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Preface

This text provides an introduction to the theory of finite type (Vassiliev)
knot invariants, with a stress on its combinatorial aspects. It is intended
for readers with no or little background in this area, and we care more
about a clear explanation of the basic notions and constructions than about
widening the exposition to more recent and more advanced material. Our
aim is to lead the reader to understanding through pictures and calcula-
tions rather than through explaining abstract theories. For this reason we
allow ourselves to give the detailed proofs only if they are transparent and
instructive, referring more advanced readers to the original papers for more
technical considerations.

Historical remarks. The notion of finite type knot invariants was inde-
pendently invented by Victor Vassiliev (Moscow) and Mikhail Goussarov
(St. Petersburg) in the end of 1980’s and first published in their respective
papers [Va1] (1990) and [G1] (1991).1

Neither Vassiliev nor Goussarov thought very much of their discovery.
M. Goussarov (1958–1999), doing first-class work, somehow did not care
about putting his thoughts on paper. V. Vassiliev, at the time, was not
much interested in knot invariants, either: his main concern was the general
theory of discriminants in the spaces of smooth maps. It was V. I. Arnold
[Ar2] who understood the revolutionary importance of finite type invariants
in knot theory. He coined the name “Vassiliev invariants” and explained
them to Joan Birman, one of the world’s leading experts in knots. Since
that time, the term “Vassiliev invariants” has become standard, although
nowadays some people use the expression “Vassiliev-Goussarov invariants”,
which is closer to the historical truth.

Vassiliev’s approach is based on the study of discriminants in the (infinite-
dimensional) spaces of smooth maps from one manifold into another. By
definition, the discriminant consists of all maps with singularities.

For example, consider the space of all smooth maps from the circle into
3-spaceM = {f : S1 → R3}. If f is an embedding (has no singular points),
then it represents a knot. The complement to the set of all knots is the
discriminant Σ ⊂ M. It consists of all smooth maps from S1 into R3 that
have singularities, either local, where f ′ = 0, or non-local, where f is not
injective. Two knots are equivalent if and only if they can be joined by a path
in the space M that does not intersect the discriminant. Therefore, knot
types are in one-to-one correspondence with the connected components of
the complementM\Σ, and knot invariants with values in an Abelian group

1According to O. Viro, Goussarov first mentioned finite type invariants in his talk at Rokhlin’s
seminar as early as in 1987.
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G are nothing but cohomology classes in H0(M \ Σ,G). To compute this
cohomology, V. Vassiliev constructs a simplicial resolution of the singular
variety Σ, then introduces a filtration of this resolution by finite-dimensional
subvarieties that gives rise to a spectral sequence containing, in particular,
the spaces of finite type invariants.

J. Birman and X.-S. Lin [BL] have contributed a lot to the simplification
of Vassiliev’s original techniques. They explained the relation between Jones
polynomial and finite type invariants and emphasized the role of the algebra
of chord diagrams. M. Kontsevich [Kon1] introduced an analytical tool
(Kontsevich’s integral) to prove that the study of Vassiliev invariants can be
reduced to the combinatorics of chord diagrams.

D. Bar-Natan was the first mathematicians who undertook a thorough
study of Vassiliev invariants as such. In his preprint [BN0] and PhD thesis
[BNt] he found the relationship between finite type invariants and topo-
logical quantum field theory elaborated by his scientific advisor E. Witten
[Wit1, Wit2]. Bar-Natan’s paper [BN1] (whose preprint edition [BN1a]
appeared in 1992) is still the most authoritative source on the fundamen-
tals of the theory of Vassiliev invariants. About the same time, T. Le and
J. Murakami [LM2], relying on V. Drinfeld’s work [Dr1, Dr2], proved the
rationality of the Kontsevich integral.

Among more recent important developments in the area of finite type
knot invariants let us mention:

• The existence of non-Lie-algebraic weight systems (P. Vogel [Vo1],
J. Lieberum [Lieb]).

• J. Kneissler’s fine analysis [Kn1, Kn2, Kn3] of the structure of
the algebra Λ introduced by P. Vogel [Vo1].

• Gauss diagram formulas invented by M. Polyak and O. Viro [PV1]
and the proof by M. Goussarov [G3] that all finite type invariants
can be obtained in this way.

• D. Bar-Natan’s proof that Vassiliev invariants for braids separate
braids [BN4]2

• Habiro’s theory of claspers [Ha2] (see also [G4]).

• V. Vassiliev’s papers [Va4, Va5] where a general technique for de-
riving combinatorial formulas for cohomology classes in the comple-
ments to discriminants, and in particular, for finite type invariants,
is proposed.

• Explicit formulas for the Kontsevich integral of some knots and
links ([BGRT, BLT, BNL, Roz2, Kri2, Mar, GK].

2This fact is also an immediate consequence of T. Kohno’s theorem [Koh2], proved before
the notion of finite type invariants was introduced.
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• V. Turchin’s paper [Tu] where he introduces a Hogde decomposi-
tion in the homology of knots and states an important conjecture
about the detectability of knot orientation by finite type invariants.

An important source of regularly updated information on finite type in-
variants is the online Bibliography of Vassiliev invariants started by D. Bar-
Natan and currently living at

http://www.pdmi.ras.ru/~duzhin/VasBib/

On July 12, 2005 it contained 600 entries, out of which 36 were added during
the seven months of 2005. The study of finite type invariants is going on
at a steady pace. However, notwithstanding all efforts the most important
problem risen in 1990:

Is it true that Vassiliev invariants distinguish knots?

— is still open. The partial question, s it true that Vassiliev invariants can
detect knot orientation? — is open, too.

Prerequisites. We assume that the reader has a basic knowledge of calcu-
lus on manifolds (vector fields, differential forms, Stokes’ theorem), general
algebra (groups, rings, modules, Lie algebras, fundamentals of homologi-
cal algebra), linear algebra (vector spaces, linear operators, tensor algebra,
elementary facts about representations) and topology (topological spaces,
homotopy, homology, Euler characteristic). More advanced algebraic mate-
rial (bialgebras, free algebras, universal enveloping algebras etc.) which is
of primary importance in this book, can be found in the Appendix at the
end of the book. No knowledge of knot theory is presupposed, although it
may be useful.

Contents. The book consists of four parts, divided into fourteen chapters.

The first part opens with a short introduction into the theory of knots
and their classical polynomial invariants and closes with the definition of
Vassiliev invariants.

In part 2, we systematically study the graded Hopf algebra naturally
associated with the filtered space of Vassiliev invariants, which appears in
three different disguises: as the algebra of chord diagrams A, as the algebra
of closed diagrams C, and as the algebra of open 1-3-diagrams B. After that,
we study the auxiliary algebra Γ generated by regular trivalent graphs and
closely related to the algebras A, B, C as well as to Vogel’s algebra Λ. In
the last chapter we discuss the weight systems defined by Lie algebras, both
universal and depending on a chosen representation.

Part 3 is dedicated to a detailed exposition of the Kontsevich integral;
it contains the proof of the main theorem of the theory of Vassiliev knot



Preface 11

invariants that reduces their study to combinatorics of chord diagrams and
related algebras. Chapter 11 is about more advanced material related to the
Kontsevich integral: the wheels formula, the Rozansky rationality conjecture
etc.

The last part of the book is devoted to various topics left out in the pre-
vious exposition, in particular, Gauss diagram formulas for Vassiliev invari-
ants, the Melvin–Morton conjecture, the Drinfeld associator, the Goussarov–
Habiro theory, the size of the space of Vassiliev invariants etc.

The book is intended to be a textbook, so we have included many exer-
cises, both embedded in text and constituting a separate section at the end
of each chapter. Open problems are marked with an asterisk.
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Chapter 1

Knots and their

relatives

This book is about knots. It is, however, hardly possible to speak about
knots without mentioning other one-dimensional topological objects embed-
ded into the three-dimensional space. Therefore, in this introductory chap-
ter we give basic definitions and constructions pertaining to knots and their
relatives: links, braids and tangles.

The table of knots at the end of this chapter (page 26) will be used
throughout the book as a source of examples and exercises.

1.1. Definitions and examples

A knot is a closed non-self-intersecting curve in 3-space. In this book, we
shall mainly study smooth oriented knots. A precise definition can be given
as follows.

1.1.1. Definition. A parameterized knot is an embedding of the circle S1

into the Euclidean space R3.

Recall that an embedding is a smooth map which is injective and whose
differential is nowhere zero. In our case, the non-vanishing of the differen-
tial means that the tangent vector to the curve is non-zero. In the above
definition and everywhere in the sequel, the word smooth means infinitely
differentiable.

A choice of an orientation for the parameterizing circle

S1 = {(cos t, sin t) | t ∈ R} ⊂ R2

17
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gives an orientation to all the knots simultaneously. We shall always assume
that S1 is oriented counterclockwise. We shall also fix an orientation of the
3-space; each time we pick a basis for R3 we shall assume that it is consistent
with the orientation.

If coordinates x, y, z are chosen in R3, a knot can be given by three
smooth periodic functions of one variable x(t), y(t), z(t).

1.1.2. Example. The simplest knot is represented by a plane circle:

x = cos t,
y = sin t,
z = 0.

z

x

y

1.1.3. Example. The curve that goes 3 times around and 2 times across a
standard torus in R3 is called the left trefoil knot, or the (2, 3)-torus knot:

x = (2 + cos 3t) cos 2t,
y = (2 + cos 3t) sin 2t,
z = sin 3t.

1.1.4. Exercise. Give the definition of a (p, q)-torus knot. What are the
appropriate values of p and q for this definition?

It will be convenient to identify knots that only differ by a change of a
parametrization. An oriented knot is an equivalence class of parameterized
knots under orientation-preserving diffeomorphisms of the parameterizing
circle. Allowing all diffeomorphisms of S1 in this definition, we obtain un-
oriented knots. Alternatively, an unoriented knot can be defined as the
image of an embedding of S1 into R3; an oriented knot is then an image
of such an embedding together with the choice of one of the two possible
directions on it.

We shall distinguish oriented/unoriented knots from parameterized knots
in the notation: oriented and unoriented knots will be usually denoted by
capital letters, while for the individual embeddings lowercase letters will be
used. As a rule, the word “knot” will mean “oriented knot”, unless it is clear
from the context that we deal with unoriented knots, or consider a specific
choice of parametrization.

1.2. Isotopy

The study of parametrized knots falls within the scope of differential geom-
etry. The topological study of knots requires an equivalence relation which
would not only discard the specific choice of parametrization, but also model
the physical transformations of a closed piece of rope in space.
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By a smooth family of maps, or a map smoothly depending on a para-
meter, we understand a smooth map F : S1 × I → R3, where I ⊂ R is an
interval. Assigning a fixed value a to the second argument of F , we get a
map fa : S1 → R3.

1.2.1. Definition. A smooth isotopy of a knot f : S1 → R3, is a smooth
family of knots fu, with u a real parameter, such that for some value u = a
we have fa = f .

For example, the formulae

x = (u+ cos 3t) cos 2t,
y = (u+ cos 3t) sin 2t,
z = sin 3t,

where u ∈ (1,+∞), represent a smooth isotopy of the trefoil knot 1.1.3,
which corresponds to u = 2. In the pictures below the space curves are
shown by their projection to the (x, y) plane:

u = 2 u = 1.5 u = 1.2 u = 1

For any u > 1 the resulting curve is smooth and has no self-intersections,
but as soon as the value u = 1 is reached we get a singular curve with three
coinciding cusps1 corresponding to the values t = π/3, t = π and t = 5π/3.
This curve is not a knot.

1.2.2. Definition. Two parameterized knots are said to be isotopic if one
can be transformed into another by means of a smooth isotopy. Two oriented
knots are isotopic if they represent the classes of isotopic parameterized
knots; the same definition is valid for unoriented knots.

Example. This picture shows an isotopy of the figure eight knot into its
mirror image:

1.2.3. There are other notions of knot equivalence, namely, ambient equiv-
alence and ambient isotopy, which, for smooth knots, are the same thing as
isotopy. Here are the definitions. A proof that they are equivalent to our
definition of isotopy can be found in [BZ].

1A cusp of a spatial curve is a point where the curve can be represented as x = s2, y = s3,
z = 0 in some local coordinates.
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Definition. Two parameterized knots, f and g, are ambient equivalent if
there is a commutative diagram

S1 f−−−−→ R3

ϕ

y
yψ

S1 g−−−−→ R3

where ϕ and ψ are orientation preserving diffeomorphisms of the circle and
the 3-space, respectively.

Definition. Two parameterized knots, f and g, are ambient isotopic if there
is a smooth family of diffeomorphisms of the 3-space ψt : R3 → R3 with
ψ0 = id and ψ1 ◦ f = g.

1.2.4. A knot, equivalent to the plane circle of Example 1.1.2 is referred to
as a trivial knot, or an unknot.

Sometimes, it is not immediately clear from a diagram of a trivial knot
that it is indeed trivial:

Trivial knots

There are algorithmic procedures to detect whether a given knot diagram
represents an unknot; one of them is, based on W. Thurston’s ideas, is
implemented in J. Weeks’ computer program SnapPea, see [Wee].

Here are several other examples of knots.

Left trefoil Right trefoil Figure 8 knot Granny knot Square knot

Knots are a special case of links.

1.2.5. Definition. A link is a smooth embedding S1⊔· · ·⊔S1 → R3, where
S1 ⊔ · · · ⊔ S1 is the disjoint union of several circles.

Trivial 2-component link Hopf link Whitehead link Borromean rings

Equivalence of links is defined in the same way as for knots — with the
exception that now one may choose whether to distinguish or not between
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the components of a link and thus speak about the equivalence of links with
numbered or unnumbered components.

In the future, we shall often say “knot (link)” instead of “equivalence
class”, or “topological type of knots (links)”.

1.3. Plane knot diagrams

Knots are best represented graphically by means of knot diagrams. A knot
diagram is a plane curve whose only singularities are transversal double
points (crossings), together with the choice of one branch of the curve at each
crossing. The chosen branch is called an overcrossing; the other branch is
referred to as an undercrossing. A knot diagram is thought of as a projection
of a knot along some “vertical” direction; overcrossings and undercrossings
indicate which branch is “higher” and which is “lower”. To indicate the
orientation, an arrow is added to the knot diagram.

1.3.1. Theorem (Reidemeister [Rei], proofs can be found in [BZ, Mur2]).
Two unoriented knots K1 and K2, are equivalent if and only if a diagram
of K1 can be transformed into a diagram of K2 by a sequence of ambient
isotopies of the plane and local moves of the following three types:

Ω1 Ω2 Ω3

Reidemeister moves

To adjust the assertion of this theorem to the oriented case, each of
the three Reidemeister moves has to be equipped with orientations in all
possible ways. Smaller sufficient sets of oriented moves exist; one such set
will be given later in terms of Gauss diagrams (see p. 35).

Exercise. Determine the sequence of Reidemeister moves that relates
the two diagrams of the trefoil knot below:

1.3.2. Local writhe. Crossing points on a diagram come in two species,
positive and negative:
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Positive crossing Negative crossing

Although this sign is defined in terms of the knot orientation, it is easy
to check that it does not change if the orientation is reversed. For links with
more than one component, the choice of orientation is essential.

The local writhe of a crossing is defined as +1 or −1 for positive or nega-
tive points, respectively. The writhe (or total writhe) of a diagram is the sum
of the writhes of all crossing points, or, equivalently, the difference between
the number of positive and negative crossings. Of course, the same knot
may be represented by diagrams with different total writhes. In Chapter 2
we shall see how the writhe can be used to produce knot invariants.

1.3.3. Alternating knots. A knot diagram is called alternating if its over-
crossings and undercrossing alternate while we travel along the knot. A
knot is called alternating if it has an alternating diagram. A knot diagram
is called reducible if it becomes disconnected after the removal of a small
neighbourhood of some crossing.

The number of crossings in a reducible diagram can be decreased by a
move shown in the picture:

small neighbourhood

reducible diagram reduction

A diagram which is not reducible is called reduced. As there is no imme-
diate way to simplify a reduced diagram, the following conjecture naturally
arises (P. G. Tait, 1898).

The Tait conjecture. A reduced alternating diagram has the minimal
number of crossings among all diagrams of the given knot.

This conjecture stood open for almost 100 years. It was proved only in
1986 (using the newly invented Jones polynomial) simultaneously and inde-
pendently by L. Kauffman [Ka6], K. Murasugi [Mur1], and M. Thistleth-
waite [Th] (see Exercise (28) in Chapter 2).
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1.4. Inverses and mirror images

Change of orientation (taking the inverse) and taking the mirror image are
two basic operations on knots which are induced by orientation reversing
smooth involutions on S1 and R3 respectively. Every such involution on S1

is conjugate to the reversal of the parametrization; on R3 it is conjugate to
a reflection in a plane mirror.

Let K be a knot. Composing the parametrization reversal of S1 with
the map f : S1 → R3 representing K, we obtain the inverse K∗ of K. The
mirror image of K, denoted by K, is a composition of the map f : S1 → R3

with a reflection in R3. Both change of orientation and taking the mirror
image are involutions on the set of (equivalence classes of) knots. They
generate a group isomorphic to Z2 ⊕Z2; the symmetry properties of a knot
K depend on the subgroup that leaves it invariant. The group Z2 ⊕ Z2 has
5 (not necessarily proper) subgroups, which give rise to 5 symmetry classes
of knots.

1.4.1. Definition. A knot is called:

• invertible, if K∗ = K,

• plus-amphicheiral, if K = K,

• minus-amphicheiral, if K = K∗,

• fully symmetric, if K = K∗ = K = K
∗
,

• totally asymmetric, if all knots K, K∗, K, K
∗

are different.

The word amphicheiral means either plus- or minus-amphicheiral. For
invertible knots, this is the same. Amphicheiral and non-amphicheiral knots
are also referred to as achiral and chiral knots, respectively.

The 5 symmetry classes of knots are summarized in the following table.
The word “minimal” means “with the minimal number of crossings”; σ
and τ denote the involutions of taking the mirror image and the inverse
respectively.

Subgroup Orbit Symmetry type Min example

{1} {K,K,K∗,K∗} totally asymmetric 932, 933

{1, σ} {K,K∗} +amphicheiral, non-inv 12a427

{1, τ} {K,K} invertible, chiral 31

{1, στ} {K,K∗} −amphicheiral, non-inv 817

{1, σ, τ, στ} {K} fully symmetric 41
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Example. The trefoil knots are invertible, because the rotation through
180◦ around an axis in R3 changes the direction of the arrow on the knot.

The existence of non-invertible knots was first proved by H. Trotter [Tro]
in 1964. The simplest instance of Trotter’s theorem is a pretzel knot with
parameters (3, 5, 7):

Among the knots with up to 8 crossings (see Table 1.5.2.1 on page 26) there
is only one non-invertible knot: 817, which is, moreover, minus-amphicheiral.
These facts were proved in 1979 by A. Kawauchi [Ka1].

Example. The trefoil knots are not amphicheiral, hence the distinction
between the left and the right trefoil. A proof of this fact, based on the
calculation of the Jones polynomial, will be given in Sec. 2.4.

Remark. Knot tables only list knots up to taking inverses and mirror im-
ages. In particular, there is only one entry for the trefoil knots. Either of
them is often referred to as the trefoil.

Example. The figure eight knot is amphicheiral. The isotopy between this
knot and its mirror image is shown on page 19.

Among the 35 knots with up to 8 crossings shown in Table 1.5.2.1, there
are exactly 7 amphicheiral knots: 41, 63, 83, 89, 812, 817, 818, out of which
817 is minus-amphicheiral, the rest, as they are invertible, are both plus-
and minus-amphicheiral.

The simplest totally asymmetric knots appear in 9 crossings, they are
932 and 933. The following are all non-equivalent:

933 9∗33 933 9
∗
33
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Here is the simplest plus-amphicheiral non-invertible knot, together with
its inverse:

12a427 12a427
∗

In practice, the easiest way to find the symmetry type of a given knot or
link is by using the computer program Knotscape [HT], which can handle
link diagrams with up to 49 crossings.

1.5. Knot tables

1.5.1. Connected sum. There is a natural way to fuse two knots into one:
cut each of the two knots at some point, then connect the two pairs of loose
ends. This must be done with some caution: first, by a smooth isotopy,
both knots should be deformed so that for a certain plane projection they
look as shown in the picture below on the left, then they should be changed
inside the dashed disk as shown on the right:
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The connected sum makes sense only for oriented knots. It is well-defined
and commutative on the equivalence classes of knots.

1.5.2. Definition. A knot is called prime if it cannot be represented as the
connected sum of two nontrivial knots.

Each knot is a connected sum of prime knots, and this decomposition
is unique (see [CrF] for a proof). In particular, this means that a trivial
knot cannot be decomposed into a sum of two nontrivial knots. Therefore,
in order to classify all knots, it is enough to have a table of all prime knots.

Prime knots are tabulated according to the minimal number of crossings
that their diagrams can have. Within each group of knots with the same
crossing number, knots are numbered in some, usually rather arbitrary, way.
In Table 1.5.2.1, we use the widely adopted numbering that goes back to
the table compiled by Alexander and Briggs in 1927 [AB], then repeated
(in an extended and modified way) by D. Rolfsen in [Rol]. We also follow
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31 41(a) 51 52 61 62 63(a)

71 72 73 74 75 76 77

81 82 83(a) 84 85 86 87

88 89(a) 810 811 812(a) 813 814

815 816 817(na−) 818(a) 819 820 821

Table 1.5.2.1. Prime knots, up to orientation and mirror images, with
up to 8 crossings. Amphicheiral knots are marked by ‘a’, the (only)
non-invertible minus-amphicheiral knot by ‘na-’.

Rolfsen’s conventions in the choice of the version of non-amphicheiral knots:
for example, our 31 is the left, not the right, trefoil.

Rolfsen’s table of knots, authoritative as it is, contained an error. It is
the famous Perko pair (knots 10161 and 10162 in Rolfsen) — two equivalent
knots that were thought to be different for 75 years since 1899:
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The equivalence of these two knots was established in 1973 by K. A. Perko
[Per1], a lawyer from New York who studied mathematics at Princeton in
1960–1964 [Per2] but later chose jurisprudence to be his profession.2

Complete tables of knots are currently known up to crossing number 16
[HTW]. For knots with 11 through 16 crossings it is nowadays customary
to use the numbering of Knotscape [HT] where the tables are built into
the software. For each crossing number, Knotscape has a separate list of
alternating and non-alternating knots. For example, the notation 12a427 used
in Section 1.4, refers to the item number 427 in the list of alternating knots
with 12 crossings.

1.6. Algebra of knots

Denote by K the set of the equivalence classes of knots. It forms a commuta-
tive monoid (semigroup with a unit) under the connected sum of knots, and,
therefore we can construct the monoid algebra ZK of K. By definition, ele-
ments of ZK are formal finite linear combinations

∑
λiKi, λi ∈ Z, Ki ∈ K,

the product is defined by (K1,K2) 7→ K1#K2 on knots and then extended
by linearity to the entire space ZK. This algebra ZK will be referred to as
the algebra of knots.

The algebra of knots provides a convenient language for the study of
knot invariants (see the next chapter): in these terms, a knot invariant is
nothing but a linear functional on ZK. Ring homomorphisms from ZK to
some ring are referred to as multiplicative invariants; later, in Section 4.3,
we shall see the importance of this notion.

In the sequel, we shall introduce more operations in this algebra, as well
as in the dual algebra of knot invariants. We shall also study a filtration on
ZK that will give us the notion of a finite type knot invariant.

1.7. Tangles, string links and braids

A tangle is a generalization of a knot which at the same time is simpler and
more complicated than a knot: on one hand, knots are a particular case
of tangles, on the other hand, knots can be represented as combinations of
(simple) tangles.

