t_{0}\right)=u_{0}^{\prime}
$$

and $\lim _{t \rightarrow \infty}|u(t)|=+\infty$, can you say anything about the values of m, γ, k, F_{o}, and ω.

