Solve $N(U_f + \frac{0}{1}) = N(\frac{1}{0}) = \text{unknot},$ $N(U_f + \frac{t}{w}) = N(\frac{0}{1}) = \text{unlink of two components.}$

Method 1:

1.) Since $N(\frac{0}{1})$ is a (2, p) torus link, $N(\frac{1}{0}) = \text{unknot}$, and E is rational, U_f is rational.

Suppose $U_f = \frac{a}{b}$. Then

$$N(U_f + \frac{0}{1}) = N(\frac{a}{b} + \frac{0}{1}) = N(\frac{a}{b}) = N(\frac{1}{0}).$$

Hence a = 1 since we can take a to be nonnegative $(\frac{a}{b} = \frac{-a}{-b})$.

Thus $U_f = \frac{1}{h}$.

$$N(U_f + \frac{t}{w}) = N(\frac{1}{b} + \frac{t}{w}) = N(\frac{w+tb}{t}) = N(\frac{0}{1})$$

Hence w+tb=0. Thus w=-tb. Since gcd(w,t)=1 and we can take t to be nonnegative, t=1. Hence w=-b.

Thus the solutions to the above system of tangle equations is $U_f = \frac{1}{b}$ and $\frac{t}{w} = -\frac{1}{b}$ where b is an arbitrary integer.

Method 3: Use KnotPlot

Method 2:

Solve
$$N(U_f + \frac{0}{1}) = N(\frac{1}{0}) = N(\frac{a}{b}) = \text{unknot},$$

 $N(U_f + \frac{t}{w}) = N(\frac{0}{1}) = N(\frac{z}{v}) = 2$ component unlink.

$$a=1, b=0, x=0, y=-1, z=0, v=1,$$

and v' is any integer such that $v'v^{\pm 1}=1 \text{mod } z$

By corollary 2 if $w \not\cong \pm 1 \mod t$ or if U_f is rational, then $\frac{t}{w} = \frac{xz - av'}{bv' - yz - kt} = \frac{v'}{-kt} =$ and $U = \frac{a}{b + ka} = \frac{1}{k}$ Or $\frac{t}{w} = \frac{bz - av'}{xv' - yz - kt} = \frac{v'}{-kt} =$ and $U = \frac{a}{x + ka} = \frac{1}{k}$

By Thm 3, if
$$w \cong \pm 1 \mod t$$
, $N(\frac{z}{v}) = N(\frac{tp(pb-qa)\pm a}{tq(pb-qa)\pm b})$

Hence
$$tp(pb-qa) \pm a = z$$
 or $-z$.
Thus $tp(pb-qa) = z \mp a$ or $-z \mp a$.

Hence $tp|(z \mp a)$.

IF
$$t \neq \pm 1$$
, then $U = (\frac{da-jb}{pb-qa} + \frac{j}{p}) \circ (h,0)$ or $(\frac{j}{p} + \frac{da-jb}{pb-qa}) \circ (h,0)$. Hence if $|z \mp a|$ is prime, U is rational.

If $t = \pm 1$, then U is rational by Hirasawa and Shimokaw

Solve
$$N(U'_f + \frac{f_1}{g_1}) = N(\frac{1}{0}) = N(\frac{a}{b}) = \text{unknot},$$

 $N(U'_f + \frac{f_2}{g_2}) = N(\frac{0}{1}) = N(\frac{z}{v}) = 2 \text{ component unlink.}$

given that $U_f = -\frac{1}{k}$ and $\frac{t}{w} = \frac{1}{k}$ are the solutions to $N(U_f + \frac{0}{1}) = N(\frac{1}{0}) = N(\frac{a}{b}) = \text{unknot},$ $N(U_f + \frac{t}{w}) = N(\frac{0}{1}) = N(\frac{z}{v}) = 2$ component unlink.

Suppose
$$\frac{f_1}{g_1} = (c_1, ..., c_n), f_1 = E[c_1, ..., c_n], g_1 = E[c_1, ..., c_{n-1}], e_1 = E[c_2, ..., c_n], i_1 = E[c_2, ..., c_{n-1}].$$

Then $\frac{f_2}{g_2} = \frac{te_1 + wf_1}{ti_1 + wg_1} = (b_1, ..., b_k + c_1, ..., c_n)$ where $\frac{t}{w} = (b_1, ..., b_k)$.

Since
$$\frac{t}{w} = \frac{1}{k} = (k, 0),$$

 $\frac{f_2}{g_2} = \frac{e_1 + kf_1}{i_1 + kg_1} = (k, 0 + c_1, ..., c_n) = (k, c_1, ..., c_n).$

$$U'_f = U_f \circ (-c_1, ..., -c_n) = (-k, 0) \circ (-c_1, ..., -c_n) = (-k, 0 + -c_1, ..., -c_n) = (-k, -c_1, ..., -c_n)$$

If
$$U_f = \frac{a}{b'}$$
, then $U'_f = U_f \circ (-c_1, ..., -c_n) = \frac{-f_1 b' + e_1 a}{q_1 b' - i_1 a}$.

Since
$$U_f = \frac{1}{-k}, U'_f = \frac{f_1 k + e_1}{g_1 k - i_1}$$

Note:
$$(1) = (0, 1, 1)$$
, but $(3) = (2) \circ (1) \neq (2) \circ (0, 1, 1) = (2, 1, 1)$