2The combination of a professional lawyer and an amateur mathematician in one person is
not new in the history of mathematics (think of Pierre Fermat!).
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1.7.1. Definition. A (parameterized) tangle is a smooth embedding of a
one-dimensional compact oriented manifold, X, possibly with boundary,
into a box

{(x, y, z) | w0 6 x 6 w1 , −1 6 y 6 1 , h0 6 z 6 h1} ⊂ R3,

where w0, w1, h0, h1 ∈ R, such that the boundary of X is sent into the
intersection of the (open) upper and lower faces of the box with the plane
y = 0. An oriented tangle is a tangle considered up to an orientation-
preserving change of parametrization; an unoriented tangle is an image of a
parameterized tangle.

The boundary points of X are divided into the top and the bottom part;
within each of these groups the points are ordered, say, from the left to the
right. The manifold X, with the set of its boundary points divided into two
ordered subsets, is called the skeleton of the tangle.

The number w1 −w0 is called the width, and the number h1 − h0 is the
height of the tangle.

Speaking of embeddings of manifolds with boundary, we mean that such
embedding send boundaries to boundaries and interiors — to interiors. Here
is an example of a tangle, shown together with its box:

Usually the boxes will be omitted in the pictures.

We shall always identify tangles obtained by translations of boxes. Fur-
ther, it will be convenient to have two notions of equivalences for tangles.
Two tangles will be called fixed-end isotopic if one can be transformed into
the other by a boundary-fixing isotopy of its box. We shall say that two
tangles are simply isotopic, or equivalent if they become fixed-end isotopic
after a suitable re-scaling of their boxes of the form

(x, y, z)→ (f(x), y, g(z)),

where f and g are strictly increasing functions.

1.7.2. Operations. In the case when the bottom of a tangle T1 coincides
with the top of another tangle T2 of the same width (for oriented tangles
we require the consistency of orientations, too), one can define the product
T1 · T2 by putting T1 on top of T2 (and, if necessary, smoothing out the
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corners at the joining points):

T1 = ; T2 = ; T1 ·T2 = .

Another operation, tensor product, is defined by placing one tangle next
to the other tangle of the same height:

T1 ⊗ T2 = .

Both operations give rise to products on equivalence classes of tangles.
The product of two equivalence classes is defined whenever the bottom of one
tangle and the top of the other consist of the same number of points (with
matching orientations in the case of oriented tangles), the tensor product is
defined for any pair of equivalence classes.

1.7.3. Special types of tangles. Knots, links and braids are particular
cases of tangles. For example, an n-component link is just a tangle whose
skeleton is a union of n circles (and whose box is disregarded).

Let us fix n distinct points pi on the top boundary of a box of unit width
and let qi be the projections of the pi to the bottom boundary of the box.
We choose the points pi (and, hence, the qi) to lie in the plane y = 0.

Definition. A string link on n strings is an (unoriented) tangle whose skele-
ton consists of n intervals, the ith interval connecting pi with qi. A string
link on one string is called a long knot .

Definition. A string link on n strings whose tangent vector is never hori-
zontal is called a pure braid on n strands.

One difference between pure braids and string links is that the compo-
nents of a string link can be knotted. However, there are string links with
unknotted strands that are not equivalent to braids.

Let σ be a permutation of the set of n elements.

Definition. A braid on n strands is an (unoriented) tangle whose skeleton
consists of n intervals, the ith interval connecting pi with qσ(i), with the
property that the tangent vector to it is never horizontal.

Pure braids are a specific case of braids with σ the identity permutation.
Note that with our definition of equivalence, an isotopy between two braids
can pass through tangles with points where the tangent vector is horizontal.
Often, in the definition of the equivalence for braids it is required that that
an isotopy consist entirely of braids; the two approaches are equivalent.
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The above definitions are illustrated by the following comparison chart:

A linkA braid A knotA string linkA tangle

1.7.4. Braids. Braids are useful in the study of links, because any link can
be represented as a closure of a braid (Alexander’s theorem [Al1]):

Braids are in many respects easier to work with, as they form groups
under tangle multiplication: the set of equivalence classes of braids on n
strands is the braid group denoted by Bn. A convenient set of generators for
the group Bn consists of the elements σi, i = 1, . . . , n− 1:

...

1i

...

i+

which satisfy the following complete set of relations.

Far commutativity, σiσj = σjσi, for |i− j| > 1.

Braiding relation, σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . , n− 2.

Assigning to each braid in Bn the corresponding permutation σ, we get
an epimorphism π : Bn → Sn of the braid group on n strands onto the
symmetric group on n letters. The kernel of π consists of pure braids and
is denoted by Pn.

Theorem (Markov [Mark, Bir1]). Two closed braids are equivalent (as
links) if and only if the braids are related by a finite sequence of the following
Markov moves:
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(M1) b←→ aba−1 for any a, b ∈ Bn;

(M2) Bn ∋ ...
b ←→

...
b ∈ Bn+1 ,

...
b ←→

...
b .

1.7.5. Elementary tangles. A link can be cut into several simple tangles
by a finite set of horizontal planes, and the link is equal to the product of
all such tangles. Every simple tangle is a tensor product of the following
elementary tangles.

Unoriented case:

id := , X+ := , X− := , max := , min := .

Oriented case:

id := , id∗ := , X+ := , X− := ,

−→
max := ,

←−
max := , min−→ := , min←− := .

For example, the generator σi ∈ Bn of the braid group is a simple tangle
represented as the tensor product, σi = id⊗(i−1) ⊗X+ ⊗ id⊗(n−i−1).

1.7.6. Exercise. Decompose the tangle into elementary tangles.

1.7.7. The Turaev moves. Having presented a tangle as a product of
simple tangles it is natural to ask for an analogue of Reidemeister’s (1.3.1)
and Markov’s (1.7.4) theorems, that is, a criterion for two such presentations
to give isotopic tangles. Here is the answer.

Theorem ([Tur3]). Two products of simple tangles are isotopic if and only
if they are related by a finite sequence of the following Turaev moves.

Unoriented case:

(T0)
...

...

T1

T2

←→
...

...

T1

T2 Note that the number of strands at top or bottom of

either tangle T1 or T2, or both might be zero.

(T1) ←→ ←→ (id⊗max)·(X+⊗id)·(id⊗min)=id=

=(id⊗max)·(X−⊗id)·(id⊗min)

(T2) ←→ ←→ X+·X−=id⊗id=X−·X+

(T3) ←→ (X+⊗id)·(id⊗X+)·(X+⊗id)=(id⊗X+)·(X+⊗id)·(id⊗X+)

(T4) ←→ ←→ (max⊗id)·(id⊗min)=id=(id⊗max)·(min⊗id)

(T5) ←→ (id⊗max)·(X+⊗id)=(max⊗id)·(id⊗X−)
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(T5′) ←→ (id⊗max)·(X−⊗id)=(max⊗id)·(id⊗X+)

Oriented case:

(T0) Same as in the unoriented case with arbitrary orientations of par-
ticipating strings.

(T1— T3) Same as in the unoriented case with orientations of all strings
from bottom to top.

(T4) ←→ ←→ (
−→
max⊗id)·(id⊗min−→)=id=(id⊗←−max)·(min←−⊗id)

(T4′) ←→ ←→ (
←−
max⊗id∗)·(id∗⊗min←−)=id∗=(id∗⊗−→max)·(min−→⊗id∗)

(T5) ←→ (
←−
max⊗id⊗id∗)·(id∗⊗X−⊗id∗)·(id∗⊗id⊗min←−)·
·(id∗⊗id⊗−→max)·(id∗⊗X+⊗id∗)·(min−→⊗id⊗id∗)=id⊗id∗

(T5′) ←→ (id∗⊗id⊗−→max)·(id∗⊗X+⊗id∗)·(min−→⊗id⊗id∗)·
·(←−max⊗id⊗id∗)·(id∗⊗X−⊗id∗)·(id∗⊗id⊗min←−)=id∗⊗id

(T6) ←→
(
←−
max⊗id∗⊗id∗)·(id∗⊗←−max⊗id⊗id∗⊗id∗)·
·(id∗⊗id∗⊗X±⊗id∗⊗id∗)·
·(id∗⊗id∗⊗id⊗min←−⊗id∗)·(id∗⊗id∗⊗min←−) =

= (id∗⊗id∗⊗−→max)·(id∗⊗id∗⊗id⊗−→max⊗id∗)·
·(id∗⊗id∗⊗X±⊗id∗⊗id∗)·
·(id∗⊗min−→⊗id⊗id∗⊗id∗)·(min−→⊗id∗⊗id∗)

(T6′) ←→

1.8. Variations

1.8.1. Framed knots. A framed knot is a knot equipped with a framing,
that is, a smooth family of non-zero vectors perpendicular to the knot. Two
framings are considered as equivalent, if one can be transformed to another
by a smooth deformation. Up to this equivalence relation, a framing is
uniquely determined by one integer: the linking number between the knot
itself and the curve formed by a small shift of the knot in the direction of
the framing. This integer, called the self-linking number, can be arbitrary.

One way to choose a framing is to use the blackboard framing, defined
by a plane knot projection, with the vector field everywhere parallel to the
projection plane, for example
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A framed knot can also be visualized as a ribbon knot, that is, a narrow
knotted strip (see the right picture above).

An arbitrary framed knot can be represented by a plane diagram with
the blackboard framing. This is achieved by choosing an arbitrary projection
and then performing local moves to straighten out the twisted band:

,

For framed knots (with blackboard framing) the Reidemeister theorem 1.3.1
does not hold since the first Reidemeister move Ω1 changes the blackboard
framing. Here is an appropriate substitute.

1.8.2. Theorem (framed Reidemeister theorem). Two knot dia-
grams with blackboard framing D1 and D2 are equivalent if and only if D1

can be transformed into D2 by a sequence of plane isotopies and local moves
of three types FΩ1, Ω2, and Ω3, where

FΩ1 :

while Ω2 and Ω3 are usual Reidemeister moves defined in 1.3.1.

One may also consider framed tangles. These are defined in the same
manner as framed knots, with the additional requirement that at each
boundary point of the tangle the normal vector is equal to (ε, 0, 0) for some
ε > 0. Framed tangles can be represented by tangle diagrams with black-
board framing. For such tangles there is an analogue of Theorem 1.7.7 —
the Turaev move (T1) should be replaced by its framed version that mimics
the move FΩ1.

1.8.3. Long knots. Recall that a long knot is a string link on one string.
A long knot can be converted into a usual knot by choosing an orientation
(say, upwards) and joining the top and the bottom points by an arc of a
sufficiently big circle. It is easy to prove that this construction provides a
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one-to-one correspondence between the sets of equivalence classes of long
knots and knots, and, therefore the two theories are isomorphic.

Some constructions on knots look more natural in the context of long
knots. For example, the cut and paste procedure for the connected sum
becomes a simple concatenation.

1.8.4. Gauss diagrams and virtual knots. Plane knot diagrams are
convenient for presenting knots graphically, but for other purposes, such as
coding knots in a computer-recognizable form, Gauss diagrams are suited
better.

Definition. A Gauss diagram is an oriented circle with a distinguished set
of distinct points divided into ordered pairs, each pair carrying a sign ±1.

Graphically, an ordered pair of points on a circle can be represented by
a chord with an arrow connecting them and pointing, say, to the second
point. Gauss diagrams are considered up to orientation-preserving homeo-
morphisms of the circle. Sometimes, an additional basepoint is marked on
the circle and the diagrams are considered up to homeomorphisms that keep
the basepoint fixed. In this case, we speak of based Gauss diagrams.

To a plane knot diagram one can associate a Gauss diagram as follows.
Pairs of points on the circle correspond to the values of the parameter where
the diagram has a self-intersection, each arrow points from the overcrossing
to the undercrossing and its sign is equal to the local writhe at the crossing.

Here is an example of a plane knot diagram and the corresponding Gauss
diagram:

1

2

43

+
+

1

1
2

2

3

3

4

4

−

−

1.8.5. Exercise. What happens to a Gauss diagram, if (a) the knot is
mirrored, (b) the knot is reversed?

A knot diagram can be uniquely reconstructed from the corresponding
Gauss diagram. We call a Gauss diagram realizable if it comes from a knot.
Not every Gauss diagram is realizable, the simplest example being

.

As we know, two oriented knot diagrams give the same knot type if and
only if they are related by a sequence of oriented Reidemeister moves The
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corresponding moves translated into the language of Gauss diagrams look
as follows:

V Ω1 :
ε −ε

V Ω2 : ε −ε −ε ε

V Ω3 :

In fact, the two moves V Ω3 do not exhaust all the possibilities for repre-
senting the third Reidemeister move on Gauss diagrams. It can be shown,
however, that all the other versions of the third move are combinations of
the moves V Ω2 and V Ω3, see the exercises 24 – 26 on page 39 for examples
and [Öll] for a proof.

These moves, of course, have a geometric meaning only for realizable
diagrams. However, they make sense for all Gauss diagrams, whether re-
alizable or not. In particular a realizable diagram may be equivalent to
non-realizable one:

∼ − + .

Definition. A virtual knot is a Gauss diagram considered up to the Rei-
demeister moves V Ω1, V Ω2, V Ω3. A long, or based virtual knot is a based
Gauss diagram, considered up to Reidemeister moves that do not involve
segments with the basepoint on them. Contrary to the case of classical
knots, the theories of circular and long virtual knots differ.

It can be shown that the isotopy classes of knots form a subset of the set
of virtual knots. In other words, if there is a chain of Reidemeister moves
connecting two realizable Gauss diagrams, we can always modify it so that
it goes only though realizable diagrams.

Virtual knots were introduced by L. Kauffman [Ka5]. Almost at the
same time, they turned up in the work of M. Goussarov, M. Polyak, O. Viro
[GPV]. There are various geometric interpretations of virtual knots. Many
knot invariants are known to extend to invariants of virtual knots.
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1.8.6. Knots in arbitrary manifolds. We have defined knots as embed-
dings of the circle into the Euclidean space R3. In this definition R3 can be
replaced by the 3-sphere S3, since the one-point compactification R3 → S3

establishes a one-to-one correspondence between the equivalence classes of
knots in both manifolds. Going further and replacing R3 by an arbitrary
3-manifold M , we can arrive to a theory of knots in M which may well be
different from the usual case of knots in R3; see, for instance, [Kal, Va6].

If the dimension of the manifold M is bigger than 3, then all knots in
M that represent the same element of the fundamental group π1(M), are
isotopic. It does not mean, however, that the theory of knots in M is trivial:
the space of all embeddings S1 →M may have non-trivial higher homology
groups. These homology groups are certainly of interest in dimension 3
too; see [Va6]. Another way of doing knot theory in higher-dimensional
manifolds is studying multidimensional knots, like embeddings S2 → R4, see,
for example, [Rol]. An analogue of knot theory for 2-manifolds is Arnold’s
theory of immersed curves [Ar3].

Exercises

(1) Find the following knots in the knot table (page 26):

(a) (b) (c)

(2) Can you find the following links in the picture on page 20?

(3) Borromean rings (see page 20) have the property that after deleting any
component the remaining two-component link becomes trivial. Links
with such property are called Brunnian. Find a Brunnian link with 4
components.

(4) Table 1.5.2.1 shows 35 topological types of knots up to change of orien-
tation and taking the mirror images. How many distinct knots do these
represent?

(5) Find an isotopy that transforms the knot 63 into its mirror image 63.
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(6) Repeat Perko’s achievement: find an isotopy that transforms one of the
knots of the Perko pair into another one.

(7) Let Gn be the Goeritz diagram [Goer] with 2n+ 5 crossings, as in the
figure below.

(a) Show that Gn represents a
trivial knot. Gn =

n crossings n+1 crossings

(b) Prove that for n > 3 in any
sequence of the Reidemeister moves
transforming Gn into the plane circle there is an intermediate knot
diagram with more than 2n+ 5 crossings.

(c) Find a sequence of 23 Reidemeister moves (containing the Ω1 move
5 times, the Ω2 move 7 times, and the Ω3 move 11 times) trans-
forming G3 into the plane circle. See the picture of G3 in 1.2.4 on
page 20.

(8) Decompose the knot on the right into a connected
sum of prime knots.

(9) Show that by changing some crossings from overcrossing to undercross-
ing or vice versa, any knot diagram can be transformed into a diagram
of the unknot.

(10) (C. Adams [AdC]) Show that by changing some crossings from over-
crossing to undercrossing or vice versa, any knot diagram can be made
alternating.

(11) Represent the knots 41, 51, 52 as closed braids.

(12) Analogously to the braid closure, one can define the closure of a string
link. Represent the Whitehead link and the Borromean rings from Sec-
tion 1.2.5 (page 20) as closures of string links on 2 and 3 strands respec-
tively.

(13) Find a sequence of Markov moves that transforms the closure of the
braid σ2

1σ
3
2σ

4
1σ2 into the closure of the braid σ2

1σ2σ
4
1σ

3
2.

(14) Garside’s fundamental braid ∆ ∈ Bn is defined as
∆ := (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)(σ1) .

∆ =

(a) Prove that σi∆ = ∆σn−i for every standard generator σi ∈ Bn.
(b) Prove that ∆2 = (σ1σ2 . . . σn−1)

n.
(c) Check that ∆2 belongs to the centre Z(Bn) of the braid group.
(d) Show that any braid can be represented as a product of a certain

power (possibly negative) of ∆ and a positive braid, that is, a braid
that contains only positive powers of standard generators σi.

In fact, for n > 3, the centre Z(Bn) is the infinite cyclic group generated
by ∆2. The word and conjugacy problems in the braid group were solved
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by F. Garside [Gar]. The structure of positive braids that occur in the
last statement was studied in [Adya, ElMo].

(15) (a) Prove that the sign of the permutation corresponding to a braid b is

equal to the parity of the number of crossings of b, that is (−1)ℓ(b),
where ℓ(b) is the length of b as a word in generators σ1, . . . , σn−1.

(b) Prove that the subgroup Pn of pure braids is gen-
erated by the braids Aij linking the i-th and j-th
strings with each other behind all other strings.

Aij =

i j

i

...

j

...
...

(16) Let V be a vector space of dimension n with a distinguished basis
e1, . . . , en, and let Ξi be the counterclockwise 90◦ rotation in the plane
〈ei, ei+1〉: Ξi(ei) = ei+1, Ξi(ei+1) = −ei, Ξi(ej) = ej for j 6= i, i + 1.
Prove that sending each elementary generator σi ∈ Bn to Ξi we get a
representation Bn → GLn(R) of the braid group.

(17) Burau representation. Consider the free module over the ring of
Laurent polynomials Z[x±1] with a basis e1, . . . , en. The Burau repre-
sentation Bn → GLn(Z[x±1]) sends σi ∈ Bn to the linear operator that
transforms ei into (1− x)ei + ei+1, and ei+1 into xei.
(a) Prove that it is indeed a representation of the braid group.
(b) The Burau representation is reducible. It splits into the trivial one-

dimensional representation and an (n − 1)-dimensional irreducible
representation which is called the reduced Burau representation.
Find a basis of the reduced Burau representation where the matrices
have the form

σ1 7→
(−x x ... 0

0 1 ... 0...
...

. . .
...

0 0 ... 1

)
, σi 7→




1. . .
1 0 0
1 −x x
0 0 1. . .

1


 , σn−1 7→

(
1 ... 0 0...

. . .
...

...
0 ... 1 0
0 ... 1 −x

)

Answer. {xe1 − e2, xe2 − e3, . . . , xen−1 − en}
The Burau representation is faithful for n 6 3 [Bir1], and not faithful
for n > 5 [Big1]. The case n = 4 remains open.

(18) Lawrence–Krammer–Bigelow representation. Let V be a free
Z[q±1, t±1] module of dimension n(n− 1)/2 with a basis ei,j for 1 6 i <
j 6 n. The Lawrence–Krammer–Bigelow representation can be defined
via the action of σk ∈ Bn on V :

σk(ei,j) =

8>>>>>>>>>>><>>>>>>>>>>>:
ei,j if k < i− 1 or k > j,

ei−1,j + (1− q)ei,j if k = i− 1,

tq(q − 1)ei,i+1 + qei+1,j if k = i < j − 1,

tq2ei,j if k = i = j − 1,

ei,j + tqk−i(q − 1)2ek,k+1 if i < k < j − 1,

ei,j−1 + tqj−i(q − 1)ej−1,j if i < k = j − 1,

(1− q)ei,j + qei,j+1 if k = i− 1.



Exercises 39

Prove that this assignment determines a representation of the braid
group. It was shown in [Big2, Kram] that this representation is faithful
for any n > 1. Therefore the braid group is a linear group.

(19) Represent the knots 41, 51, 52 as products of simple tangles.

(20) Consider the following two knots given as products of simple tangles:

(
←−
max⊗−→max )·(id∗⊗X+⊗id∗)·(id∗⊗X+⊗id∗)·(id∗⊗X+⊗id∗)·(min−→⊗min←−)

and
−→
max ·(id⊗−→max⊗id∗)·(X+⊗id∗⊗id∗)·(X+⊗id∗⊗id∗)·(X+⊗id∗⊗id∗)·(id⊗min←−⊗id∗)·min←−
(a) Show that these two knots are equivalent.
(b) Indicate a sequence of the Turaev moves that transforms one prod-

uct into another.
(c) Forget about the orientations and consider the corresponding un-

oriented tangles. Find a sequence of unoriented Turaev moves that
transforms one product into another.

(21) Represent the oriented tangle move on the
right as a sequence of oriented Turaev moves
from page 32.

←→

(22) Whitney trick. Show that the move FΩ1 in
the framed Reidemeister Theorem 1.8.2 can be
replaced by the move shown on the right.

(23) The group Zk+1
2 acts on oriented k-component links, changing the orien-

tation of each component and taking the mirror image of the link. How
many different links are there in the orbit of an oriented Whitehead link
under this action?

(24) Show that each of the moves V Ω3 can be obtained as a combination of
the moves V Ω2 with the moves V Ω′3 below:

V Ω′3 : .

Conversely, show that the moves V Ω′3 can be obtained as combinations
of the moves V Ω2 and V Ω3.

(25) Show that the following moves are equivalent modulo V Ω2.

.

This means that either one can be obtained as a combination of another
one with the V Ω2 moves.
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(26) (O.-P. Östlund [Öll]) Show that the second version of V Ω2:

−ε ε

is redundant. It can be obtained as a combination of the first version,

ε −ε ,

with the moves V Ω1 and V Ω3.



Chapter 2

Knot invariants

Knot invariants are functions of knots that do not change under isotopies.
The study of knot invariants is at the core of knot theory; indeed, the isotopy
class of a knot is, tautologically, a knot invariant.

2.1. Definition and first examples

Let K be the set of all equivalence classes of knots.

Definition. A knot invariant with values in a set S is a map from K to S.

In the same way one can speak of invariants of links, framed knots, etc.

2.1.1. Crossing number. Any knot can be represented by a plane dia-
gram in infinitely many ways.

Definition. The crossing number c(K) of a knot K is the minimal number
of crossing points in a plane diagram of K.

Exercise. Prove that if c(K) 6 2, then the knot K is trivial.

It follows that the minimal number of crossings required to draw a di-
agram of a nontrivial knot is at least 3. A little later we shall see that the
trefoil knot is indeed nontrivial.

Obviously, c(K) is a knot invariant taking values in the set of non-
negative integers.

2.1.2. Unknotting number. Another integer-valued invariant of knots
which admits a simple definition is the unknotting number.

Represent a knot by a plane diagram. The diagram can be transformed
by plane isotopies, Reidemeister moves and crossing changes:

41
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As we know, modifications of the first two kinds preserve the topological
type of the knot, and only crossing switches can change it.

Definition. The unknotting number u(K) of a knot K is the minimal num-
ber of crossing changes in a plane diagram of K that convert it to a trivial
knot, provided that any number of plane isotopies and Reidemeister moves
is also allowed.

Exercise. What is the unknotting number of the knots 31 and 83?

Finding the unknotting number, if it is greater than 1, is a difficult task;
for example, the second question of the previous exercise was answered only
in 1986 (by T. Kanenobu and H. Murakami).

2.1.3. Knot group. The knot group is the fundamental group of the com-
plement to the knot in the ambient space: π(K) = π1(R

3 \K). The knot
group is a very strong invariant. For example, a knot is trivial if and only if
its group is infinite cyclic. More generally, two prime knots with isomorphic
fundamental groups are isotopic. For a detailed discussion of knot groups
see [Lik].

Exercise. Prove that

(1) the group of the trefoil is generated by two elements x, y with one
relation x2 = y3;

(2) this group is isomorphic to the braid group B3 (in terms of x, y find
another pair of generators a, b that satisfy aba = bab).

2.2. Linking number

The linking number is an example of a Vassiliev invariant of two-component
links; it has an analog for framed knots, called self-linking number.

Intuitively, the linking number lk(A,B) of two oriented spatial curves
A and B is the number of times A winds around B. To give a precise
definition, choose an oriented disk DA immersed in space so that its oriented
boundary is the curve A (this means that the ordered pair consisting of an
outward-looking normal vector to A and the orienting tangent vector to A
gives a positive basis in the tangent space to DA). The linking number
lk(A,B) is then defined as the intersection number of DA and B. To find
the intersection number, if necessary, make a small perturbation of DA so
as to make it meet the curve B only at finitely many points of transversal
intersection. At each intersection point, define the sign to be equal to ±1
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depending on the orientations of DA and B at this point. More specifically,
let (e1, e2) be a positive pair of tangent vectors to DA, while e3 a positively
directed tangent vector to B at the intersection point; the sign is set to +1
if and only if the frame (e1, e2, e3) defines a positive orientation of R3. Then
the linking number lk(A,B) is the sum of these signs over all intersection
points p ∈ DA ∩ B. One can prove that the result does not depend on the
choice of the surface DA and that lk(A,B) = lk(B,A).

Example. The two curves shown in the picture

have their linking number equal to −1.

Given a plane diagram of a two-component link, there is a simple combi-
natorial formula for the linking number. Let I be the set of crossing points
involving branches of both components A and B (crossing points involving
branches of only one component are irrelevant here). Then I is the disjoint
union of two subsets IAB (points where A passes over B) and IBA (where B
passes over A).

2.2.1. Proposition.

lk(A,B) =
∑

p∈IA
B

w(p) =
∑

p∈IB
A

w(p) =
1

2

∑

p∈I
w(p)

where w(p) is the local writhe of the crossing point.

Proof. Crossing changes at all points p ∈ IBA make the two components
unlinked. Call the new curves A′ and B′, then lk(A′, B′) = 0. It is clear
from the pictures below that each crossing switch changes the linking number
by −w where w is the local writhe:
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Therefore, lk(A,B)−∑p∈IB
A
w(p) = 0, and the assertion follows. �

Example. For the two curves below both ways to compute the linking
number give +1:

A

B

2.2.2. Integral formulae. There are various integral formulae for the link-
ing number. The most famous formula was found by Gauss (see [Spi] for a
proof).

Theorem. Let A and B be two non-intersecting curves in R3, parameter-
ized, respectively, by the smooth functions α, β : S1 → R3. Then

lk(A,B) =
1

4π

∫

S1×S1

(β(v)− α(u), du, dv)

|β(v)− α(u)|3 ,

where the parentheses in the numerator stand for the mixed product of 3
vectors.

Geometrically, this formula computes the degree of the Gauss map from
A × B = S1 × S1 to the 2-sphere S2, that is, the number of times the
normalized vector connecting a point on A to a point on B goes around the
sphere.

A different integral formula for the linking number will be stated and
proved in Chapter 8, see page 223. It represents the simplest term of the
Kontsevich integral, which encodes all Vassiliev invariants.

2.2.3. Self-linking. Let K be a framed knot and let K ′ be the knot ob-
tained from K by a small shift in the direction of the framing.

Definition. The self-linking number of K is the linking number of K and
K ′.

Note, by the way, that the linking number is the same if K is shifted in
the direction, opposite to the framing.

Proposition. The self-linking number of a framed knot given by a diagram
D with blackboard framing is equal to the total writhe of the diagram D.

Proof. Indeed, in the case of blackboard framing, the only crossings of K
with K ′ occur near the crossing points of K. The neighbourhood of each
crossing point looks like
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K

K’K

K’

The local writhe of the crossing where K passes over K ′ is the same as
the local writhe of the crossing point of the knot K with itself. Therefore,
the claim follows from the combinatorial formula for the linking number
(Proposition 2.2.1). �

2.3. Conway polynomial

In what follows we shall usually consider invariants with values in a com-
mutative ring. Of special importance in knot theory are polynomial knot
invariants taking values in the rings of polynomials (or Laurent polynomi-
als1) in one or several variables, usually with integer coefficients.

Historically, the first polynomial invariant for knots was the Alexander
polynomial A(K) introduced in 1928 [Al]. See [CrF, Lik, Rol] for a discus-
sion of the beautiful topological theory related to the Alexander polynomial.
In 1970 J. Conway [Con] found a simple recursive construction of a poly-
nomial invariant C(K) which differs from the Alexander polynomial only
by a change of variable, namely, A(K) = C(K) |t7→x1/2−x−1/2 . In this book,
we only use Conway’s normalization. Conway’s definition, given in terms
of plane diagrams, relies on crossing point resolutions that may take a knot
diagram into a link diagram; therefore, we shall speak of links rather than
knots.

2.3.1. Definition. The Conway polynomial C is an invariant of oriented
links (and, in particular, an invariant of oriented knots) taking values in the
ring Z[t] and defined by the two properties:

C
( )

= 1,

C
( )

− C
( )

= tC
( )

.

Here stands for the unknot (trivial knot) while the three pictures
in the second line stand for three diagrams that are identical everywhere ex-
cept for the fragments shown. The second relation is referred to as Conway’s
skein relation. Skein relations are equations on the values of some functions

1A Laurent polynomial in x is a polynomial in x and x−1.
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on knots (links, etc.) represented by diagrams that differ from each other by
local changes near a crossing point. These relations often give a convenient
way to work with knot invariants.

It is not quite trivial to prove the existence of an invariant satisfying
this definition, but as soon as this fact is established, the computation of
the Conway polynomial becomes fairly easy.

2.3.2. Example.

(i) C
( )

=
1

t
C
( )

− 1

t
C
( )

= 0,

because the two knots on the right are equivalent (both are trivial).

(ii) C
( )

= C
( )

− tC
( )

= C
( )

− tC
( )

= −t .

(iii) C
( )

= C
( )

− tC
( )

= C
( )

− tC
( )

= 1 + t2 .

2.3.3. The values of the Conway polynomial on knots with up to 8 crossings
are given in Table 2.3.3.1. Note that the Conway polynomial of the inverse
knot K∗ and the mirror knot K coincides with that of knot K.

For every n, the coefficient cn of tn in C is a numerical invariant of the
knot.

2.4. Jones polynomial

The invention of the Jones polynomial [Jo1] in 1985 produced a genuine
revolution in knot theory. The original construction of V. Jones was given
in terms of state sums and von Neumann algebras. It was soon noted,
however, that the Jones polynomial can be defined by skein relations, in the
spirit of Conway’s definition 2.3.1.

Instead of simply giving the corresponding formal equations, we explain,
following L. Kauffman [Ka6], how this definition could be invented. As
with the Conway polynomial, the construction given below requires that we
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K C(K) K C(K) K C(K)

31 1 + t2 76 1 + t2 − t4 811 1− t2 − 2t4

41 1− t2 77 1− t2 + t4 812 1− 3t2 + t4

51 1 + 3t2 + t4 81 1− 3t2 813 1 + t2 + 2t4

52 1 + 2t2 82 1− 3t4 − t6 814 1− 2t4

61 1− 2t2 83 1− 4t2 815 1 + 4t2 + 3t4

62 1− t2 − t4 84 1− 3t2 − 2t4 816 1 + t2 + 2t4 + t6

63 1 + t2 + t4 85 1− t2 − 3t4 − t6 817 1− t2 − 2t4 − t6
71 1 + 6t2 + 5t4 + t6 86 1− 2t2 − 2t4 818 1 + t2 − t4 − t6
72 1 + 3t2 87 1 + 2t2 + 3t4 + t6 819 1 + 5t2 + 5t4 + t6

73 1 + 5t2 + 2t4 88 1 + 2t2 + 2t4 820 1 + 2t2 + t4

74 1 + 4t2 89 1− 2t2 − 3t4 − t6 821 1− t4
75 1 + 4t2 + 2t4 810 1 + 3t2 + 3t4 + t6

Table 2.3.3.1. Conway polynomials of knots with up to 8 crossings

consider invariants on the totality of all links, not only knots, because the
transformations used may turn a knot diagram into a link diagram with
several components.

Suppose that we are looking for an invariant of unoriented links, denoted
by angular brackets, that has a prescribed behaviour with respect to the
resolution of diagram crossings and the addition of a disjoint copy of the
unknot:

〈 〉 = a 〈 〉+ b 〈 〉,

〈L ⊔ 〉 = c 〈L 〉,

where a, b and c are certain fixed coefficients.

For the bracket 〈 , 〉 to be a link invariant, it must be stable under the
three Reidemeister moves Ω1, Ω2, Ω3 (see Section 1.3).

2.4.1. Exercise. Show that the bracket 〈 , 〉 is Ω2-invariant if and only if
b = a−1 and c = −a2 − a−2. Prove that Ω2-invariance in this case implies
Ω3-invariance.

2.4.2. Exercise. Suppose that b = a−1 and c = −a2 − a−2. Check that
the behaviour of the bracket with respect to the first Reidemeister move is
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described by the equations

〈 〉 = −a−3 〈 〉,

〈 〉 = −a3 〈 〉.

In the assumptions b = a−1 and c = −a2 − a−2, the bracket polynomial
〈L〉 normalized by the initial condition

〈 〉 = 1

is referred to as the Kauffman bracket of L. We see that the Kauffman
bracket changes only under the addition (or deletion) of a small loop, and
this change depends on the local writhe of the corresponding crossing. It
is easy, therefore, to write a formula for a quantity that would be invariant
under all three Reidemeister moves:

J(L) = (−a)−3w〈L〉,
where w is the total writhe of the diagram (the difference between the num-
ber of positive and negative crossings).

The invariant J(L) is a Laurent polynomial called the Jones polynomial
(in a-normalization). The more standard t-normalization is obtained by the

substitution a = t−1/4. Note that the Jones polynomial is an invariant of an
oriented link, although in its definition we use the Kauffman bracket which
is determined by a diagram without orientation.

2.4.3. Exercise. Check that the Jones polynomial is uniquely determined
by the skein relation

t−1J( )− tJ( ) = (t1/2 − t−1/2)J( ) (1)

and the initial condition

J( ) = 1. (2)

2.4.4. Example. Let us compute the value of the Jones polynomial on the
left trefoil 31. The calculation requires several steps, each consisting of one
application of the rule (1) and some applications of rule (2) and/or using
the results of the previous steps. We leave the details to the reader.

(i) J
( )

= −t1/2 − t−1/2.

(ii) J
( )

= −t1/2 − t5/2.

(iii) J
( )

= −t−5/2 − t−1/2.
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(iv) J

( )
= −t−4 + t−3 + t−1.

2.4.5. Exercise. Repeat the previous calculation for the right trefoil and
prove that J(31) = t+ t3 − t4.

We see that the Jones polynomial J can tell apart two knots which the
Conway polynomial C cannot. This does not mean, however, that J is
stronger than C. There are pairs of knots, for example, K1 = 1071, K2 =
10104 such that J(K1) = J(K2), but C(K1) 6= C(K2) (see, for instance,
[Sto2]).

2.4.6. The values of the Jones polynomial on standard knots with up to 8
crossings are given in Table 2.4.6.1. The Jones polynomial does not change
when the knot is inverted (this is no longer true for links), see Exercise 26.
The behaviour of the Jones polynomial under mirror reflection is described
in Exercise 25.

2.5. Algebra of knot invariants

Knot invariants with values in a given commutative ring R form an algebra
I over that ring with respect to usual pointwise operations on functions

(f + g)(K) = f(K) + g(K),

(fg)(K) = f(K)g(K).

Extending knot invariants by linearity to the whole algebra of knots we
see that

I = HomZ(ZK,R).

In particular, as an R-module (or a vector space, if R is a field) I is dual
to the algebra RK := ZK⊗R, where ZK is the algebra of knots introduced
in Section 1.6. The products on RK and I are carried by this duality to
co-products on the space of invariants and on the algebra RK of knots; later
(in Chapter 4.3) we shall see that RK and I are, in fact, mutually dual
bialgebras.

2.6. Quantum invariants

The subject of this section is not entirely elementary. However, we are not
going to develop here a full theory of quantum groups and corresponding
invariants, confining ourselves to some basic ideas which can be understood
without going deep into complicated details. The reader will see that it is
possible to use quantum invariants without even knowing what a quantum
group is!
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31 −t−4 + t−3 + t−1

41 t−2 − t−1 + 1− t+ t2

51 −t−7 + t−6 − t−5 + t−4 + t−2

52 −t−6 + t−5 − t−4 + 2t−3 − t−2 + t−1

61 t−4 − t−3 + t−2 − 2t−1 + 2− t+ t2

62 t−5 − 2t−4 + 2t−3 − 2t−2 + 2t−1 − 1 + t
63 −t−3 + 2t−2 − 2t−1 + 3− 2t+ 2t2 − t3
71 −t−10 + t−9 − t−8 + t−7 − t−6 + t−5 + t−3

72 −t−8 + t−7 − t−6 + 2t−5 − 2t−4 + 2t−3 − t−2 + t−1

73 t2 − t3 + 2t4 − 2t5 + 3t6 − 2t7 + t8 − t9
74 t− 2t2 + 3t3 − 2t4 + 3t5 − 2t6 + t7 − t8
75 −t−9 + 2t−8 − 3t−7 + 3t−6 − 3t−5 + 3t−4 − t−3 + t−2

76 −t−6 + 2t−5 − 3t−4 + 4t−3 − 3t−2 + 3t−1 − 2 + t
77 −t−3 + 3t−2 − 3t−1 + 4− 4t+ 3t2 − 2t3 + t4

81 t−6 − t−5 + t−4 − 2t−3 + 2t−2 − 2t−1 + 2− t+ t2

82 t−8 − 2t−7 + 2t−6 − 3t−5 + 3t−4 − 2t−3 + 2t−2 − t−1 + 1
83 t−4 − t−3 + 2t−2 − 3t−1 + 3− 3t+ 2t2 − t3 + t4

84 t−5 − 2t−4 + 3t−3 − 3t−2 + 3t−1 − 3 + 2t− t2 + t3

85 1− t+ 3t2 − 3t3 + 3t4 − 4t5 + 3t6 − 2t7 + t8

86 t−7 − 2t−6 + 3t−5 − 4t−4 + 4t−3 − 4t−2 + 3t−1 − 1 + t
87 −t−2 + 2t−1 − 2 + 4t− 4t2 + 4t3 − 3t4 + 2t5 − t6
88 −t−3 + 2t−2 − 3t−1 + 5− 4t+ 4t2 − 3t3 + 2t4 − t5
89 t−4 − 2t−3 + 3t−2 − 4t−1 + 5− 4t+ 3t2 − 2t3 + t4

810 −t−2 + 2t−1 − 3 + 5t− 4t2 + 5t3 − 4t4 + 2t5 − t6
811 t−7 − 2t−6 + 3t−5 − 5t−4 + 5t−3 − 4t−2 + 4t−1 − 2 + t
812 t−4 − 2t−3 + 4t−2 − 5t−1 + 5− 5t+ 4t2 − 2t3 + t4

813 −t−3 + 3t−2 − 4t−1 + 5− 5t+ 5t2 − 3t3 + 2t4 − t5
814 t−7 − 3t−6 + 4t−5 − 5t−4 + 6t−3 − 5t−2 + 4t−1 − 2 + t
815 t−10 − 3t−9 + 4t−8 − 6t−7 + 6t−6 − 5t−5 + 5t−4 − 2t−3 + t−2

816 −t−6 + 3t−5 − 5t−4 + 6t−3 − 6t−2 + 6t−1 − 4 + 3t− t2
817 t−4 − 3t−3 + 5t−2 − 6t−1 + 7− 6t+ 5t2 − 3t3 + t4

818 t−4 − 4t−3 + 6t−2 − 7t−1 + 9− 7t+ 6t2 − 4t3 + t4

819 t3 + t5 − t8
820 −t−5 + t−4 − t−3 + 2t−2 − t−1 + 2− t
821 t−7 − 2t−6 + 2t−5 − 3t−4 + 3t−3 − 2t−2 + t−1

Table 2.4.6.1. Jones polynomials of knots with up to 8 crossings

2.6.1. The discovery of the Jones polynomial inspired many people to search
for other skein relations compatible with Reidemeister moves and thus defin-
ing knot polynomials. This lead to the introduction of the HOMFLY ([HOM,
PT]) and Kauffman’s ([Ka3, Ka4]) polynomials. It soon became clear that
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all these polynomials are the first members of a vast family of knot invariants
called quantum invariants.

The original idea of quantum invariants (in the case of 3-manifolds) was
proposed by E. Witten in the famous paper [Wit1]. Witten’s approach com-
ing from physics was not completely justified from the mathematical view-
point. The first mathematically impeccable definition of quantum invariants
of links and 3-manifolds was given by Reshetikhin and Turaev [RT1, Tur2],
who used in their construction the notion of quantum groups introduced
shortly before that by V. Drinfeld in [Dr4] (see also [Dr3]) and M. Jimbo in
[Jimb]. In fact, a quantum group is not a group at all. Instead, it is a family
of algebras, more precisely, of Hopf algebras (see Appendix A.2.21), depend-
ing on a complex parameter q and satisfying certain axioms. The quantum
group Uqg of a semisimple Lie algebra g is a remarkable deformation of the
universal enveloping algebra (see Appendix A.1.7) of g (corresponding to
the value q = 1) in the class of Hopf algebras.

In this section, we show how the Jones polynomial J can be obtained
by the techniques of quantum groups, following the approach of Reshetikhin
and Turaev. It turns out that J coincides, up to normalization, with the
quantum invariant corresponding to the Lie algebra g = sl2 in its standard
two-dimensional representation (see Appendix A.1.1). Later in the book,
we shall sometimes refer to the ideas illustrated in this section. For detailed
expositions of quantum groups, we refer the interested reader to [Jan, Kas,
KRT].

2.6.2. Let g be a semisimple Lie algebra and let V be its finite dimensional
representation. One can view V as a representation of the universal en-
veloping algebra U(g) (see Appendix, page 420). It is remarkable that this
representation can also be deformed with parameter q to a representation
of the quantum group Uqg. The vector space V remains the same, but the
action now depends on q. For a generic value of q all irreducible representa-
tions of Uqg can be obtained in this way. However, when q is a root of unity
the representation theory is different and resembles the representation the-
ory of g in finite characteristic. It can be used to derive quantum invariants
of 3-manifolds. For the purposes of knot theory it is enough to use generic
values of q.

2.6.3. An important property of quantum groups is that every representa-
tion gives rise to a solution R of the quantum Yang–Baxter equation

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R)

where R (the R-matrix ) is an invertible linear operator R : V ⊗V → V ⊗V ,
and both sides of the equation are understood as linear transformations
V ⊗ V ⊗ V → V ⊗ V ⊗ V .
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Exercise. Given an R-matrix, construct a representation of the braid
group Bn in the space V ⊗n.

There is a procedure to construct an R-matrix associated with a re-
presentation of a Lie algebra. We are not going to describe it in general,
confining ourselves just to one example: the Lie algebra g = sl2 and its
standard two dimensional representation V (for slN case see exercise (38)
on page 68). In this case the associated R-matrix has the form

R :





e1 ⊗ e1 7→ q1/4e1 ⊗ e1
e1 ⊗ e2 7→ q−1/4e2 ⊗ e1
e2 ⊗ e1 7→ q−1/4e1 ⊗ e2 + (q1/4 − q−3/4)e2 ⊗ e1
e2 ⊗ e2 7→ q1/4e2 ⊗ e2

for an appropriate basis {e1, e2} of the space V . The inverse of R (we shall
need it later) is given by the formulae

R−1 :





e1 ⊗ e1 7→ q−1/4e1 ⊗ e1
e1 ⊗ e2 7→ q1/4e2 ⊗ e1 + (−q3/4 + q−1/4)e1 ⊗ e2
e2 ⊗ e1 7→ q1/4e1 ⊗ e2
e2 ⊗ e2 7→ q−1/4e2 ⊗ e2

2.6.4. Exercise. Check that this operator R satisfies the quantum Yang-
Baxter equation.

2.6.5. The general procedure of constructing quantum invariants is orga-
nized as follows (see details in [Oht1]). Consider a knot diagram in the
plane and take a generic horizontal line. To each intersection point of the
line with the diagram we assign either the representation space V or its dual
V ∗ depending on whether the orientation of the knot at this intersection is
directed upwards or downwards. Then take the tensor product of all such
spaces over the whole horizontal line. If the knot diagram does not intersect
the line then the corresponding vector space is the ground field C.

A portion of a knot diagram between two such horizontal lines represents
a tangle T (see the general definition in Section 1.7). We assume that this
tangle is framed by the blackboard framing. With T we associate a linear
transformation θfr(T ) from the vector space corresponding to the bottom
of T to the vector space corresponding to the top of T . The following three
properties hold for the linear transformation θfr(T ):

• θfr(T ) is an invariant of the isotopy class of the framed tangle T ;
• θfr(T1 · T2) = θfr(T1) ◦ θfr(T2);
• θfr(T1 ⊗ T2) = θfr(T1)⊗ θfr(T2).
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V

V

 

T1

T2

VV

V V

V

VVV *

*
V ∗ ⊗ V ⊗ V ⊗ V

V ⊗ V ∗ ⊗ V ⊗ V
θfr(T1)

OO

V ⊗ V
θfr(T2)

OO
θfr(T1·T2)

hh

Now we can define a knot invariant θfr(K) regarding the knot K as a tangle
between the two lines below and above K. In this case θfr(K) would be
a linear transformation from C to C, that is, multiplication by a number.
Since our linear transformations depend on the parameter q, this number is
actually a function of q.

2.6.6. Because of the multiplicativity property θfr(T1 · T2) = θfr(T1) ◦
θfr(T2) it is enough to define θfr(T ) only for elementary tangles T such
as a crossing, a minimum or a maximum point. This is precisely where
quantum groups come in. Given a quantum group Uqg and its finite dimen-
sional representation V , one can associate certain linear transformations
with elementary tangles in a way consistent with the Turaev oriented moves
from page 32. The R-matrix appears here as the linear transformation
corresponding to a positive crossing, while R−1 corresponds to a negative
crossing. Of course, for a trivial tangle consisting of a single string connect-
ing the top and bottom, the corresponding linear operator should be the
identity transformation. So we have the following correspondence valid for
all quantum groups:

V

V

V
xidV

V
V *

V
 

*
V ∗
xidV ∗

V ∗

V

V

V

V V ⊗ V
xR

V ⊗ V
V

V

V

V V ⊗ V
xR−1

V ⊗ V
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Using this we can easily check that the invariance of a quantum invariant
under the third Reidemeister move is nothing else but the quantum Yang–
Baxter equation:

V ⊗ V ⊗ V
R⊗idV

x
V ⊗ V ⊗ V
idV ⊗R

x
V ⊗ V ⊗ V
R⊗idV

x
V ⊗ V ⊗ V

VV

V VV

V

V VV

V V V

=

VV

V VV

V

V VV

V V V

V ⊗ V ⊗ V
xidV ⊗R

V ⊗ V ⊗ V
xR⊗idV

V ⊗ V ⊗ V
xidV ⊗R

V ⊗ V ⊗ V

(R⊗ idV )◦(idV ⊗R)◦(R⊗ idV ) = (idV ⊗R)◦(R⊗ idV )◦(idV ⊗R)

Similarly, the fact that we assigned mutually inverse operators (R and
R−1) to positive and negative crossings implies the invariance under the sec-
ond Reidemeister move. (The first Reidemeister move is treated in Exercise
37a below.)

To complete the construction of our quantum invariant we should assign
appropriate operators to the minimum and maximum points. These de-
pend on all the data involved: the quantum group, the representation and
the R-matrix. For the quantum group Uqsl2, its standard two dimensional
representation V and the R-matrix chosen in 2.6.3 these operators are:

min−→ =

V
 

V* V ∗ ⊗ V

C

OO q−1/2e1 ⊗ e1 + q1/2e2 ⊗ e2

1
_

OO

min←− =

V
 

V * V ⊗ V ∗

C

OO e1 ⊗ e1 + e2 ⊗ e2

1
_

OO

−→
max =

V
 

V *

C

V ⊗ V ∗

OO q1/2

e1 ⊗ e1
_

OO 0

e1 ⊗ e2
_

OO 0

e2 ⊗ e1
_

OO
q−1/2

e2 ⊗ e2
_

OO
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←−
max =

V
 

V*

C

V ∗ ⊗ V

OO 1

e1 ⊗ e1
_

OO 0

e1 ⊗ e2
_

OO 0

e2 ⊗ e1
_

OO 1

e2 ⊗ e2
_

OO

where {e1, e2} is the basis of V ∗ dual to the basis {e1, e2} of the space V .

We leave to the reader the exercise to check that these operators are
consistent with the oriented Turaev moves from page 32. See Exercise 38
for their generalization to slN .

2.6.7. Example. Let us compute the sl2-quantum invariant of the unknot.
Represent the unknot as a product of two tangles and compute the compo-
sition of the corresponding transformations

V
 

V*

C

V ∗ ⊗ V

OO

C

OO

q−1/2

︸ ︷︷ ︸ + q1/2︸︷︷︸

_

OO

_

OO

︷ ︸︸ ︷
q−1/2e1 ⊗ e1 +

︷ ︸︸ ︷
q1/2e2 ⊗ e2︸ ︷︷ ︸

1
_

OO

So θfr(unknot) = q1/2+q−1/2. Therefore, in order to normalize our invariant
so that its value on the unknot is equal to 1, we must divide θfr(·) by

q1/2 + q−1/2. We denote the normalized invariant by θ̃fr(·) = θfr(·)
q1/2+q−1/2 .
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2.6.8. Example. Let us compute the quantum invariant for the left trefoil.
Represent the diagram of the trefoil as follows.

V
 

V
 

V
 

V
 

V
 

V
 

V
 

V
 

V
 

V
 

V

V

V

V

V

V

V

V

V

V

*

*

*

*

*

*

*

*

*

*

C
x

V ∗ ⊗ V
x

V ∗ ⊗ V ⊗ V ⊗ V ∗
xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗
xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗
xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗
x

V ⊗ V ∗
x
C

Two maps at the bottom send 1 ∈ C into the tensor

1 7→ q−1/2e1 ⊗ e1 ⊗ e1 ⊗ e1 + q−1/2e1 ⊗ e1 ⊗ e2 ⊗ e2

+ q1/2e2 ⊗ e2 ⊗ e1 ⊗ e1 + q1/2e2 ⊗ e2 ⊗ e2 ⊗ e2 .

Then applying R−3 to two tensor factors in the middle we get

q−1/2e1 ⊗
(
q−3/4e1 ⊗ e1

)
⊗ e1

+q−1/2e1 ⊗
((
−q9/4 + q5/4 − q1/4 + q−3/4

)
e1 ⊗ e2

+
(
−q7/4 − q3/4 − q−1/4

)
e2 ⊗ e1

)
⊗ e2

+q1/2e2 ⊗
((
q7/4 − q3/4 + q−1/4

)
e1 ⊗ e2 +

(
−q5/4 + q1/4

)
e2 ⊗ e1

)
⊗ e1

+q1/2e2 ⊗
(
q−3/4e2 ⊗ e2

)
⊗ e2 .
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Finally, the two maps at the top contract the whole tensor into a number

θfr(31) = q−1/2q−3/4q1/2 + q−1/2
(
−q9/4 + q5/4 − q1/4 + q−3/4

)
q−1/2

+q1/2
(
−q5/4 + q1/4

)
q1/2 + q1/2q−3/4q−1/2

= 2q−3/4 − q5/4 + q1/4 − q−3/4 + q−7/4 − q9/4 + q5/4

= q−7/4 + q−3/4 + q1/4 − q9/4

Dividing by the normalizing factor q1/2 + q−1/2 we get

θfr(31)

q1/2 + q−1/2
= q−5/4 + q3/4 − q7/4 .

The invariant θfr(K) remains unchanged under the second and third
Reidemeister moves. However, it varies under the first Reidemeister move
and thus depends on the framing. One can deframe it according to the
formula

θ(K) = q−
c·w(K)

2 θfr(K) ,

where w(K) is the writhe of the knot diagram and c is the quadratic Casimir
number (see Appendix A.1.1) defined by the Lie algebra g and its represen-
tation. For sl2 and the standard 2-dimensional representation c = 3/2. The
writhe of the left trefoil in our example equals −3. Hence for the unframed
normalized quantum invariant we have

θ̃(31) =
θ(31)

q1/2 + q−1/2
= q9/4

(
q−5/4 + q3/4 − q7/4

)
= q + q3 − q4 .

The substitution q = t−1 gives the Jones polynomial t−1 + t−3 − t−4.

2.7. Two-variable link polynomials

2.7.1. HOMFLY polynomial. The HOMFLY polynomial P (L) is an un-
framed link invariant. It is defined as the Laurent polynomial in two vari-
ables a and z with integer coefficients satisfying the following skein relation
and the initial condition:

aP ( ) − a−1P ( ) = zP ( ) ; P ( ) = 1 .

The existence of such an invariant is a difficult theorem. It was established
simultaneously and independently by five groups of authors [HOM, PT]
(see also [Lik]). The HOMFLY polynomial is equivalent to the collection
of quantum invariants associated with the Lie algebra slN and its standard
N -dimensional representation for all values of N (see Exercise 38 on page 68
for details).
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31 (2a2 − a4) + a2z2

41 (a−2 − 1 + a2)− z2

51 (3a4 − 2a6) + (4a4 − a6)z2 + a4z4

52 (a2 + a4 − a6) + (a2 + a4)z2

61 (a−2 − a2 + a4) + (−1− a2)z2

62 (2− 2a2 + a4) + (1− 3a2 + a4)z2 − a2z4

63 (−a−2 + 3− a2) + (−a−2 + 3− a2)z2 + z4

71 (4a6 − 3a8) + (10a6 − 4a8)z2 + (6a6 − a8)z4 + a6z6

72 (a2 + a6 − a8) + (a2 + a4 + a6)z2

73 (a−4 + 2a−6 − 2a−8) + (3a−4 + 3a−6 − a−8)z2 + (a−4 + a−6)z4

74 (2a−4 − a−8) + (a−2 + 2a−4 + a−6)z2

75 (2a4 − a8) + (3a4 + 2a6 − a8)z2 + (a4 + a6)z4

76 (1− a2 + 2a4 − a6) + (1− 2a2 + 2a4)z2 − a2z4

77 (a−4 − 2a−2 + 2) + (−2a−2 + 2− a2)z2 + z4

81 (a−2 − a4 + a6) + (−1− a2 − a4)z2

82 (3a2 − 3a4 + a6) + (4a2 − 7a4 + 3a6)z2 + (a2 − 5a4 + a6)z4 − a4z6

83 (a−4 − 1 + a4) + (−a−2 − 2− a2)z2

84 (a4 − 2 + 2a−2) + (a4 − 2a2 − 3 + a−2)z2 + (−a2 − 1)z4

85 (4a−2 − 5a−4 + 2a−6) + (4a−2 − 8a−4 + 3a−6)z2

+(a−2 − 5a−4 + a−6)z4 − a−4z6

86 (2− a2 − a4 + a6) + (1− 2a2 − 2a4 + a6)z2 + (−a2 − a4)z4

87 (−2a−4 + 4a−2 − 1) + (−3a−4 + 8a−2 − 3)z2 + (−a−4 + 5a−2 − 1)z4

+a−2z6

88 (−a−4 + a−2 + 2− a2) + (−a−4 + 2a−2 + 2− a2)z2 + (a−2 + 1)z4

89 (2a−2 − 3 + 2a2) + (3a−2 − 8 + 3a2)z2 + (a−2 − 5 + a2)z4 − z6

810 (−3a−4 + 6a−2 − 2) + (−3a−4 + 9a−2 − 3)z2 + (−a−4 + 5a−2 − 1)z4

+a−2z6

811 (1 + a2 − 2a4 + a6) + (1− a2 − 2a4 + a6)z2 + (−a2 − a4)z4

812 (a−4 − a−2 + 1− a2 + a4) + (−2a−2 + 1− 2a2)z2 + z4

813 (−a−4 + 2a−2) + (−a−4 + 2a−2 + 1− a2)z2 + (a−2 + 1)z4

814 1 + (1− a2 − a4 + a6)z2 + (−a2 − a4)z4

815 (a4 + 3a6 − 4a8 + a10) + (2a4 + 5a6 − 3a8)z2 + (a4 + 2a6)z4

816 (−a4 + 2a2) + (−2a4 + 5a2 − 2)z2 + (−a4 + 4a2 − 1)z4 + a2z6

817 (a−2 − 1 + a2) + (2a−2 − 5 + 2a2)z2 + (a−2 − 4 + a2)z4 − z6

818 (−a−2 + 3− a2) + (a−2 − 1 + a2)z2 + (a−2 − 3 + a2)z4 − z6

819 (5a−6 − 5a−8 + a−10) + (10a−6 − 5a−8)z2 + (6a−6 − a−8)z4 + a−6z6

820 (−2a4 + 4a2 − 1) + (−a4 + 4a2 − 1)z2 + a2z4

821 (3a2 − 3a4 + a6) + (2a2 − 3a4 + a6)z2 − a4z4

Table 2.7.1.1. HOMFLY polynomials of knots with up to 8 crossings
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Important properties of the HOMFLY polynomial are contained in the
following exercises.

2.7.2. Exercise.

(1) Prove the uniqueness of such invariant. In other words, prove that
the relation above are sufficient to compute the HOMFLY polyno-
mial.

(2) Compute the HOMFLY polynomial for the
knots 31, 41 and compare your results with
those given in Table 2.7.1.1.

(3) (A. Sossinsky [Sos]) Compare the HOMFLY
polynomials of the Conway and Kinoshita-
Terasaka knots on the right.

C =

KT =

2.7.3. Exercise. Prove that the HOMFLY polynomial of a knot is pre-
served when the knot orientation is reversed.

2.7.4. Exercise. (W. B. R. Lickorish [Lik]) Prove that

(1) P (L) = P (L), where L is the mirror reflection of L and P (L) is the
polynomial obtained from P (L) by substituting a−1 for a;

(2) P (K1#K2) = P (K1) · P (K2);

(3) P (L1 ⊔ L2) =
a− a−1

z
· P (L1) · P (L2), where

L1⊔L2 means the split union of links (that is,
the union of L1 and L2 such that each of these
two links is contained inside its own ball, and
the two balls do not have common points);

88 =

10129 =
(4) P (88) = P (10129).

These knots can be distinguished by the two-
variable Kauffman polynomial defined below.

2.7.5. Two-variable Kauffman polynomial. In [Ka4], L. Kauffman
found another invariant Laurent polynomial F (L) in two variables a and
z. Firstly, for a unoriented link diagram D we define a polynomial Λ(D)
which is invariant under Reidemeister moves Ω2 and Ω3 and satisfies the
relations

Λ( ) + Λ( ) = z
(
Λ( ) + Λ( )

)
,

Λ( ) = aΛ( ) , Λ( ) = a−1Λ( ) ,

and the initial condition Λ( ) = 1.
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Now, for any diagram D of an oriented link L we put

F (L) := a−w(D)Λ(D).

It turns out that this polynomial is equivalent to the collection of the quan-
tum invariants associated with the Lie algebra soN and its standard N -
dimensional representation for all values of N (see [Tur3]).

31 (−2a2 − a4) + (a3 + a5)z + (a2 + a4)z2

41 (−a−2 − 1− a2) + (−a−1 − a)z + (a−2 + 2 + a2)z2 + (a−1 + a)z3

51 (3a4 + 2a6) + (−2a5 − a7 + a9)z + (−4a4 − 3a6 + a8)z2

+(a5 + a7)z3 + (a4 + a6)z4

52 (−a2 + a4 + a6) + (−2a5 − 2a7)z + (a2 − a4 − 2a6)z2

+(a3 + 2a5 + a7)z3 + (a4 + a6)z4

61 (−a−2 + a2 + a4) + (2a+ 2a3)z + (a−2 − 4a2 − 3a4)z2

+(a−1 − 2a− 3a3)z3 + (1 + 2a2 + a4)z4 + (a+ a3)z5

62 (2 + 2a2 + a4) + (−a3 − a5)z + (−3− 6a2 − 2a4 + a6)z2

+(−2a+ 2a5)z3 + (1 + 3a2 + 2a4)z4 + (a+ a3)z5

63 (a−2 + 3 + a2) + (−a−3 − 2a−1 − 2a− a3)z + (−3a−2 − 6− 3a2)z2

+(a−3 + a−1 + a+ a3)z3 + (2a−2 + 4 + 2a2)z4 + (a−1 + a)z5

71 (−4a6 − 3a8) + (3a7 + a9 − a11 + a13)z + (10a6 + 7a8 − 2a10 + a12)z2

+(−4a7 − 3a9 + a11)z3 + (−6a6 − 5a8 + a10)z4 + (a7 + a9)z5

+(a6 + a8)z6

72 (−a2 − a6 − a8) + (3a7 + 3a9)z + (a2 + 3a6 + 4a8)z2

+(a3 − a5 − 6a7 − 4a9)z3 + (a4 − 3a6 − 4a8)z4 + (a5 + 2a7 + a9)z5

+(a6 + a8)z6

73 (−2a−8 − 2a−6 + a−4) + (−2a−11 + a−9 + 3a−7)z
+(−a−10 + 6a−8 + 4a−6 − 3a−4)z2 + (a−11 − a−9 − 4a−7 − 2a−5)z3

+(a−10 − 3a−8 − 3a−6 + a−4)z4 + (a−9 + 2a−7 + a−5)z5

+(a−8 + a−6)z6

74 (−a−8 + 2a−4) + (4a−9 + 4a−7)z + (2a−8 − 3a−6 − 4a−4 + a−2)z2

+(−4a−9 − 8a−7 − 2a−5 + 2a−3)z3 + (−3a−8 + 3a−4)z4

+(a−9 + 3a−7 + 2a−5)z5 + (a−8 + a−6)z6

75 (2a4 − a8) + (−a5 + a7 + a9 − a11)z + (−3a4 + a8 − 2a10)z2

+(−a5 − 4a7 − 2a9 + a11)z3 + (a4 − a6 + 2a10)z4

+(a5 + 3a7 + 2a9)z5 + (a6 + a8)z6

76 (1 + a2 + 2a4 + a6) + (a+ 2a3 − a7)z + (−2− 4a2 − 4a4 − 2a6)z2

+(−4a− 6a3 − a5 + a7)z3 + (1 + a2 + 2a4 + 2a6)z4

+(2a+ 4a3 + 2a5)z5 + (a2 + a4)z6

77 (a−4 + 2a−2 + 2) + (2a−3 + 3a−1 + a)z + (−2a−4 − 6a−2 − 7− 3a2)z2

+(−4a−3 − 8a−1 − 3a+ a3)z3 + (a−4 + 2a−2 + 4 + 3a2)z4

+(2a−3 + 5a−1 + 3a)z5 + (a−2 + 1)z6

Table 2.7.5.1. Kauffman polynomials of knots with up to 7 crossings
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81 (−a−2 − a4 − a6) + (−3a3 − 3a5)z + (a−2 + 7a4 + 6a6)z2

+(a−1 − a+5a3 + 7a5)z3 + (1− 2a2 − 8a4 − 5a6)z4

+(a− 4a3 − 5a5)z5 + (a2 + 2a4 + a6)z6 + (a3 + a5)z7

82 (−3a2 − 3a4 − a6) + (a3 + a5 − a7 − a9)z
+(7a2 + 12a4 + 3a6 − a8 + a10)z2 + (3a3 − a5 − 2a7 + 2a9)z3

+(−5a2 − 12a4 − 5a6 + 2a8)z4 + (−4a3 − 2a5 + 2a7)z5

+(a2 + 3a4 + 2a6)z6 + (a3 + a5)z7

83 (a−4 − 1 + a4) + (−4a−1 − 4a)z + (−3a−4 + a−2 + 8 + a2 − 3a4)z2

+(−2a−3 + 8a−1 + 8a− 2a3)z3 + (a−4 − 2a−2 − 6− 2a2 + a4)z4

+(a−3 − 4a−1 − 4a+ a3)z5 + (a−2 + 2 + a2)z6 + (a−1 + a)z7

84 (−2a−2 − 2 + a4) + (−a−1 + a+ 2a3)z
+(7a−2 + 10− a2 − 3a4 + a6)z2 + (4a−1 − 3a− 5a3 + 2a5)z3

+(−5a−2 − 11− 3a2 + 3a4)z4 + (−4a−1 − a+ 3a3)z5

+(a−2 + 3 + 2a2)z6 + (a−1 + a)z7

85 (−2a−6 − 5a−4 − 4a−2) + (4a−7 + 7a−5 + 3a−3)z
+(a−10 − 2a−8 + 4a−6 + 15a−4 + 8a−2)z2 + (2a−9 − 8a−7 − 10a−5)z3

+(3a−8 − 7a−6 − 15a−4 − 5a−2)z4 + (4a−7 + a−5 − 3a−3)z5

+(3a−6 + 4a−4 + a−2)z6 + (a−5 + a−3)z7

86 (2 + a2 − a4 − a6) + (−a− 3a3 − a5 + a7)z
+(−3− 2a2 + 6a4 + 3a6 − 2a8)z2 + (−a+ 5a3 + 2a5 − 4a7)z3

+(1− 6a4 − 4a6 + a8)z4 + (a− 2a3 − a5 + 2a7)z5

+(a2 + 3a4 + 2a6)z6 + (a3 + a5)z7

87 (−2a−4 − 4a−2 − 1) + (−a−7 + 2a−3 + 2a−1 + a)z
+(−2a−6 + 4a−4 + 12a−2 + 6)z2 + (a−7 − a−5 − 2a−3 − 3a−1 − 3a)z3

+(2a−6 − 3a−4 − 12a−2 − 7)z4 + (2a−5 − a−1 + a)z5

+(2a−4 + 4a−2 + 2)z6 + (a−3 + a−1)z7

88 (−a−4 − a−2 + 2 + a2) + (2a−5 + 3a−3 + a−1 − a− a3)z
+(4a−4 + 5a−2 − 1− 2a2)z2 + (−3a−5 − 5a−3 − 3a−1 + a3)z3

+(−6a−4 − 9a−2 − 1 + 2a2)z4 + (a−5 + a−1 + 2a)z5

+(2a−4 + 4a−2 + 2)z6 + (a−3 + a−1)z7

89 (−2a−2 − 3− 2a2) + (a−3 + a−1 + a+ a3)z
+(−2a−4 + 4a−2 + 12 + 4a2 − 2a4)z2 + (−4a−3 − a−1 − a− 4a3)z3

+(a−4 − 4a−2 − 10− 4a2 + a4)z4 + (2a−3 + 2a3)z5

+(2a−2 + 4 + 2a2)z6 + (a−1 + a)z7

810 (−3a−4 − 6a−2 − 2) + (−a−7 + 2a−5 + 6a−3 + 5a−1 + 2a)z
+(−a−6 + 6a−4 + 12a−2 + 5)z2 + (a−7 − 3a−5 − 9a−3 − 8a−1 − 3a)z3

+(2a−6 − 5a−4 − 13a−2 − 6)z4 + (3a−5 + 3a−3 + a−1 + a)z5

+(3a−4 + 5a−2 + 2)z6 + (a−3 + a−1)z7

Table 2.7.5.1. Kauffman polynomials of knots with 8 crossings
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811 (1− a2 − 2a4 − a6) + (a3 + 3a5 + 2a7)z + (−2 + 6a4 + 2a6 − 2a8)z2

+(−3a− 2a3 − 3a5 − 4a7)z3 + (1− 2a2 − 7a4 − 3a6 + a8)z4

+(2a+ a3 + a5 + 2a7)z5 + (2a2 + 4a4 + 2a6)z6 + (a3 + a5)z7

812 (a−4 + a−2 + 1 + a2 + a4) + (a−3 + a3)z
+(−2a−4 − 2a−2 − 2a2 − 2a4)z2 + (−3a−3 − 3a−1 − 3a− 3a3)z3

+(a−4 − a−2 − 4− a2 + a4)z4 + (2a−3 + 2a−1 + 2a+ 2a3)z5

+(2a−2 + 4 + 2a2)z6 + (a−1 + a)z7

813 (−a−4 − 2a−2) + (2a−5 + 4a−3 + 3a−1 + a)z + (5a−4 + 7a−2 − 2a2)z2

+(−3a−5 − 7a−3 − 9a−1 − 4a+ a3)z3 + (−6a−4 − 11a−2 − 2 + 3a2)z4

+(a−5 + a−3 + 4a−1 + 4a)z5 + (2a−4 + 5a−2 + 3)z6 + (a−3 + a−1)z7

814 1 + (a+ 3a3 + 3a5 + a7)z + (−2− a2 + 3a4 + a6 − a8)z2

+(−3a− 6a3 − 8a5 − 5a7)z3 + (1− a2 − 7a4 − 4a6 + a8)z4

+(2a+ 3a3 + 4a5 + 3a7)z5 + (2a2 + 5a4 + 3a6)z6 + (a3 + a5)z7

815 (a4 − 3a6 − 4a8 − a10) + (6a7 + 8a9 + 2a11)z
+(−2a4 + 5a6 + 8a8 − a12)z2 + (−2a5 − 11a7 − 14a9 − 5a11)z3

+(a4 − 5a6 − 10a8 − 3a10 + a12)z4 + (2a5 + 5a7 + 6a9 + 3a11)z5

+(3a6 + 6a8 + 3a10)z6 + (a7 + a9)z7

816 (−2a2 − a4) + (a−1 + 3a+4a3 + 2a5)z + (5 + 10a2 + 4a4 − a6)z2

+(−2a−1 − 6a− 10a3 − 5a5 + a7)z3 + (−8− 18a2 − 7a4 + 3a6)z4

+(a−1 − a+ 3a3 + 5a5)z5 + (3 + 8a2 + 5a4)z6 + (2a+ 2a3)z7

817 (−a−2 − 1− a2) + (a−3 + 2a−1 + 2a+ a3)z
+(−a−4 + 3a−2 + 8 + 3a2 − a4)z2 + (−4a−3 − 6a−1 − 6a− 4a3)z3

+(a−4 − 6a−2 − 14− 6a2 + a4)z4 + (3a−3 + 2a−1 + 2a+ 3a3)z5

+(4a−2 + 8 + 4a2)z6 + (2a−1 + 2a)z7

818 (a−2 + 3 + a2) + (a−1 + a)z + (3a−2 + 6 + 3a2)z2

+(−4a−3 − 9a−1 − 9a− 4a3)z3 + (a−4 − 9a−2 − 20− 9a2 + a4)z4

+(4a−3 + 3a−1 + 3a+ 4a3)z5 + (6a−2 + 12 + 6a2)z6 + (3a−1 + 3a)z7

819 (−a−10 − 5a−8 − 5a−6) + (5a−9 + 5a−7)z + (10a−8 + 10a−6)z2

+(−5a−9 − 5a−7)z3 + (−6a−8 − 6a−6)z4 + (a−9 + a−7)z5

+(a−8 + a−6)z6

820 (−1− 4a2 − 2a4) + (a−1 + 3a+ 5a3 + 3a5)z + (2 + 6a2 + 4a4)z2

+(−3a− 7a3 − 4a5)z3 + (−4a2 − 4a4)z4 + (a+ 2a3 + a5)z5

+(a2 + a4)z6

821 (−3a2 − 3a4 − a6) + (2a3 + 4a5 + 2a7)z + (3a2 + 5a4 − 2a8)z2

+(−a3 − 6a5 − 5a7)z3 + (−2a4 − a6 + a8)z4 + (a3 + 3a5 + 2a7)z5

+(a4 + a6)z6

Table 2.7.5.1. Kauffman polynomials of knots with 8 crossings (Continuation)
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As in the previous section, we conclude with a series of exercises with
additional information on the Kauffman polynomial.

2.7.6. Exercise. Prove that the defining relations are sufficient to compute
the Kauffman polynomial.

2.7.7. Exercise. Compute the Kauffman polynomial for the knots 31, 41

and compare the results with those given in the above table.

2.7.8. Exercise. Prove that the Kauffman polynomial of a knot is preserved
when the knot orientation is reversed.

2.7.9. Exercise. (W. B. R. Lickorish [Lik]) Prove that

(1) F (L) = F (L), where L is the mirror reflection

of L, and F (L) is the polynomial obtained
from F (L) by substituting a−1 for a;

(2) F (K1#K2) = F (K1) · F (K2);

(3) F (L1⊔L2) =
(
(a+a−1)z−1−1

)
·F (L1)·F (L2),

where L1 ⊔ L2 means the split union of links;

11255 =

11257 =

(4) F (11255) = F (11257);
(these knots can be distinguished by the Conway and, hence, by
the HOMFLY polynomial).

(5) F (L∗) = a4lk(K,L−K)F (L), where the link L∗ is obtained from an
oriented link L by reversing the orientation of a connected compo-
nent K.

2.7.10. Comparative strength of polynomial invariants. Let us say
that an invariant I1 dominates an invariant I2, if the equality I1(K1) =
I1(K2) for any two knots K1 and K2 implies the equality I2(K1) = I2(K2).
Denoting this relation by arrows, we have the following comparison chart:

HOMFLY

a=1

z=x1/2−x−1/2

zzttttttttttttttttttttt

a=1
z=t

��

z=t1/2−t−1/2

a=t−1

##HHHHHHHHHHHHHHHHHHH
Kauffman

a=−t−3/4

z=t1/4+t−1/4

����
��

��
��

��
��

��
��

Alexander x1/2−x−1/2=t

))

Conway
ii

Jones

(the absence of an arrow between the two invariants means that neither of
them dominates the other).

Exercise. Find in this chapter all the facts sufficient to justify this
chart.
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Exercises

(1) Bridge number. The bridge number b(K) of a knot K can be defined
as the minimal number of local maxima of the projection of the knot
onto a straight line, where the minimum is taken over all projections
and over all closed curves in R3 representing the knot. Show that that

b(K1#K2) = b(K1) + b(K2)− 1 .

Knots of bridge number 2 are also called rational knots.

(2) Prove that the Conway and the Jones polynomials of a knot are pre-
served when the knot orientation is reversed.

(3) Compute the Conway and the Jones polynomials for the links from Sec-
tion 1.2.5, page 20, with some orientations of their components.

(4) A link is called split if it is equivalent to a link which has some compo-
nents in a ball while the other components are located outside of the ball.
Prove that the Conway polynomial of a split link is trivial: C(L) = 0.

(5) For a split link L1 ⊔ L2 prove that

J(L1 ⊔ L2) = (−t1/2 − t−1/2) · J(L1) · J(L2) .

(6) Prove that C(K1#K2) = C(K1) · C(K2).

(7) Prove that J(K1#K2) = J(K1) · J(K2).

(8) (cf. J. H. Conway [Con]) Check that the Conway polynomial satisfies
the following relations.

(a) C
( )

+ C
( )

= (2 + t2)C
( )

;

(b) C
( )

+ C
( )

= 2C
( )

;

(c) C
( )

+ C
( )

= C
( )

+ C
( )

.

(9) What effect has the reversal of the parametrization of one component
on the Conway polynomial of a link?

(10) Compute the Conway polynomials of the Conway and the Kinoshita–
Terasaka knots (see pages 59 and 257).

(11) Prove that for any knot K the Conway polynomial C(K) is an even
polynomial in t and its constant term is equal to 1:

C(K) = 1 + c2(K)t2 + c4(K)t4 + . . .
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(12) Let L be a link with two componentsK1 andK2. Prove that the Conway
polynomial C(L) is an odd polynomial in t and its lowest coefficient is
equal to the linking number lk(K1,K2):

C(L) = lk(K1,K2)t+ c3(L)t3 + c5(L)t5 + . . .

(13) Prove that for a link L with k components the Conway polynomial C(L)
is divisible by tk−1 and is odd or even depending on the parity of k:

C(L) = ck−1(L)tk−1 + ck+1(L)tk+1 + ck+3(L)tk+3 + . . .

(14) For a knot K, show that C(K)
∣∣
t=2i
≡ 1 or 5 (mod 8) depending of the

parity of c2(K). The reduction of c2(K) modulo 2 is called the Arf
invariant of K.

(15) Show that J(L)
∣∣
t=−1

= C(L)
∣∣
t=2i

for any link L. This value is called

the determinant of the link L. The previous problem then implies that
the determinant of a knot is congruent to 1 modulo 4.

Hint. Choose
√
t in such a way that

√
−1 = −i.

(16) Check the following switching formula for the Jones polynomial.

J( )− tJ( ) = t3λ0(1− t)J( ) ,

where λ0 is the linking number of two components of the link, ,
obtained by smoothing the crossing according the orientation. Note
that the knot in the right hand side of the formula is unoriented. That
is because such a smoothing destroys the orientation. Since the Jones
polynomial does not distinguish orientation of a knot we may choose it
arbitrarily.

(17) Interlacing crossings formulae. Suppose K++ is a knot diagram
with two positive crossings which are interlaced. That means when we
trace the knot we first past the first crossing, then the second, then again
the first, and after that the second. Consider the following four knots
and one link:

K++ K00 K0∞ K∞− L0+

Check that the Jones polynomial satisfies the relation

J(K++) = tJ(K00) + t3λ0+

(
J(K0∞)− tJ(K∞−)

)
,

where λ0+ is the linking number of two components of the link L0+.
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Check the similar relations for K+− and K−−:

J(K+−) = J(K00) + t3λ0−+1
(
J(K0∞)− J(K∞+)

)
,

J(K−−) = t−1J(K00) + t3λ0−

(
J(K0∞)− t−1J(K∞+)

)
.

If a knot diagram does not contain interlacing crossings then it represents
the unknot. Thus the three relations above allow to compute the Jones
polynomial for knots recursively without referring to links.

(18) Show that the Jones polynomial satisfies the following relations.

(a) t−2J
( )

+ t2J
( )

= (t+ t−1)J
( )

;

(b) tJ
( )

+ t−1J
( )

= (t+ t−1)J
( )

;

(c) t2J
( )

+ t−2J
( )

= t−2J
( )

+ t2J
( )

.

Compare these relations with those of Exercise 8 for the Conway poly-
nomial.

(19) Prove that for a link L with an odd number of components, J(L) is
a polynomial in t and t−1, and for a link L with an even number of
components J(L) = t1/2 · (a polynomial in t and t−1).

(20) Prove that for a link L with k components J(L)
∣∣
t=1

= (−2)k−1. In

particular, J(K)
∣∣
t=1

= 1 for a knot K.

(21) Prove that
d(J(K))

dt

∣∣∣∣∣
t=1

= 0 for any knot K.

(22) Evaluate the Kauffman bracket 〈L〉 at a = eπi/3, b = a−1, c = −a2−a−2.
Deduce from here that J(L)

∣∣
t=e2πi/3 = 1.

Hint.
√
t = a−2 = e4πi/3.

(23) Let L be a link with k components. For odd (resp. even) k let aj
(j = 0, 1, 2, or 3) be the sum of the coefficients of J(L) (resp. J(L)/

√
t,

see problem 19) at ts for all s ≡ j (mod 4).
(a) For odd k, prove that a1 = a3.
(b) For even k, prove that a0 + a1 = a2 + a3.

(24) (W. B. R. Lickorish [Lik, Theorem 10.6]) Let t = i with t1/2 = eπi/4.

Prove that for a knot K, J(K)
∣∣
t=i

= (−1)c2(K).

(25) For the mirror reflection L of a link L prove that J(L) is obtained from
J(L) by substituting t−1 for t.
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(26) For the link L∗ obtained from an oriented link L by reversing the orienta-

tion of one of its components K, prove that J(L∗) = t−3lk(K,L−K)J(L).

(27)∗Find a non-trivial knot K with J(K) = 1.

(28) (L. Kauffman [Ka6], K. Murasugi [Mur1], M. Thistlethwaite [Th]).
Prove the for a reduced alternating knot diagram K (Section 1.3.3) the
number of crossings is equal to span(J(K)), that is, to the difference
beween the maximal and minimal degrees of t in the Jones polynomial
J(K). (This exercise is not particularly difficult, although it solves a
one hundred years old conjecture of Tait. Anyway, the reader can find
a simple solution in [Tur1].)

(29) Let L be a link with k components. Show that its HOMFLY polynomial
P (L) is an even function in each of the variables a and z if k is odd, and
it is an odd function if k is even.

(30) For a link L with k components show that the lowest power of z in its
HOMFLY polynomial is z−k+1. In particular the HOMFLY polynomial
P (K) of a knot K is a genuine polynomial in z. This means that it does
not contain terms with z raised to a negative power.

(31) For a knot K let p0(a) := P (K)|z=0 be the constant term of the HOM-
FLY polynomial. Show that its derivative at a = 1 equals zero.

(32) Let L be a link with two components K1 and K2. Consider P (L) as
a Laurent polynomial in z with coefficients in Laurent polynomials in
a. Let p−1(a) and p1(a) be the coefficients at z−1 and z. Check that
p−1

∣∣
a=1

= 0, p′−1

∣∣
a=1

= 2, p′′−1

∣∣
a=1

= −8lk(K1,K2) − 2, and

p1

∣∣
a=1

= lk(K1,K2).

(33) (W. B. R. Lickorish [Lik]) Prove that for an oriented link L with k
components

(J(L))2
∣∣∣
t=−q−2

= (−1)k−1F (L)

∣∣∣∣∣ a=q3
z=q+q−1

,

where J(L) is the Jones polynomial and F (L) is the two-variable Kauff-
man polynomial from page 59.

(34) Let L be a link with k components. Show that its two-variable Kauffman
polynomial F (L) is an even function of both variables a and z (that is,
it consists of monomials aizj with i and j of the same parity) if k is odd,
and it is an odd function (different parities of i and j) if k is even.

(35) Prove that the Kauffman polynomial F (K) of a knot K is a genuine
polynomial in z.

(36) For a knot K let f0(a) := F (K)|z=0 be the constant term of the Kauff-
man polynomial. Show that it is related to the constant term of the
HOMFLY polynomial of K as f0(a) = p0(

√
−1 · a).
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(37) Quantum sl2-invariant. Let θ(·) and θfr(·) be the quantum invariants
constructed in Sections 2.6.3 and 2.6.6 for the Lie algebra sl2 and its
standard 2-dimensional representation.
(a) Prove the following dependence of θfr(·) on the first Reidemeister

move

θfr( ) = q3/4θfr( ) .

(b) Prove that θ(·) remains unchanged under the first Reidemeister
move.

(c) Compute the value θ(41).
(d) Show that the R-matrix defined in page 52 satisfies the equation

q1/4R− q−1/4R−1 = (q1/2 − q−1/2)idV ⊗V .

(e) Prove that θfr(·) satisfies the skein relation

q1/4θfr( ) − q−1/4θfr( ) = (q1/2 − q−1/2)θfr( ) .

(f) Prove that θ(·) satisfies the skein relation

qθ( ) − q−1θ( ) = (q1/2 − q−1/2)θ( ) .

(g) For any link L with k components prove that

θfr(L) = (−1)k(q1/2 + q−1/2) · 〈L〉
∣∣∣
a=−q1/4

,

where 〈·〉 is the Kauffman bracket defined on page 48.

(38) Quantum slN invariants. Let V be an N dimensional vector space of
the standard representation of the Lie algebra slN with a basis e1, . . . , eN .
Consider the operator R : V ⊗ V → V ⊗ V given by the formulae

R(ei ⊗ ej) =





q
−1
2N ej ⊗ ei if i < j

q
N−1
2N ei ⊗ ej if i = j

q
−1
2N ej ⊗ ei +

(
q

N−1
2N − q−N−1

2N

)
ei ⊗ ej if i > j

which for N = 2 coincides with the operator from Section 2.6.3, page
52.
(a) Prove that it satisfies the quantum Yang–Baxter equation

R12R23R12 = R23R12R23 ,

where Rij is the operator R acting on the i-th and j-the factors of
V ⊗ V ⊗ V , that is, R12 = R⊗ idV and R23 = idV ⊗R.
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(b) Show that its inverse is given by the formulae

R−1(ei ⊗ ej) =





q
1

2N ej ⊗ ei +
(
−qN+1

2N + q
−N+1

2N

)
ei ⊗ ej if i < j

q
−N+1

2N ei ⊗ ej if i = j

q
1

2N ej ⊗ ei if i > j

(c) Check that q
1

2N R− q −1
2N R−1 = (q1/2 − q−1/2)idV⊗V .

(d) Extending the assignments of operators for maximum/minimum
tangles from page 54 we set:

min−→ : C→ V ∗ ⊗ V, min−→(1) :=
N∑
k=1

q
−N−1

2
+kek ⊗ ek ;

min←− : C→ V ⊗ V ∗, min←−(1) :=
N∑
k=1

ek ⊗ ek ;

−→
max : V ⊗ V ∗ → C,

−→
max (ei ⊗ ej) :=

{
0 if i 6= j

q
N+1

2
−i if i = j

;

←−
max : V ∗ ⊗ V → C,

←−
max (ei ⊗ ej) :=

{
0 if i 6= j
1 if i = j

.

Prove that all these operators are consistent in the sense that their
appropriate combinations are consistent with the oriented Turaev

moves from page 32. Thus we get a link invariant θfr,StslN
.

(e) Show the θfr,StslN
satisfies the following skein relation

q
1

2N θfr,StslN
( ) − q−

1
2N θfr,StslN

( ) = (q1/2 − q−1/2)θfr,StslN
( )

and the following framing and initial conditions

θfr,StslN
( ) = q

N−1/N
2 θfr,StslN

( )

θfr,StslN
( ) =

qN/2 − q−N/2
q1/2 − q−1/2

.

(f) The quadratic Casimir number for the standard slN representation
is equal to N − 1/N . Therefore, the deframing of this invariant

gives θStslN
:= q−

N−1/N
2
·wθfr,StslN

which satisfies

qN/2θStslN
( ) − q−N/2θStslN

( ) = (q1/2 − q−1/2)θStslN
( ) ;
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θStslN
( ) =

qN/2 − q−N/2
q1/2 − q−1/2

.

Check that this invariant is essentially a specialization of the HOM-
FLY polynomial,

θStslN
(L) =

qN/2 − q−N/2
q1/2 − q−1/2

P (L)

∣∣∣∣∣ a=qN/2

z=q1/2−q−1/2

.

Prove that the set of invariants {θStslN
} for all values of N is equiva-

lent to the HOMFLY polynomial. Thus {θfr,StslN
} may be considered

as a framed version of the HOMFLY polynomial.

(39) A different framed version of the HOMFLY polynomial is defined in

[Ka7, page 54]: P fr(L) := aw(L)P (L). Show that P fr satisfies the
following skein relation

P fr( ) − P fr( ) = zP fr( )

and the following framing and initial conditions

P fr( ) = aP fr( ) , P fr( ) = a−1P fr( )

P fr( ) = 1 .



Chapter 3

Finite type invariants

In this chapter we introduce the main protagonist of this book — the finite
type, or Vassiliev knot invariants.

First we define the Vassiliev skein relation and extend, with its help, ar-
bitrary knot invariants to knots with double points. A Vassiliev invariant of
order at most n is then defined as a knot invariant which vanishes identically
on knots with more than n double points.

After that, we introduce a combinatorial object of great importance: the
chord diagrams. Chord diagrams serve as a means to describe the symbols
(highest parts) of the Vassiliev invariants.

Then we prove that classical invariant polynomials are all, in a sense,
of finite type, explain a simple method of calculating the values of Vassiliev
invariants on any given knot, and give a table of basis Vassiliev invariants
up to degree 5.

Finally, we show how Vassiliev invariants can be defined for framed knots
and for arbitrary tangles.

3.1. Definition of Vassiliev invariants

3.1.1. The original definition of finite type knot invariants was just an ap-
plication of the general machinery developed by V.Vassiliev to study com-
plements of discriminants in spaces of maps.

The discriminants in question are subspaces of maps with singularities of
some kind. In particular, consider the space of all smooth maps of the circle
into R3. Inside this space, define the discriminant as the subspace formed
by maps that fail to be embeddings, such as curves with self-intersections,
cusps etc. Then the complement to this discriminant can be considered as

71
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the space of knots. The connected components of the space of knots are
precisely the isotopy classes of knots; knot invariants are locally constant
functions on the space of knots.

Vassiliev’s machinery produces a spectral sequence that may (or may
not, nobody knows it yet) converge to the cohomology of the space of knots.
The zero-dimensional classes produced by this spectral sequence correspond
to knot invariants which are now known as Vassiliev invariants.

This approach is indispensable if one wants to understand the higher
cohomology of the space of knots. However, if we are only after the zero-
dimensional classes, that is, knot invariants, the definitions can be greatly
simplified. In this chapter we follow the easy path that requires no knowledge
of algebraic topology whatsoever. For the reader who is not intimidated by
spectral sequences we outline Vassiliev’s construction in Chapter ??.

3.1.2. Singular knots and the Vassiliev skein relation. A singular
knot is a smooth map S1 → R3 that fails to be an embedding. We shall only
consider singular knots with the simplest singularities, namely transversal
self-intersections, or double points.

Definition. Let f be a map of a one-dimensional manifold to R3. A point
p ∈ im(f) ⊂ R3 is a double point of f if f−1(p) consists of two points t1 and
t2 and the two tangent vectors f ′(t1) and f ′(t2) are linearly independent.
Geometrically, this means that in a neighbourhood of the point p the curve
f has two branches with non-collinear tangents.

A double point

Remark. In fact, we gave a definition of a simple double point. We omit
the word “simple” since these are the only double points we shall see.

Any knot invariant can be extended to knots with double points by
means of the Vassiliev skein relation:

(3.1.2.1) v( ) = v( )− v( ).

Here v is the knot invariant with values in some abelian group, the left-hand
side is the value of v on a singular knot K (shown in a neighbourhood of
a double point) and the right-hand side is the difference of the values of v
on (possibly singular) knots obtained from K by replacing the double point
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with a positive and a negative crossing respectively. The process of applying
the skein relation is also referred to as resolving a double point. It is clearly
independent of the plane projection of the singular knot.

Using the Vassiliev skein relation recursively, we can extend any knot
invariant to knots with an arbitrary number of double points. There are
many ways to do this, since we can choose to resolve double points in an
arbitrary order. However, the result is independent of any choice. Indeed,
the calculation of the value of v on a singular knot K with n double points
is in all cases reduced to the complete resolution of the knot K which yields
an alternating sum

(3.1.2.2) v(K) =
∑

ε1=±1,...,εn=±1

(−1)|ε|v(Kε1,...,εn),

where |ε| is the number of −1’s in the sequence ε1, . . . , εn, and Kε1,...,εn is
the knot obtained from K by a positive or negative resolution of the double
points according to the sign of εi for the point number i.

3.1.3. Definition. (V. Vassiliev [Va1]). A knot invariant is said to be a
Vassiliev invariant (or a finite type invariant) of order (or degree) 6 n if its
extension vanishes on all singular knots with more than n double points. A
Vassiliev invariant is said to be of order (degree) n if it is of order 6 n but
not of order 6 n− 1.

In general, a Vassiliev invariant may take values in an arbitrary abelian
group. In practice, however, all our invariants will take values in commu-
tative rings and it will be convenient to make this assumption from now
on.

Notation. We shall denote by Vn the set of Vassiliev invariants of order
6 n with values in a ring R . Whenever necessary, we shall write VRn to
indicate the range of the invariants explicitly. It follows from the definition
that, for each n, the set Vn is an R-module. Moreover, Vn ⊆ Vn+1, so we
have an increasing filtration

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn ⊆ · · · ⊆ V :=
∞⋃

n=0

Vn .

We shall further discuss this definition in the next section. First, let
us see that there are indeed many (in fact, infinitely many) independent
Vassiliev invariants.

3.1.4. Example. ([BN0]). The n-th coefficient of the Conway polynomial
is a Vassiliev invariant of order 6 n.
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Indeed, the definition of the Conway polynomial, together with the Vas-
siliev skein relation, implies that

C( ) = tC( ).

Applying this relation several times, we get

C( . . . ) = tkC( . . . )

for a singular knot with k double points. If k > n + 1, then the coefficient
at tn in this polynomial is zero.

3.2. Algebra of Vassiliev invariants

3.2.1. The singular knot filtration. Consider the “tautological knot in-
variant” K → ZK which sends a knot to itself. Applying the Vassiliev skein
relation, we extend it to knots with double points; a knot with n double
points is then sent to an alternating sum of 2n genuine knots.

Let Kn be the submodule of ZK spanned by the images of knots with n
double points.

Exercise. Prove that Kn is an ideal of ZK.

A knot with n + 1 double points gives rise to a difference of two knots
with n double points in ZK; hence, we have the descending singular knot
filtration

ZK = K0 ⊇ K1 ⊇ . . .Kn ⊇ . . .
The definition of Vassiliev invariants can now be re-stated in the following
terms:

Definition. Let R be a commutative ring. A Vassiliev invariant of order
6 n is a linear function ZK → R which vanishes on Kn+1.

According to this definition, the module of R-valued Vassiliev invari-
ants of order 6 n is naturally isomorphic to the space of linear functions
ZK/Kn → R. So, in a certain sense, the study of the Vassiliev invariants
is equivalent to studying the filtration Kn. In the next several chapters we
shall mostly speak about invariants, rather than the filtration on the algebra
of knots. Nevertheless, the latter approach, developed by Goussarov [G2] is
important and we cannot skip it here altogether.

Definition. Two knots K1 and K2 are n-equivalent if they cannot be dis-
tinguished by Vassiliev invariants of degree n and smaller. A knot that is
n-equivalent to the trivial knot is called n-trivial.
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In other words, K1 and K2 are n-equivalent if and only if K1 − K2 ∈
Kn+1.

Definition. Let ΓnK be the set of n-trivial knots. The Goussarov filtration
on K is the descending filtration

K = Γ1K ⊇ Γ2K ⊇ . . . ⊇ ΓnK ⊇ . . .

The sets ΓnK are, in fact, abelian monoids under the connected sum
of knots (this follows from the fact that each Kn is a subalgebra of ZK).
Goussarov proved that the monoid quotient K/ΓnK is an abelian group.
We shall consider n-equivalence in greater detail in Chapter 12.

