## 1

## 0.1 Heegaard Diagrams

**Defn:** A handlebody, U, of genus g is a regular neighborhood of a bouquet of g circles.

Le, U = one 0-handle  $\cup g$  1-handles.

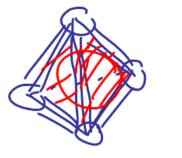


**Defn:** A Heegaard decomposition of a 3-manifold  $Y = U_1 \cup_{\Sigma} U_2$  where  $U_i$  are genus g handlebodies and  $\Sigma = \partial U_1 = \partial U_2$ .



Thm: Every 3 manifold  $Y^3$  has a Heegaard splitting.

Proof.: Every 3 manifold has a triangulation.



**Defn:** Let U be a handlebody and let  $\Sigma = \partial U$ . A set of attaching circles  $(\gamma_1, \dots, \gamma_g)$  for U is a g-tuple of simple closed curves on  $\Sigma$  such that

- (1)  $\gamma_i \cap \gamma_j = \emptyset$  for  $i \neq j$
- γs are linearly (i.e. homologically) independent in H<sub>i</sub>(Σ) or equivalently Σ−∪γ is connected].
- (3) γ<sub>i</sub> bound disjoint embedded disks in U