3.2.2. Vassiliev invariants as polynomials. A useful way to think of
Vassiliev invariants is as follows. Let v be an invariant of singular knots
with n double points and ∇(v) be the extension of v to singular knots with
n+1 double points using the Vassiliev skein relation. We can consider ∇ as
an operator between the corresponding spaces of invariants. Now, a function
v : K → R is a Vassiliev invariant of degree 6 n, if it satisfies the difference
equation ∇n+1(v) = 0. This can be seen as an analogy between Vassiliev
invariants as a subspace of all knot invariants and polynomials as a subspace
of all smooth functions on a real line: the role of differentiation is played by
the operator ∇.

It is well known that continuous functions on a real line can be ap-
proximated by polynomials. The main open problem of the theory of finite
type invariants is to find an analogue of this statement in the knot-theoretic
context, namely, to understand to what extent an arbitrary numerical knot
invariant can be approximated by Vassiliev invariants. More on this in Sec-
tion 3.2.4.

3.2.3. The filtration on the algebra of Vassiliev invariants. The set
of all Vassiliev invariants forms a commutative filtered algebra with respect
to the usual (pointwise) multiplication of functions.

Theorem. The product of two Vassiliev invariants of degrees 6 p and 6 q
is a Vassiliev invariant of degree 6 p+ q.

Proof. Let f and g be two invariants with values in a ring R, of degrees p
and q respectively. Consider a singular knot K with n = p + q + 1 double
points. The complete resolution of K via the Vassiliev skein relation gives

(fg)(K) =
∑

ε1=±1,...,εn=±1

(−1)|ε|f(Kε1,...,εn)g(Kε1,...,εn)
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in the notations of (3.1.2.2) of 3.1.2. The alternating sum on the right-hand
side is taken over all points of an n-dimensional binary cube

Qn = {ε1, . . . , εn | εi = ±1}.
In general, given a function v on Qn and a subset S ⊆ Qn the alternating
sum of v over S is defined as

∑
ε∈S(−1)|ε|v(ε).

If we set

f(ε1, ..., εn) = f(Kε1,...,εn)

and define g(ε1, ..., εn) similarly, we can think of f and g as functions on
Qn. The fact that f is of degree p means that the alternating sum of f on
each (p + 1)-face of Qn is zero. Similarly, on each (q + 1)-face of Qn the
alternating sum of g vanishes.

Lemma. Let f, g be functions on Qn, where n = p+q+1. If the alternating
sums of f over any (p + 1)-face, and of g over any (q + 1)-face of Qn are
zero, so is the alternating sum of the product fg over the entire cube Qn.

Proof of the lemma. Use induction on n. For n = 1 we have p = q = 0
and

(fg)(1)− (fg)(−1) = f(1)g(1)− f(−1)g(−1) + f(−1)g(1)− f(−1)g(1)

=
(
f(1)− f(−1)

)
g(1) + f(−1)

(
g(1)− g(−1)

)
= 0.

Denote by Fn the space of functions Qn → R with F0 = R. We have
operators

ρ−, ρ+ : Fn → Fn−1

which take a function v to its restrictions to the (n − 1)-dimensional faces
ε1 = −1 and ε1 = 1 of Qn:

ρ−(v)(ε2, . . . , εn) = v(−1, ε2, . . . , εn)

and

ρ+(v)(ε2, . . . , εn) = v(1, ε2, . . . , εn).

Let

δ = ρ+ − ρ−.
Observe that if the alternating sum of v over any r-face of Qn is zero, so is
the alternating sum of δ(v) over any (r − 1)-face of Qn−1.

A direct check shows that the operator δ satisfies the following Leibniz
rule:

δ(fg) = ρ+(f) · δ(g) + δ(f) · ρ−(g).

The alternating sum of δ(g) over any q-face of Qn−1 vanishes, and so does the
alternating sum of δ(f) over any p-face. Hence, by the induction assumption,
the alternating sum of δ(fg) over the whole Qn−1 is zero. However, by the
definition of δ, it coincides with the alternating sum of fg over Qn. �
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Remark. The existence of the filtration on the algebra of Vassiliev invari-
ants can be thought of as a manifestation of their polynomial character.
Indeed, a polynomial of degree 6 n in one variable can be defined as a
function whose n + 1st derivative is identically zero. Then the fact that a
product of polynomials of degrees 6 p and 6 q has degree 6 p + q can be
proved by induction using the Leibniz formula. In our argument on Vas-
siliev invariants we have used the very same logic. A further discussion of
the Leibniz formula for the finite type invariants can be found in [Wil4].

3.2.4. Approximation by Vassiliev invariants. There are knot invari-
ants, of which we shall see many examples, which are not of finite type, but,
nevertheless, can be approximated by Vassiliev invariants in a certain sense.

Definition. The closure of the space of Vassiliev invariants consists of all
knot invariants u such that if u(K1) 6= u(K2) for some knots K1 and K2,
then there is a Vassiliev knot invariant v with v(K1) 6= v(K2).

With this terminology the main problem of the theory of finite type in-
variants can be stated as follows: is it true that the closure of the space of
(complex-valued) Vassiliev invariants coincides with the space of all (complex-
valued) knot invariants? This is equivalent to asking whether the Vassiliev
invariants can distinguish arbitrary knots.

An important class of invariants in the closure of the space of Vassiliev
invariants are the polynomial and the power series Vassiliev invariants. A
polynomial Vassiliev invariant is an element of the vector space

V• =
∞⊕

n=0

Vn.

Since the product of two invariants of degrees m and n has degree at most
m + n, the space V• is, in fact. a commutative graded algebra. The power
series Vassiliev invariants are, by definition, the elements of its graded com-

pletion V̂• (see Appendix A.2.16, page 427).

The Conway polynomial C(·) is an example of a power series invariant.
Observe that even though for any knot K the value C(K) is a polynomial,
the Conway polynomial C(·) is not a polynomial invariant according to the
definition of this paragraph.

3.3. Vassiliev invariants of degrees 0, 1 and 2

3.3.1. Proposition. V0 = {const}, dimV0 = 1.

Proof. Let f ∈ V0. By definition, the value of (the extension of) f on any
singular knot with one double point is 0. Pick an arbitrary knot K. Any
diagram of K can be turned into a diagram of the trivial knot K0 by crossing
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changes done one at a time. By assumption, the jump of f at every crossing
change is 0, therefore, f(K) = f(K0). Thus f is constant. �

3.3.2. Proposition. V1 = V0.

Proof. A singular knot with one double point is divided by the double point
into two closed curves. An argument similar to the last proof shows that
the value of v on any knot with one double point is equal to its value on the
“figure infinity” singular knot and, hence, to 0:

(3.3.2.1) v( ) = v( ) = 0

Therefore, V1 = V0. �

The first non-trivial Vassiliev invariant appears in degree 2: it is the
second coefficient c2 of the Conway polynomial, also known as the Casson
invariant.

3.3.3. Proposition. dimV2 = 2.

Proof. Let us explain why the argument of the proof of Propositions 3.3.1
and 3.3.2 does not work in this case. Take a knot with two double points
and try to transform it into some fixed knot with two double points using
smooth deformations and crossing changes. It is easy to see that any knot
with two double points can be reduced to one of the following two basic
knots:

Basic knot K1 Basic knot K2

— but these two knots cannot be obtained one from the other! The essential
difference between them is in the order of the double points on the curve.

Let us label the double points of K1 and K2, say, by 1 and 2. When
traveling along the first knot, K1, the two double points are encountered
in the order 1122 (or 1221, 2211, 2112 if you start from a different initial
point). For the knot K2 the sequence is 1212 (equivalent to 2121). The
two sequences 1122 and 1212 are different even if cyclic permutations are
allowed.

Now take an arbitrary singular knot K with two double points. If the
cyclic order of these points is 1122, then we can transform the knot to K1,
passing in the process of deformation through some singular knots with three
double points; if the order is 1212, we can reduce K in the same way to the
second basic knot K2.
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The above argument shows that, to any R-valued order 2 Vassiliev in-
variant there corresponds a function on the set of two elements {K1,K2}
with values in R. We thus obtain a linear map V2 → R2. The kernel of this
map is equal to V1: indeed, the fact that a given invariant f ∈ V2 satisfies
f(K1) = f(K2) = 0 means that it vanishes on any singular knot with 2
double points, which is by definition equivalent to saying that f ∈ V1.

This proves that dimV2 6 2. In fact, dimV2 = 2, since the second
coefficient c2 of the Conway polynomial is not constant (see Table 2.3.3). �

3.4. Chord diagrams

Now let us give a formal definition of the combinatorial structure which is
implicit in the proof of Proposition 3.3.3.

Definition. A chord diagram of order n (or degree n) is an oriented circle
with a distinguished set of n disjoint pairs of distinct points, considered up
to orientation preserving diffeomorphisms of the circle. The set of all chord
diagrams of order n will be denoted by An.

We shall usually omit the orientation of the circle in pictures of chord
diagrams, assuming that it is oriented counterclockwise.

Examples.

A1 = { },

A2 = { , },

A3 = { , , , , }.

Remark. Chord diagrams that differ by a mirror reflection are, in general,
different:

6=

This observation reflects the fact that we are studying oriented knots.

3.4.1. The chord diagram of a singular knot. Chord diagrams are
used to code certain information about singular knots.

Definition. The chord diagram σ(K) ∈ An of a singular knot with n double
points is obtained by marking on the parameterizing circle n pairs of points
whose images are the n double points of the knot.
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Examples.

σ
( )

= , σ
( )

= .

3.4.2. Proposition. (V. Vassiliev [Va1]). The value of a Vassiliev invari-
ant v of order 6 n on a knot K with n double points depends only on the
chord diagram of K:

σ(K1) = σ(K2)⇒ v(K1) = v(K2).

Proof. Suppose that σ(K1) = σ(K2). Then there is a one-to-one corre-
spondence between the chords of both chord diagrams, and, hence, between
the double points of K1 and K2. Place K1,K2 in R3 so that the correspond-
ing double points coincide together with both branches of the knot in the
vicinity of each double point.

Knot K1 Knot K2

Now we can deform K1 into K2 in such a way that some small neigh-
bourhoods of the double points do not move. We can assume that the only
new singularities created in the process of this deformation are a finite num-
ber of double points, all at distinct values of the deformation parameter. By
the Vassiliev skein relation, in each of these events the value of v does not
change, and this implies that v(K1) = v(K2). �

Proposition 3.4.2 shows that there is a well defined map αn : Vn → RAn

(the R-module of R-valued functions on the set An):

αn(v)(D) = v(K),

where K is an arbitrary knot with σ(K) = D.

We want to understand the size and the structure of the space Vn, so it
would be of use to have a description of the kernel and the image of αn.

The description of the kernel follows immediately from the definitions:
kerαn = Vn−1. Therefore, we obtain an injective homomorphism

(3.4.2.1) αn : Vn/Vn−1 → RAn.

The problem of describing the image of αn is much more difficult. The
answer to it will be given in Theorem 4.2.1 on page 100.

Since there is only a finite number of diagrams of each order, Proposi-
tion 3.4.2 implies the following
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3.4.3. Corollary. The module of R-valued Vassiliev invariants of degree at
most n is finitely generated over R.

Since the map αn discards the order (n− 1) part of a Vassiliev invariant
v, we can, by analogy with differential operators, call the function αn(v) on
chord diagrams the symbol of the Vassiliev invariant v:

symb(v) = αn(v),

where n is the order of v.

Example. The symbol of the Casson invariant is equal to 0 on the
chord diagram with two parallel chords, and to 1 on the chord diagram with
two interecting chords.

3.4.4. Remark. It may be instructive to state all the above in the dual
setting of the singular knot filtration. The argument in the proof of Propo-
sition 3.4.2 essentially says that An is the set of singular knots with n double
points modulo isotopies and crossing changes. In terms of the singular knot
filtration, we have shown that if two knots with n double points have the
same chord diagram, then their difference lies in Kn+1 ⊂ ZK. Since Kn is
spanned by the complete resolutions of knots with n double points, we have
a surjective map

ZAn → Kn/Kn+1.

The kernel of this map , after tensoring with the rational numbers, is spanned
by the so-called 4T and 1T relations, defined in the next chapter. This is
the content of Theorem 4.2.1.

3.5. Invariants of framed knots

A singular framing on a closed curve immersed in R3 is a smooth normal
vector field on the curve which has a finite number of simple zeroes. A
singular framed knot is a knot with simple double points in R3 equipped
with a singular framing whose set of zeroes is disjoint from the set of double
points.

Invariants of framed knots are extended to singular framed knots by
means of the Vassiliev skein relation; for double points it has the same form
as before, and for the zeroes of the singular framing it can be drawn as

v
( )

= v
( )

− v
( )

.

An invariant of framed knots is of order 6 n if its extension vanishes on knots
with more than n singularities (double points or zeroes of the framing).

Let us denote the space of invariants of order 6 n by Vfrn . There is a

natural inclusion i : Vn → Vfrn defined by setting i(f)(K) = f(K ′) where
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K is a framed knot, and K ′ is the same knot without framing. It turns out
that this is a proper inclusion for all n > 1.

Let us determine the framed Vassiliev invariants of small degree. Any
invariant of degree zero is, in fact, an unframed knot invariant and, hence,
is constant. Indeed, increasing the framing by one can be thought of as
passing a singularity of the framing, and this does not change the value of
a degree zero invariant.

3.5.1. Exercise. (1) Prove that dimVfr1 = 2, and that Vfr1 is spanned by
the constants and the self-linking number.

(2) Find the dimension and a basis of the vector space Vfr2 .

3.5.2. Exercise. Let v be a framed Vassiliev invariant degree n, and K
— an unframed knot. Let v(K, k) be the value of v on K equipped with a
framing with self-linking number k. Show that v(K, k) is a polynomial in k
of degree at most n.

3.5.3. Chord diagrams for framed knots. We have seen that chord
diagrams on n chords can be thought of as singular knots with n double
points modulo isotopies and crossing changes. Following the same logic, we
should define a chord diagram for framed knots as an equivalence class of
framed singular knots with n singularities modulo isotopies, crossing changes
and additions of zeroes of the framing. In this way, the value of a degree n
Vassiliev invariant on a singular framed knot with n singularities will only
depend on the chord diagram of the knot.

As a combinatorial object, a framed chord diagram of degree n can be
defined as a usual chord diagram of degree n−k together with k dots marked
on the circle. The chords correspond to the double points of a singular knot
and the dots represent the zeroes of the framing.

In the sequel we shall not make any use of diagrams with dots, for the
following reason. If R is a ring where 2 is invertible, a zero of the framing
on a knot with n singularities can be replaced, modulo knots with n + 1
singularities, by “half of a double point”:

v( ) =
1

2
v( )− 1

2
v( )

for any invariant v. In particular, if we replace a dot with a chord whose end-
points are next to each other on some diagram, the symbol of any Vassiliev
invariant on this diagram is simply multiplied by 2.

On the other hand, the fact that we can use the same chord diagrams
for both framed and unframed knots does not imply that the corresponding
theories of Vassiliev invariants are the same. In particular, we shall see that
the symbol of any invariant of unframed knots vanishes on a diagram which
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has a chord that has no intersections with other chords. This does not hold
for an arbitrary framed invariant.

Example. The symbol of the self-linking number is the function equal
to 1 on the chord diagram with one chord.

3.6. Classical knot polynomials as Vassiliev invariants

In Example 3.1.4, we have seen that the coefficients of the Conway polyno-
mial are Vassiliev invariants. The Conway polynomial, taken as a whole, is
not, of course, a finite type invariant, but it is an infinite linear combina-
tion of such; in other words, it is a power series Vassiliev invariant. This
property holds for all classical knot polynomials — but only after a suitable
substitution.

3.6.1. Modify the Jones polynomial of a knot K substituting t = eh and
then expanding it into a formal power series in h. Let jn(K) be the coefficient
of hn in this expansion.

Theorem ([BL, BN1]). The coefficient jn(K) is a Vassiliev invariant of
order 6 n.

Proof. Plugging t = eh = 1 + h + . . . into the skein relation from Sec-
tion 2.4.3 we get

(1− h+ . . . ) · J( )− (1 + h+ . . . ) · J( ) = (h+ . . . ) · J( ) .

We see that the difference

J( )− J( ) = J( )

is congruent to 0 modulo h. Therefore, the Jones polynomial of a singular
knot with k double points is divisible by hk. In particular, for k > n+1 the
coefficient of hn equals zero. �

Below we shall give an explicit description of the symbols of the finite
type invariants jn; the similar description for the Conway polynomial is left
as an exercise (no. 16 at the end of the chapter, page 95).

3.6.2. Symbol of the Jones invariant jn(K). To find the symbol of
jn(K), we must compute the coefficient of hn in the Jones polynomial J(Kn)
of a singular knot Kn with n double points in terms of its chord diagram
σ(Kn). Since

J( )= J( )−J( )=h
(
j0( )+j0( )+j0( )

)
+. . .
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the contribution of a double point of Kn to the coefficient jn(Kn) is the
sum of the values of j0(·) on the three links in the parentheses above. The
values of j0(·) for the last two links are equal, since, according to Exercise 4

to this chapter, to j0(L) = (−2)#(components of L)−1. So it does not de-
pend on the specific way L is knotted and linked and we can freely change
the under/over-crossings of L. On the level of chord diagrams these two
terms mean that we just forget about the chord corresponding to this dou-

ble point. The first term, j0( ), corresponds to the smoothing of the

double point according to the orientation of our knot (link). On the level of
chord diagrams this corresponds to the doubling of a chord:

.

This leads to the following procedure of computing the value of the symbol
of jn(D) on a chord diagram D. Introduce a state s for D as an arbitrary
function on the set chords of D with values in the set {1, 2}. With each
state s we associate an immersed plane curve obtained from D by resolving
(either doubling or deleting) all its chords according to s:

c , if s(c) = 1; c , if s(c) = 2.

Let |s| denote the number of components of the curve obtained in this way.
Then

symb(jn)(D) =
∑

s

(∏

c

s(c)
)

(−2)|s|−1 ,

where the product is taken over all n chords of D, and the sum is taken over
all 2n states for D.

For example, to compute the value of the symbol of j3 on the chord

diagram we must consider 8 states:Q
s(c)=1

|s|=2

Q
s(c)=2

|s|=1

Q
s(c)=2

|s|=1

Q
s(c)=2

|s|=3Q
s(c)=4

|s|=2

Q
s(c)=4

|s|=2

Q
s(c)=4

|s|=2

Q
s(c)=8

|s|=1
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Therefore,

symb(j3)
( )

= −2 + 2 + 2 + 2(−2)2 + 4(−2) + 4(−2) + 4(−2) + 8 = −6

Similarly one can compute the values of symb(j3) on all chord diagrams with
three chords. Here is the result:

D

symb(j3)(D) 0 0 0 −6 −12

This function on chord diagrams, as well as the whole Jones polynomial,
is closely related to the Lie algebra sl2 and its standard 2-dimensional re-
presentation. We shall return to this subject several times in the sequel (see
Sections 6.1.3, 6.1.7 etc).

3.6.3. According to Exercise 25 (page 66), for the mirror reflection K of a
knot K the power series expansion of J(K) can be obtained from the series
J(K) by substituting −h for h. This means that j2k(K) = j2k(K) and
j2k+1(K) = −j2k+1(K).

3.6.4. Table 3.6.4.1 displays the first five terms of the power series expansion
of the Jones polynomial after the substitution t = eh.

31 1 −3h2 +6h3 −(29/4)h4 +(13/2)h5 +. . .

41 1 +3h2 +(5/4)h4 +. . .

51 1 −9h2 +30h3 −(243/4)h4 +(185/2)h5 +. . .

52 1 −6h2 +18h3 −(65/2)h4 +(87/2)h5 +. . .

61 1 +6h2 −6h3 +(17/2)h4 −(13/2)h5 +. . .

62 1 +3h2 −6h3 +(41/4)h4 −(25/2)h5 +. . .

63 1 −3h2 −(17/4)h4 +. . .

71 1 −18h2 +84h3 −(477/2)h4 +511h5 +. . .

72 1 −9h2 +36h3 −(351/4)h4 +159h5 +. . .

73 1 −15h2 −66h3 −(697/4)h4 −(683/2)h5 +. . .

74 1 −12h2 −48h3 −113h4 −196h5 +. . .

75 1 −12h2 +48h3 −119h4 +226h5 +. . .

76 1 −3h2 +12h3 −(89/4)h4 +31h5 +. . .

77 1 +3h2 +6h3 +(17/4)h4 +(13/2)h5 +. . .

81 1 +9h2 −18h3 +(135/4)h4 −(87/2)h5 +. . .
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82 1 −6h3 +27h4 −(133/2)h5 +. . .

83 1 +12h2 +17h4 +. . .

84 1 +9h2 −6h3 +(63/4)h4 −(25/2)h5 +. . .

85 1 +3h2 +18h3 +(209/4)h4 +(207/2)h5 +. . .

86 1 +6h2 −18h3 +(77/2)h4 −(123/2)h5 +. . .

87 1 −6h2 −12h3 −(47/2)h4 −31h5 +. . .

88 1 −6h2 −6h3 −(29/2)h4 −(25/2)h5 +. . .

89 1 +6h2 +(23/2)h4 +. . .

810 1 −9h2 −18h3 −(123/4)h4 −(75/2)h5 +. . .

811 1 +3h2 −12h3 +(125/4)h4 −55h5 +. . .

812 1 +9h2 +(51/4)h4 +. . .

813 1 −3h2 −6h3 −(53/4)h4 −(25/2)h5 +. . .

814 1 +6h4 −18h5 +. . .

815 1 −12h2 +42h3 −80h4 +(187/2)h5 +. . .

816 1 −3h2 +6h3 −(53/4)h4 +(37/2)h5 +. . .

817 1 +3h2 +(29/4)h4 +. . .

818 1 −3h2 +(7/4)h4 +. . .

819 1 −15h2 −60h3 −(565/4)h4 −245h5 +. . .

820 1 −6h2 +12h3 −(35/2)h4 +19h5 +. . .

821 1 −6h3 +21h4 −(85/2)h5 +. . .

Table 3.6.4.1: Taylor expansion of the modified Jones poly-
nomial

3.6.5. Example. In the following examples the h-expansion of the Jones
polynomial starts with a power of h equal to the number of double points
in a singular knot, in compliance with Theorem 3.6.1.

J

( )
= J

( )

︸ ︷︷ ︸
||
0

−J
( )

= − J
( )

︸ ︷︷ ︸
||
1

+J

( )

= −1 + J(31) = −3h2 + 6h3 − 29
4 h

4 + 13
2 h

5 + . . .
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Similarly,

J

( )
= J(31)− 1 = −3h2 − 6h3 − 29

4
h4 − 13

2
h5 + . . .

Thus we have

J

( )
= J

( )
− J

( )
= −12h3 − 13h5 + . . .

3.6.6. J. Birman and X.-S. Lin proved in [Bir2, BL] that all quantum
invariants produce Vassiliev invariants in the same way as the Jones polyno-
mial. More precisely, let θ(K) be the quantum invariant constructed as in
Section 2.6. It is a polynomial in q and q−1. Now let us make a substitution
q = eh and consider the coefficient θn(K) of hn in the Taylor expansion of
θ(K).

Theorem ([BL, BN1]). The coefficient θn(K) is a Vassiliev invariant of
order 6 n.

Proof. The argument is similar to that used in Theorem 3.6.1: it is based
on the fact that an R-matrix R and its inverse R−1 are congruent modulo
h. �

3.6.7. The Casson invariant. The second coefficient of the Conway poly-
nomial, or the Casson invariant, can be computed directly from any knot
diagram by counting (with signs) pairs of crossings of certain type.

Namely, fix a based Gauss diagram G of a knot K, with an arbitrary
basepoint, and consider all pairs of arrows of G that form a subdiagram of
the following form:

(3.6.7.1)
ε1 ε2

The Casson invariant a2(K) is defined as the number of such pairs of arrows
with ε1ε2 = 1 minus the number of pairs of this form with ε1ε2 = −1.

Theorem. The Casson invariant coincides with the second coefficient of
the Conway polynomial c2.

Proof. We shall prove that the Casson invariant as defined above, is a
Vassiliev invariant of degree 2. It can be checked directly that it vanishes
on the unknot and is equal to 1 on the left trefoil. Since the same holds for
the invariant c2 and dimV2 = 2, the assertion of the theorem will follow.



88 3. Finite type invariants

First, let us verify that a2 does not depend on the location of the base-
point on the Gauss diagram. It is enough to prove that whenever the base-
point is moved over the endpoint of one arrow, the value of a2 remains the
same.

Let c be an arrow of some Gauss diagram. For another arrow c′ of the
same Gauss diagram with the sign ε(c′), the flow of c′ through c is equal
to ε(c′) if c′ intersects c, and is equal to 0 otherwise. The flow to the right
through c is the sum of the flows through c of all arrows c′ such that c′ and
c, in this order, form a positive basis of R2. The flow to the left is defined
as the sum of the flows of all c′ such that c′, c form a negative basis. The
total flow through the arrow c is the difference of the right and the left flows
through c.

Now, let us observe that if a Gauss diagram is realizable, then the total
flow through each of its arrows is equal to zero. Indeed, let us cut and re-
connect the branches of the knot represented by the Gauss diagram in the
vicinity of the crossing point that corresponds to the arrow c. What we get
is a two-component link:

1

4

2

3

5

A

B

It is easy to see that the two ways of computing the linking number of the
two components A and B (see Section 2.2) are equal to the right and the
left flow through c respectively. Since the linking number is an invariant,
the difference of the flows is 0.

Now, let us see what happens when the basepoint is moved over an
endpoint of an arrow c. If this endpoint corresponds to an overcrossing,
this means that the arrow c does not appear in any subdiagram of the form
(3.6.7.1) and, hence, the value of a2 remains unchanged. If the basepoint
of the diagram is moved over an undercrossing, the value of a2 changes by
the amount that is equal to the number of all subdiagrams of G involving
c, counted with signs. Taking the signs into the account, we see that this
amount is equal to the total flow through the chord c in G, that is, zero.

Let us now verify that a2 is invariant under the Reidemeister moves.
This is clear for the move V Ω1, since an arrow with adjacent endpoints
cannot participate in a subdiagram of the form (3.6.7.1).

The move V Ω2 involves two arrows; denote them by c1 and c2. Choose
the basepoint “far” from the endpoints of c1 and c2, namely, in such a way
that it belongs neither to the interval between the sources of c1 and c2,
nor to the interval between the targets of these arrows. (Since a2 does not
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depend on the location of the basepoint, there is no loss of generality in this
choice.) Then the contribution to a2 of any pair that contains the arrow c1
cancels with the corresponding contribution for c2.

The moves of type 3 involve three arrows. If we choose a basepoint
far from all of these endpoints, only one of the three distinguished arrows
can participate in a subdiagram of the from (3.6.7.1). It is then clear that
exchanging the endpoints of the three arrows as in the move V Ω3 does not
affect the value of a2.

It remains to show that a2 has degree 2. Consider a knot with 3 double
points. Resolving the double point we obtain an alternating sum of eight
knots whose Gauss diagrams are the same except for the directions and signs
of 3 arrows. Any subdiagram of the form (3.6.7.1) fails to contain at least
one of these three arrows. It is, therefore clear that for each instance that
the Gauss diagram of one of the eight knots contains the diagram (3.6.7.1)
as a subdiagram, there is another occurrence of (3.6.7.1) in another of the
eight knots, counted in a2 with the opposite sign. �

Remark. This method of calculating c2 (invented by Polyak and Viro
[PV1, PV2]) is an example of a Gauss diagram formula. See Chapter 13
for details and for more examples.

3.7. Actuality tables

In general, the amount of information needed to describe a knot invariant v
is infinite, since v is a function on an infinite domain — the set of isotopy
classes of knots. However, Vassiliev invariants require only a finite amount
of information for their description. We already mentioned the analogy
between Vassiliev invariants and polynomials. A polynomial of degree n can
be described, for example, using the Lagrange interpolation formula, by its
values in n+1 particular points. In a similar way a given Vassiliev invariant
can be described by its values on a finitely many knots. These values are
organized in the actuality table (see [Va1, BL, Bir2]).

3.7.1. Basic knots and actuality tables. To construct the actuality ta-
ble we must choose a representative (basic) singular knot for every chord
diagram. A possible choice of basic knots up to degree 3 is shown in the
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table.

A0 A1 A2 A3

The actuality table for a particular invariant v of order 6 n consists
of the set of its values on the set of all basic knots with at most n double
points. The knowledge of this set is sufficient for calculating v for any knot.

Indeed, any knot K can be transformed into any other knot, in partic-
ular, into the basic knot with no singularities (in the table above this is the
unknot), by means of crossing changes and isotopies. The difference of two
knots that participate in a crossing change is a knot with a double point,
hence in ZK the knot K can be written as a sum of the basic non-singular
knot and several knots with one double point. In turn, each knot with one
double point can be transformed, by crossing changes and isotopies, into the
basic singular knot with the same chord diagram, and can be written, as a
result, as a sum of a basic knot with one double point and several knots with
two double points. This process can be iterated until we obtain a represen-
tation of the knot K as a sum of basic knots with at most n double points
and several knots with n+ 1 double points. Now, since v is of order 6 n, it
vanishes on the knots with n + 1 double points, so v(K) can be written as
a sum of the values of v on the basic knots with at most n singularities.

By Proposition 3.4.2, the values of v on the knots with precisely n double
points depend only on their chord diagrams. For smaller number of double
points, the values of v in the actuality table depend not only on chord
diagrams, but also on the basic knots. Of course, the values in the actuality
table cannot be arbitrary. They satisfy certain relations which we shall
discuss later (see Section 4.1). The simplest of these relations, however, is
easy to spot from the examples: the value of any invariant on a diagram
with a chord that has no intersections with other chords is zero.

3.7.2. Example. The second coefficient c2 of the Conway polynomial (Sec-
tion 3.1.2) is a Vassiliev invariant of order 6 2. Here is an actuality table
for it.

c2 : 0 0 0 1

The order of the values in this table corresponds to the order of basic knots
in the table on page 90.
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3.7.3. Example. A Vassiliev invariant of order 3 is given by the third
coefficient j3 of the Taylor expansion of Jones polynomial (Section 2.4).
The actuality table for j3 looks as follows.

j3 : 0 0 0 6 0 0 0 −6 −12

3.7.4. To illustrate the general procedure of computing the value of a Vas-
siliev invariant on a particular knot by means of actuality tables let us
compute the value of j3 on the right-hand trefoil. The right-hand trefoil is
an ordinary knot, without singular points, so we have to deform it (using
crossing changes) to our basic knot without double points, that is, the un-
knot. This can be done by one crossing change, and by the Vassiliev skein
relation we have

j3

( )
= j3

( )
+ j3

( )
= j3

( )

because j3(unknot) = 0 in the actuality table. Now the knot with one double
point we got is not quite the one from our basic knots. We can deform it to
a basic knot changing the upper right crossing.

j3

( )
= j3

( )
+ j3

( )
= j3

( )

Here we used the fact that any invariant vanishes on the basic knot with
a single double point. The knot with two double points on the right-hand
side of the equation still differs by one crossing from the basic knot with two
double points. This means that we have to do one more crossing change.
Combining these equations together and using the values from the actuality
table we get the final answer

j3

( )
= j3

( )
= j3

( )
+ j3

( )
= 6− 12 = −6

3.7.5. The first ten Vassiliev invariants. Using actuality tables, one
can find the values of the Vassiliev invariants of low degree. Table 3.7.5.1
uses a certain basis in the space of Vassiliev invariants up to degree 5. It
represents an abridged version of the table compiled by T. Stanford [Sta1],
where the values of invariants up to degree 6 are given on all knots up to 10
crossings.

Some of the entries in Table 3.7.5.1 are different from [Sta1], this is
due to the fact that, for some non-amphicheiral knots, Stanford uses mirror
reflections of the Rolfsen’s knots shown in Table 1.5.2.1.

v0 v2 v3 v41 v42 v2
2 v51 v52 v53 v2v3

01 ++ 1 0 0 0 0 0 0 0 0 0

31 −+ 1 1 −1 1 −3 1 −3 1 −2 −1
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41 ++ 1 −1 0 −2 3 1 0 0 0 0

51 −+ 1 3 −5 1 −6 9 −12 4 −8 −15

52 −+ 1 2 −3 1 −5 4 −7 3 −5 −6

61 −+ 1 −2 1 −5 5 4 4 −1 2 −2

62 −+ 1 −1 1 −3 1 1 3 −1 1 −1

63 ++ 1 1 0 2 −2 1 0 0 0 0

71 −+ 1 6 −14 −4 −3 36 −21 7 −14 −84

72 −+ 1 3 −6 0 −5 9 −9 6 −7 −18

73 −+ 1 5 11 −3 −6 25 16 −8 13 55

74 −+ 1 4 8 −2 −8 16 10 −8 10 32

75 −+ 1 4 −8 0 −5 16 −14 6 −9 −32

76 −+ 1 1 −2 0 −3 1 −2 3 −2 −2

77 −+ 1 −1 −1 −1 4 1 0 2 0 1

81 −+ 1 −3 3 −9 5 9 12 −3 5 −9

82 −+ 1 0 1 −3 −6 0 2 0 −3 0

83 ++ 1 −4 0 −14 8 16 0 0 0 0

84 −+ 1 −3 1 −11 4 9 0 −2 −1 −3

85 −+ 1 −1 −3 −5 −5 1 −5 3 2 3

86 −+ 1 −2 3 −7 0 4 9 −3 2 −6

87 −+ 1 2 2 4 −2 4 7 −1 3 4

88 −+ 1 2 1 3 −4 4 2 −1 1 2

89 ++ 1 −2 0 −8 1 4 0 0 0 0

810 −+ 1 3 3 3 −6 9 5 −3 3 9

811 −+ 1 −1 2 −4 −2 1 8 −1 2 −2

812 ++ 1 −3 0 −8 8 9 0 0 0 0

813 −+ 1 1 1 3 0 1 6 0 3 1

814 −+ 1 0 0 −2 −3 0 −2 0 −3 0

815 −+ 1 4 −7 1 −7 16 −16 5 −10 −28

816 −+ 1 1 −1 3 0 1 2 2 2 −1

817 +− 1 −1 0 −4 0 1 0 0 0 0

818 ++ 1 1 0 0 −5 1 0 0 0 0

819 −+ 1 5 10 0 −5 25 18 −6 10 50

820 −+ 1 2 −2 2 −5 4 −1 3 −1 −4

821 −+ 1 0 1 −1 −3 0 1 −1 −1 0

Table 3.7.5.1: Vassiliev invariants of order 6 5

The two signs after the knot number refer to their symmetry properties: a
plus in the first position means that the knot is amphicheiral, a plus in the
second position means that the knot is invertible.
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3.8. Vassiliev invariants of tangles

Knots are tangles whose skeleton is a circle. A theory of Vassiliev invariants,
similar to the theory for knots, can be constructed for isotopy classes of
tangles with any given skeleton X.

Indeed, similarly to the case of knots, one can introduce tangles with
double points, with the only extra assumption that the double points lie
in the interior of the tangle box. Then, any invariant of tangles can be
extended to tangles with double points with the help of the Vassiliev skein
relation. An invariant of tangles is a Vassiliev invariant of degree 6 n if it
vanishes on all tangles with more that n double points.

We stress that we define Vassiliev invariants separately for each skele-
ton X. Nevertheless, there are relations among invariants of tangles with
different skeleta.

Example. Assume that the isotopy classes of tangles with the skeleta X1

and X2 can be multiplied. Given a tangle T with skeleton X1 and a Vassiliev
invariant v of tangles with skeleton X1X2, we can define an invariant of
tangles on X2 of the same order as v by composing a tangle with T and
applying v.

Example. In the above example the product of tangles can be replaced by
their tensor product. (Of course, the condition that X1 and X2 can be
multiplied is no longer necessary here.)

In particular, the Vassiliev invariants of tangles whose skeleton has one
component, can be identified with the Vassiliev invariants of knots.

Example. Assume that X ′ is obtained from X by dropping one or several
components. Then any Vassiliev invariant v′ of tangles with skeleton X ′

gives rise to an invariant v of tangles on X of the same order; to compute
v drop the components of the tangle that are not in X ′ and apply v′.

This example immediately produces a lot of tangle invariants of finite
type: namely, those coming from knots. The simplest example of a Vas-
siliev invariant that does not come from knots is the linking number of two
components of a tangle. So far, we have defined the linking number only for
pairs of closed curves. If one or both of the components are not closed, we
can use the constructions above to close them up in some fixed way.

Lemma. The linking number of two components of a tangle is a Vassiliev
invariant of order 1.

Proof. Consider a two-component link with one double point. This double
point can be of two types: either it is a self-intersection point of a single
component, or it is an intersection of two different components. Using the
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Vassiliev skein relation and the formula 2.2.1, we see that in the first case
the linking number vanishes, while in the second case it is equal to 1. It
follows that for a two-component link with two double points the linking
number is always zero. �

Among the invariants for all classes of tangles, the string link invari-
ants have attracted most attention. Two particular classes of string link
invariants are the knot invariants (recall that string links on one strand are
in one-to-one correspondence with knots) and the invariants of pure braids.
We shall treat the Vassiliev invariants of pure braids in detail in Chapter 12.

Exercises

(1) Using the actuality tables, compute the value of j3 on the left-hand
trefoil.

(2) Choose the basic knots with four double points and construct the actu-
ality tables for the fourth coefficients c4 and j4 of the Conway and Jones
polynomials.

(3) Prove that j0(K) = 1 and j1(K) = 0 for any knot K.

(4) Show that the value of j0 on a link with k components is equal to
(−2)k−1.

(5) For a link L with two components K1 and K2 prove that
j1(L) = −3 · lk(K1,K2). In other words,

J(L) = −2− 3 · lk(K1,K2) · h+ j2(L) · h2 + j3(L) · h3 + . . . .

(6) Prove that for any knot K the integer j3(K) is divisible by 6.

(7) For a knot K, find the relation between the second coefficients c2(K)
and j2(K) of the Conway and Jones polynomials.

(8) Prove that v(31#31) = 2v(31)−v(0), where 0 is the trivial knot, for any
Vassiliev invariant v ∈ V3.

(9) Prove that for a knot K the n-th derivative at 1 of the Jones polynomial

dn(J(K))

dtn

∣∣∣∣
t=1

is a Vassiliev invariant of order 6 n. Find the relation between these
invariants and j1, . . . , jn for small values of n.

(10) Express the coefficients c2, c4, j2, j3, j4, j5 of the Conway and Jones
polynomials in terms of the basis Vassiliev invariants from Table 3.7.5.1.

(11) Find the symbols of the Vassiliev invariants from Table 3.7.5.1.
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(12) Express the invariants of Table 3.7.5.1 through the coefficients of the
Conway and the Jones polynomials.

(13) Find the actuality tables for some of the Vassiliev invariants appearing
in Table 3.7.5.1.

(14) Explain the correlation between the first sign and the zeroes in the last
four columns of Table 3.7.5.1.

(15) Check that Vassiliev invariants up to order 4 are enough to distinguish,
up to orientation, all knots with at most 8 crossings from Table 1.5.2.1
on page 26.

(16) Prove that the symbol of the coefficient cn of the Conway polynomial can
be calculated as follows. Double every chord of a given chord diagram
D as in Section 3.6.2, and let |D| be equal to the number of components
of the obtained curve. Then

symb(cn)(D) =

{
1, if |D| = 1
0, otherwise .

(17) Prove that there is a well-defined extension of knot invariants to singular
knots with a non-degenerate triple point according to the rule

f( ) = f( )− f( ) .

Is it true that, according to this extension, a Vassiliev invariant of degree
2 is equal to 0 on any knot with a triple point?

Is it possible to use the same method to define an extension of knot
invariants to knots with self-intersections of multiplicity higher than 3?

(18) Following Example 3.6.5, find the power series expansion of the modified
Jones polynomial of the singular knot .

(19) Prove the following relation between the Casson knot invariant c2, ex-
tended to singular knots, and the linking number of two curves. Let
K be a knot with one double point. Smoothing the double point by

the rule 7→ , one obtains a 2-component link L. Then

lk(L) = c2(K).

(20) Is there a prime knot K such that j4(K) = 0?

(21) Vassiliev invariants from the HOMFLY polynomial. For a link
L make a substitution a = eh in the HOMFLY polynomial P (L) and
take the Taylor expansion in h. The result will be a Laurent polynomial
in z and a power series in h. Let pk,l(L) be its coefficient at hkzl.
(a) Show that for any link L the total degree k + l is not negative.
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(b) If l is odd, then pk,l = 0.
(c) Prove that pk,l(L) is a Vassiliev invariant of order 6 k + l.
(d) Describe the symbol of pk,l(L).



Chapter 4

Chord diagrams

A chord diagram encodes the order of double points along a singular knot.
We saw in the last chapter that a Vassiliev invariant of order n gives rise
to a function on chord diagrams with n chords. Here we shall describe the
conditions, called one-term and four-term relations, that a function on chord
diagrams should satisfy in order to come from a Vassiliev invariant. We shall
see that the vector space spanned by chord diagrams modulo these relations
has the structure of a Hopf algebra. This Hopf algebra turns out to be dual
to the algebra of the Vassiliev invariants.

4.1. Four- and one-term relations

Recall that R denotes a commutative ring and Vn is the space of R-valued
Vassiliev invariants of order 6 n. Some of our results will only hold when R
is a field of characteristic 0; sometimes we shall take R = C. On page 80 in
Section 3.1.2 we constructed a linear inclusion (the symbol of an invariant)

αn : Vn/Vn−1 → RAn,

where RAn is the space of R-valued functions on the set An of chord dia-
grams of order n.

To describe the image of αn, we need the following definition.

4.1.1. Definition. A function f ∈ RAn is said to satisfy the 4-term (or
4T) relations if the alternating sum of the values of f is zero on the following
quadruples of diagrams:

(4.1.1.1) f( )− f( ) + f( )− f( ) = 0.

97



98 4. Chord diagrams

In this case f is also called a (framed) weight system of order n.

Here it is assumed that the diagrams in the pictures may have other
chords with endpoints on the dotted arcs, while all the endpoints of the
chords on the solid portions of the circle are explicitly shown. For example,
this means that in the first and second diagrams the two bottom points are
adjacent. The chords omitted from the pictures should be the same in all
the four cases.

Example. Let us find all 4-term relations for chord diagrams of order 3.
We must add one chord in one and the same way to all the four terms of
Equation (4.1.1.1). Since there are 3 dotted arcs, there are 6 different ways
to do that, in particular,

f( )− f( ) + f( )− f( ) = 0

and

f( )− f( ) + f( )− f( ) = 0

Some of the diagrams in these equations are equal, and the relations can be

simplified as f( ) = f( ) and f( )− 2f( ) + f( ) = 0.

The reader is invited to check that the remaining four 4-term relations (we
wrote only 2 out of 6) are either trivial or coincide with one of these two.

It is often useful to look at a 4T relation from the following point of view.
We can think that one of the two chords that participate in equation (4.1.1.1)
is fixed, and the other is moving. One of the ends of the moving chord is
also fixed, while the other end travels around the fixed chord stopping at
the four locations adjacent to its endpoints. The resulting four diagrams are
then summed up with alternating signs. Graphically,

(4.1.1.2) f( )− f( ) + f( )− f( ) = 0.

where the fixed end of the moving chord is marked by .

Another way of writing the 4T relation, which will be useful in Sec-
tion 5.1, is to split the four terms into two pairs:

f( )− f( ) = f( )− f( ) .

Because of the obvious symmetry, this can be completed as follows:

(4.1.1.3) f( )− f( ) = f( )− f( ) .
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Note that for each order n the choice of a specific 4-term relation depends
on the following data:

• a diagram of order n− 1,

• a distinguished chord of this diagram (“fixed chord”), and

• a distinguished arc on the circle of this diagram (where the fixed
endpoint of the “moving chord” is placed).

There are 3 fragments of the circle that participate in a 4-term relation,
namely, those that are shown by solid lines in the equations above. If these
3 fragments are drawn as 3 vertical line segments, then the 4-term relation
can be restated as follows:

(4.1.1.4) (−1)↓ f
(

i kj

)
− (−1)↓ f

(

ji k

)

+ (−1)↓ f
(

ji k

)
− (−1)↓ f

(

ji k

)
= 0 .

where ↓ stands for the number of endpoints of the chords in which the
orientation of the strands is directed downwards. This form of a 4T relation
is called a horizontal 4T relation . It first appeared, in a different context,
in the work by T. Kohno [Koh2].

4.1.2. Exercise. Choose some orientations of the three fragments of the
circle, add the portions necessary to close it up and check that the last form
of the 4-term relation carries over into the ordinary four-term relation.

Here is an example:

f
( )

− f
( )

− f
( )

+ f
( )

= 0 .

We shall see in the next section that the four-term relations are always
satisfied by the symbols of Vassiliev invariants, both in the usual and in
the framed case. For the framed knots, there are no other relations; in the
unframed case, there is another set of relations, called one-term, or framing
independence relations.

4.1.3. Definition. An isolated chord is a chord that does not intersect any
other chord of the diagram. A function f ∈ RAn is said to satisfy the 1-
term relations if it vanishes on every chord diagram with an isolated chord.
An unframed weight system of order n is a weight system that satisfies the
1-term relations.

Here is an example of a 1T relation: f( ) = 0 .
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4.1.4. Notation. We denote by Wfr
n the subspace of RAn consisting of

all (framed) weight systems of order n and by Wn ⊂ Wfr
n the space of all

unframed weight systems of order n.

4.2. The Fundamental Theorem

In Section 3.4 we showed that the symbol of an invariant gives an injec-
tive map αn : Vn/Vn−1 → RAn. The Fundamental Theorem on Vassiliev
invariants describes its image.

4.2.1. Theorem (Vassiliev–Kontsevich). For R = C the map αn identifies
Vn/Vn−1 with the subspace of unframed weight systemsWn ⊂ RAn. In other
words, the space of unframed weight systems is isomorphic to the graded
space associated with the filtered space of Vassiliev invariants,

W =
∞⊕

n=0

Wn
∼=

∞⊕

n=0

Vn/Vn+1 .

The theorem consists of two parts:

• (V. Vassiliev) The symbol of every Vassiliev invariant is an un-
framed weight system.

• (M. Kontsevich) Every unframed weight system is the symbol of a
certain Vassiliev invariant.

We shall now prove the first (easy) part of the theorem. The second
(difficult) part will be proved later (in Section 8.8) using the Kontsevich
integral.

The first part of the theorem consists of two assertions, and we prove
them one by one.

4.2.2. First assertion: any function f ∈ RAn coming from an invariant
v ∈ Vn satisfies the 1-term relations.

Proof. Let K be a singular knot whose chord diagram contains an isolated
chord. The double point p that corresponds to the isolated chord divides
the knot into two parts: A and B.

3

p

A

B
1

2 2

1

2

1

3 p

3

p

The fact that the chord is isolated means that A and B do not have
common double points. There may, however, be crossings involving branches
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from both parts. By crossing changes, we can untangle part A from part B
thus obtaining a singular knot K ′ with the same chord diagram as K and
with the property that the two parts lie on either side of some plane in R3

that passes through the double point p :

BA

p

Here it is obvious that the two resolutions of the double point p give equiv-
alent singular knots, therefore v(K) = v(K ′) = v(K ′+)− v(K ′−) = 0. �

4.2.3. Second assertion: any function f ∈ RAn coming from an invari-
ant v ∈ Vn satisfies the 4-term relations.

Proof. We shall use the following lemma.

Lemma (4-term relation for knots). Any Vassiliev invariant satisfies

f
( )

− f
( )

+ f
( )

− f
( )

= 0,

Proof. By the Vassiliev skein relation,

f
( )

= f
( )

− f
( )

= a− b,

f
( )

= f
( )

− f
( )

= c− d,

f
( )

= f
( )

− f
( )

= c− a,

f
( )

= f
( )

− f
( )

= d− b.

The alternating sum of these expressions is (a− b)− (c− d) + (c− a)−
(d− b) = 0, and the lemma is proved. �

Now, denote by D1, . . . , D4 the four diagrams in a 4T relation. In order
to prove the 4-term relation for the symbols of Vassiliev invariants, let us
choose for the first diagram D1 an arbitrary singular knot K1 such that
σ(K1) = D1:

σ
( K1 D1)

= .
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Then the three remaining knots K2, K3, K4 that participate in the 4-term
relation for knots, correspond to the three remaining chord diagrams of the
4-term relation for chord diagrams, and the claim follows from the lemma.

σ
( K2 D2)

= , σ
( K3 D3)

= , σ
( K4 D4)

= .

�

4.2.4. The case of framed knots. As in the case of usual knots, for the

invariants of framed knots we can define a linear map Vfrn /Vfrn−1 → RAn.
This map satisfies the 4T relations, but does not satisfy the 1T relation,
since the two knots differing by a crossing change (see the proof of the first
assertion in 4.2.2), are not equivalent as framed knots (the two framings
differ by 2). The Fundamental Theorem also holds, in fact, for framed
knots: we have the equality

Vfrn /Vfrn−1 =Wfr
n ;

it can be proved using the Kontsevich integral for framed knots (see Sec-
tion 9.6).

This explains why the 1-term relation for the Vassiliev invariants of
(unframed) knots is also called the framing independence relation .

4.2.5. We see that, in a sense, the 4T relations are more fundamental than
the 1T relations. Therefore, in the sequel we shall mainly study combina-
torial structures involving the 4T relations only. In any case, 1T relations
can be added at all times, either by considering an appropriate subspace or
an appropriate quotient space (see Section 4.4.5). This is especially easy to
do in terms of the primitive elements (see page 113): the problem reduces
to simply leaving out one primitive generator.

4.3. Bialgebras of knots and knot invariants

Prerequisites on bialgebras can be found in the Appendix (see page 420). In
this section it will be assumed that R = F, a field of characteristic zero.

In Section 2.5 we noted that the algebra of knot invariants I, as a vector
space, is dual to the algebra of knots FK = ZK ⊗ F.

Now, using the construction of dual bialgebras (Section A.2.8), we can
define the coproducts in FK and I, using the products in I and FK, respec-
tively. The explicit formulae are:

δ(K) = K ⊗K
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for a knot K (then extended by linearity to the entire space FK) and

δ(f)(K1 ⊗K2) = f(K1#K2)

for an invariant f and any pair of knots K1 and K2.

4.3.1. Exercise. Define the counits and check the compatibility of the
product and coproduct in each of the two algebras.

Let us find the primitive and the group-like elements in the algebras FK
and I (see definitions in Appendix A.2.6 on page 422). As concerns the
algebra of knots FK, both structures are quite poor: it follows from the
definitions that P(FK) = 0, while G(FK) consists of only one element — the
trivial knot. (Non-trivial knots are semigroup-like, but not group-like!)

The situation is quite different for the algebra of invariants. As a con-
sequence of Proposition A.2.12 we obtain a description of primitive and
group-like knot invariants (in particular, Vassiliev invariants): these are
nothing but the additive and the multiplicative invariants, respectively, that
is, the invariants satisfying the relations

f(K1#K2) = f(K1) + f(K2),

f(K1#K2) = f(K1)f(K2),

respectively, for any two knots K1 and K2.

It follows that the sets P(I) and G(I) are rather big; they are related
with each other by the log-exp correspondence.

Examples. 1. The genus g(K) of the knot K is a primitive invariant.

Its exponent 2g(K) is a group-like invariant. These invariants are not of finite
type.

2. According to Exercises (6) and (7) to Chapter 2, both the Conway
and the Jones polynomials are group-like knot invariants. They both belong
to the closure of the space of finite type invariants, although neither is of
finite type in the proper sense of the word. Taking the logarithm of either
C(K) or J(K), one obtains primitive power series Vassiliev invariants. For
example, the coefficient c2 (the Casson invariant) is primitive.

4.3.2. Exercise. Find a finite linear combination of coefficients jn of the
Jones polynomial that gives a primitive Vassiliev invariant.

4.3.3. Exercise. Prove that the only group-like Vassiliev invariant is the
constant 1.

The singular knot filtration Kn on FK is obtained from the singular knot
filtration on ZK simply by tensoring it with the field F.
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4.3.4. Theorem. The bialgebra of knots FK supplied with the singular knot
filtration (page 74) is a d-filtered bialgebra (page 427), that is, a bialgebra
with a decreasing filtration.

Proof. There are two assertions to prove:

(1) If x ∈ Km and y ∈ Kn, then xy ∈ Km+n,

(2) If x ∈ Kn, then δ(x) ∈ ∑
p+q=n

Kp ⊗Kq.

The first assertion was proved in Chapter 3.

To prove (2), first let us introduce some additional notation.

Let K be a knot given by a plane diagram with > n crossings out of
which exactly n are distinguished and numbered. Consider the set K̂ of 2n

knots that may differ from K by crossing changes at the distinguished points
and the vector space XK ⊂ FK spanned by K̂. The group Zn2 acts on the set

K̂; the action of i-th generator si consists in the flip of under/overcrossing
at the distinguished point number i. We thus obtain a set of n commuting
linear operators si : XK → XK . Set σi = 1 − si. In these terms, a typical
generator x of Kn can be written as x = (σ1 ◦ · · · ◦σn)(K). To evaluate δ(x),
we must find the commutator relations between the operators δ and σi.

4.3.5. Lemma.

δ ◦ σi = (σi ⊗ id + si ⊗ σi) ◦ δ,
where both the left-hand side and the right-hand side are understood as linear
operators from XK into XK ⊗XK .

Proof. Just check that the values of both operators on an arbitrary element
of the set K̂ are equal. �

A successive application of the lemma yields:

δ ◦ σ1 ◦ · · · ◦ σn =

(
n∏

i=1

(σi ⊗ id + si ⊗ σi)
)
◦ δ

= (
∑

I⊂{1,...,n}

∏

i∈I
σi
∏

i6∈I
si ⊗

∏

i6∈I
σi) ◦ δ .

Therefore, an element x = (σ1 ◦ · · · ◦ σn)(K) satisfies

δ(x) =
∑

I⊂{1,...,n}
(
∏

i∈I
σi
∏

i6∈I
si)(K)⊗ (

∏

i6∈I
σi)(K)

which obviously belongs to
∑

p+q=n ZKp ⊗ ZKq. �

4.3.6. Proposition. The algebra of knot invariants I is an i-filtered bialge-
bra (page 427), that is, a bialgebra with an increasing filtration; in particular,
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this implies that the product of Vassiliev invariants of degrees 6 p and 6 q
is a Vassiliev invariant of degree no greater than p+ q.

This theorem has been proved in Section 3.2.3. Also, in the setting
of Hopf algebras it is a direct corollary of Theorems 4.3.4 and A.2.20 (see
Appendix).

The algebra of Vassiliev invariants V is a subalgebra of I; in the termi-
nology of Section A.2.13 it is nothing but the reduced part of I by singular
knot filtration.

4.3.7. Exercise. Prove that singular knot filtration on the algebra of knots
is infinite and, moreover, that the dimension of the quotient FK/∩∞n=0Kn is
infinite. As a consequence, show that the filtration of the algebra of Vassiliev
invariants by degree is infinite and dimV =∞.

4.4. Bialgebra of chord diagrams

4.4.1. The vector space of chord diagrams. A dual way to define the
weight systems is to introduce the 1- and 4-term relations directly in the
vector space spanned by chord diagrams.

4.4.2. Definition. The space Afrn of chord diagrams of order n is the vector
space generated by the set An (all diagrams of order n) modulo the subspace
spanned by all 4-term linear combinations

− + − .

The space An of unframed chord diagrams of order n is the quotient of Afrn
by the subspace spanned by all diagrams with an isolated chord.

In these terms, the space of framed weight systems Wfr
n is dual to the

space of framed chord diagrams Afrn , and the space of unframed weight
systems Wn — to that of unframed chord diagrams An:

Wn = Hom(An,R),

Wfr
n = Hom(Afrn ,R).

Below, we list the dimensions and some bases of the spaces Afrn for n = 1,
2 and 3:

Afr1 =
〈 〉

, dimAfr1 = 1.
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Afr2 =
〈

,
〉
, dimAfr2 = 2, since the only 4-term relation involv-

ing chord diagrams of order 2 is trivial.

Afr3 =
〈

, ,
〉
, dimAfr3 = 3, since A3 consists of 5 ele-

ments, and there are 2 independent 4-term relations (see page 98):

= and − 2 + = 0.

Taking into account the 1-term relations, we get the following result for
the spaces of unframed chord diagrams of small orders:

A1 = 0, dimA1 = 0.

A2 =
〈 〉

, dimA2 = 1.

A3 =
〈 〉

, dimA3 = 1.

The result of similar calculations for order 4 diagrams is presented in

Table 4.4.2.1. In this case dimAfr4 = 6; the set {d4
3, d

4
6, d

4
7, d

4
15, d

4
17, d

4
18} is

used in the table as a basis. The table is obtained by running Bar-Natan’s
computer program available at [BN5]. The numerical notation for chord
diagrams like [12314324] is easy to understand: one writes the numbers on
the circle in the positive direction and connects equal numbers by chords.
Of all possible codes we choose the lexicographically minimal one.

4.4.3. Multiplication of chord diagrams. Now we are ready to define

the structure of an algebra in the vector space Afr =
⊕
k>0

Afrk of chord

diagrams.

Definition. The product of two chord diagrams D1 and D2 is defined by
cutting and glueing the two circles as shown:

· = =

This map is then extended by linearity to

µ : Afrm ⊗Afrn → Afrm+n.

Note that the product of diagrams depends on the choice of the points where
the diagrams are cut: in the example above we could equally well cut the

circles in other places and get a different result: .
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CD Code and expansion CD Code and expansion

d4
1 = [12341234]

= d4
3 +2d4

6− d4
7− 2d4

15 + d4
17

d4
2 = [12314324]

= d4
3 − d4

6 + d4
7

d4
3 = [12314234]

= d4
3

d4
4 = [12134243]

= d4
6 − d4

7 + d4
15

d4
5 = [12134234]

= 2d4
6 − d4

7

d4
6 = [12132434]

= d4
6

d4
7 = [12123434]

= d4
7

d4
8 = [11234432]

= d4
18

d4
9 = [11234342]

= d4
17

d4
10 = [11234423]

= d4
17

d4
11 = [11234324]

= d4
15

d4
12 = [11234243]

= d4
15

d4
13 = [11234234]

= 2d4
15 − d4

17

d4
14 = [11232443]

= d4
17

d4
15 = [11232434]

= d4
15

d4
16 = [11223443]

= d4
18

d4
17 = [11223434]

= d4
17

d4
18 = [11223344]

= d4
18

Table 4.4.2.1. Chord diagrams of order 4

Lemma. The product is well-defined modulo 4T relations.

Proof. We shall show that the product of two diagrams is well-defined; it
follows immediately that this is also true for linear combinations of diagrams.
It is enough to prove that if one of the two diagrams, say D2, is turned inside
the product diagram by one “click” with respect to D1, then the result is
the same modulo 4T relations.

Note that such rotation is equivalent to the following transformation.
Pick a chord in D2 with endpoints a and b such that a is adjacent to D1.
Then, fixing the endpoint b, move a through the diagram D1. In this process
we obtain 2n+ 1 diagrams P0, P1, ..., P2n, where n is the order of D1, and
we must prove that P0 ≡ P2n mod 4T . Now, it is not hard to see that the
difference P0 − P2n is, in fact, equal to the sum of all n four-term relations
which are obtained by fixing the endpoint b and all chords of D1, one by
one. For example, if we consider the two products shown above and use the
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following notation:
a

b

a

b

a

b

a

b
a

b a b a b

P0 P1 P2 P3 P4 P5 P6

then we must take the sum of the three linear combinations

P0 − P1 + P2 − P3,

P1 − P2 + P4 − P5,

P3 − P4 + P5 − P6,

and the result is exactly P0 − P6.

�

4.4.4. Comultiplication of chord diagrams. The coproduct in the al-
gebra Afr

δ : Afrn →
⊕

k+l=n

Afrk ⊗A
fr
l

is defined as follows. For a diagram D ∈ Afrn we put

δ(D) :=
∑

J⊆[D]

DJ ⊗DJ ,

the summation taken over all subsets J of the set of chords of D. Here DJ

is the diagram consisting of the chords that belong to J and J = [D] \ J is
the complementary subset of chords. To the entire space Afr the operator
δ is extended by linearity.

If D is a diagram of order n, the total number of summands in the
right-hand side of the definition is 2n.

Example.

δ
( )

= ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + 2 ⊗ + ⊗

+ ⊗ + 2 ⊗ + ⊗

Lemma. The coproduct δ is well-defined modulo 4T relations.
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Proof. Let D1 −D2 +D3 −D4 = 0 be a 4T relation. We must show that
the sum δ(D1)− δ(D2) + δ(D3)− δ(D4) can be written as a combination of
4T relations. Recall that a specific four-term relation is determined by the
choice of a moving chord m and a fixed chord a. Now, take one and the same
splitting A∪B of the set of chords in the diagrams Di, the same for each i,
and denote by Ai, Bi the resulting chord diagrams giving the contributions
Ai ⊗ Bi to δ(Di), i = 1, 2, 3, 4. Suppose that the moving chord m belongs
to the subset A. Then B1 = B2 = B3 = B4 and A1 ⊗B1 −A2 ⊗B2 +A3 ⊗
B3 −A4 ⊗B4 = (A1 −A2 +A3 −A4)⊗B1. If the fixed chord a belongs to
A, then the A1 − A2 + A3 − A4 is a four-term combination; otherwise it is
easy to see that A1 = A2 and A3 = A4 for an appropriate numbering. The
case when m ∈ B is treated similarly. �

The unit and the counit in Afr are defined as follows:

ι : R → Afr , ι(x) = x ,

ε : Afr → R , ε
(
x + ...

)
= x .

Exercise. Check the axioms of a bialgebra for Afr and verify that it is
commutative, cocommutative and connected.

4.4.5. Deframing the chord diagrams. The space of unframed chord
diagrams A was defined as the quotient of the space Afr by the subspace
spanned by all diagrams with an isolated chord. In terms of the multiplica-
tion in Afr, this subspace can be described as the ideal of Afr generated by
Θ, the chord diagram with one chord, so that we can write:

A = Afr/(Θ).

It turns out that there is a simple explicit formula for a linear operator

p : Afr → Afr whose kernel is the ideal (Θ). Namely, define pn : Afrn → Afrn
by

pn(D) :=
∑

J⊆[D]

(−Θ)n−|J | ·DJ ,

where, as earlier, [D] stands for the set of chords in the diagram D and DJ

means the subdiagram of D with only the chords from J left. The sum of
pn over all n is the operator p : Afr → Afr.
4.4.6. Exercise. Check that

(1) p is a homomorphism of algebras,

(2) p(Θ) = 0 and hence p takes the entire ideal (Θ) into 0.

(3) p is a projector, that is, p2 = p.

(4) the kernel of p is exactly (Θ).
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We see, therefore, that the quotient map p̄ : Afr/(Θ) → Afr is the
isomorphism of A onto its image and we have a direct decomposition Afr =
p̄(A)⊕ (Θ). Note that the first summand here is different from the subspace
spanned merely by all diagrams without isolated chords!

For example, p(Afr3 ) is spanned by the two vectors

p
( )

= − 2 + ,

p
( )

= − 3 + 2 = 2p
( )

.

while the subspace generated by the elements and is 2-dimensional

and has a nonzero intersection with the ideal (Θ).

4.5. Bialgebra of weight systems

According to 4.4.2 the vector spaceWfr is dual to the space Afr. Since now
Afr is equipped with the structure of a Hopf algebra, the general construc-
tion of Section A.2.24 supplies the space Wfr with the same structure. In
particular, weight systems can be multiplied: (w1·w2)(D) := (w1⊗w2)(δ(D))
and comultiplied: (δ(w))(D1 ⊗D2) := w(D1 ·D2). The unit of Wfr is the
weight system I0 which takes value 1 on the chord diagram without chords
and vanishes elsewhere. The counit sends a weight system to its value on
on the chord diagram without chords.

For example, if w1 is a weight system which takes value a on the chord

diagram , and zero value on all other chord diagrams, and w1 takes

value b on and vanishes elsewhere, then

(w1 · w2)( ) = (w1 ⊗ w2)(δ( )) = 2w1( ) · w2( ) = 2ab .

4.5.1. Proposition. The symbol symb : Vfr →Wfr commutes with multi-
plication and comultiplication.

Proof of the proposition. Analyzing the proof of Theorem 3.2.3 one can
conclude that for any two Vassiliev invariants of orders 6 p and 6 q the
symbol of their product is equal to the product of their symbols. This
implies that the map symb respects the multiplication. Now we prove that
symb(δ(v)) = δ(symb(v)) for a Vassiliev invariant v of order 6 n. Let us
apply both parts of this equality to the tensor product of two chord diagrams
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D1 and D2 with the number of chords p and q respectively where p+ q = n.
We have

symb(δ(v))
(
D1 ⊗D2

)
= δ(v)

(
KD1 ⊗KD2

)
= v
(
KD1#KD2

)
,

where the singular knots KD1 and KD2 represent chord diagrams D1 and
D2. But the singular knot KD1#KD2 represents the chord diagram D1 ·D2.
Since the total number of chords in D1 ·D2 is equal to n, the value of v on
the corresponding singular knot would be equal to the value of its symbol
on the chord diagram:

v
(
KD1#KD2

)
= symb(v)

(
D1 ·D2

)
= δ(symb(v))

(
D1 ⊗D2

)
.

�

Remark. The map symb : Vfr → Wfr is not a bialgebra homomorphism
because it does not respect the addition. Indeed, the sum of two invariants
v1 + v2 of different orders p and q with, say p > q has the order p. That
means symb(v1 + v2) = symb(v1) 6= symb(v1) + symb(v2).

However, we can extend the map symb to power series Vassiliev invari-

ants by sending the invariant
∏
vi ∈ V̂fr• to the element

∑
symb(vi) of the

graded completion Ŵfr. Then the above Proposition implies that the map

symb : V̂fr• → Ŵfr is a graded bialgebra homomorphism.

4.5.2. We call a weight system w multiplicative if for any two chord diagrams
D1 and D2 we have

w(D1 ·D2) = w(D1)w(D2).

This is the same as to say that w is a semigroup-like element in the bialgebra
of weight systems (see Appendix A.2.6). Note that a multiplicative weight
system always takes value 1 on the chord diagram with no chords. The
unit I0 is the only group-like element of the bialgebra Wfr (compare with

Exercise 4.3.3 on page 103). However, the graded completion Ŵfr contains
many interesting group-like elements.

Corollary of Proposition 4.5.1. Suppose that

v =
∞∏

n=0

vn ∈ V̂fr•

is multiplicative. Then its symbol is also multiplicative.

Indeed any homomorphism of bialgebras sends group-like elements to
group-like elements.
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4.5.3. A weight system that belongs to a homogeneous component Wfr
n of

the space Wfr is said to be homogeneous of degree n. Let w ∈ Ŵfr be an

element with homogeneous components wi ∈ Wfr
i such that w0 = 0. Then

the exponential of w can be defined as the Taylor series

exp(w) =
∞∑

k=0

wk

k!
.

This formula makes sense because only a finite number of operations is
required for the evaluation of each homogeneous component of this sum. One
can easily check that the weight systems exp(w) and exp(−w) are inverse
to each other:

exp(w) · exp(−w) = I0.

By definition, a primitive weight system w satisfies

w(D1 ·D2) = I0(D1) · w(D2) + w(D1) · I0(D2).

(In particular, a primitive weight system is always zero on a product of two
nontrivial diagrams D1 ·D2.) The exponential exp(w) of a primitive weight
system w is multiplicative (group-like). Note that it always belongs to the

completion Ŵfr, even if w belongs to Wfr.

A simple example of a homogeneous weight system of degree n is pro-
vided by the function on the set of chord diagrams which is equal to 1 on
any diagram of degree n and to 0 on chord diagrams of all other degrees.
This function clearly satisfies the four-term relations. Let us denote this
weight system by In.

4.5.4. Lemma. In · Im =
(
m+n
n

)
In+m.

This directly follows from the definition of the multiplication for weight
systems.

4.5.5. Corollary. (i) In
1
n! = In;

(ii) If we set I =
∑∞

n=0 In (that is, I is the weight system that is equal
to 1 on every chord diagram), then

exp(I1) = I.

Strictly speaking, I is not an element ofWfr = ⊕nWfr
n but of the graded

completion Ŵfr. Note that I is not the unit of Ŵfr. Its unit, as well as the
unit of W itself, is represented by the element I0.

4.5.6. Deframing the weight systems. Since A = Afr/(Θ) is a quotient
of Afr, the corresponding dual spaces are embedded one into another, W ⊂
Wfr. The elements of W take zero values on all chord diagrams with an
isolated chord. In Section 4.1 they were called unframed weight systems. The
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deframing procedure for chord diagrams (Section 4.4.5) leads to a deframing
procedure for weight systems. By duality, the projector p : Afr → Afr gives

rise to a projector p∗ :Wfr →Wfr whose value on an element w ∈ Wfr
n is

defined by

w′(D) = p∗(w)(D) := w(p(D)) =
∑

J⊆[D]

w
(
(−Θ)n−|J | ·DJ

)
.

Obviously, w′(D) = 0 for any w and any chord diagram D with an isolated

chord. Hence the operator p∗ : w 7→ w′ is a projection of the space Ŵfr

onto its subspace Ŵ consisting of unframed weight systems.

The deframing operator looks especially nice for multiplicative weight
systems.

4.5.7. Exercise. Prove that for any number θ ∈ F the exponent eθI1 ∈ Ŵ
is a multiplicative weight system.

4.5.8. Lemma. Let θ = w(Θ) for a multiplicative weight system w. Then

its deframing is w′ = e−θI1 · w.

We leave the proof of this lemma to the reader as an exercise. The
lemma, together with the previous exercise, implies that the deframing of a
multiplicative weight system is again multiplicative.

4.6. Primitive elements in Afr

The algebra of chord diagrams Afr is commutative, cocommutative and
connected. Therefore, by the Milnor-Moore Theorem A.2.25, any element
of Afr is uniquely represented as a polynomial in basis primitive elements.
Let us denote the nth homogeneous component of the primitive subspace

by Pn = Afrn ∩ P(Afr) and find an explicit description of Pn for small n.

dim = 1. P1 = Afr1 is one-dimensional and spanned by .

dim = 2. Since

δ
( )

= ⊗ + 2 ⊗ + ⊗ ,

δ
( )

= ⊗ + 2 ⊗ + ⊗ ,

the element − is primitive. It constitutes a basis of P2.
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dim = 3. The coproducts of the 3 basis elements of Afr3 are

δ
( )

= ⊗ + 2 ⊗ + ⊗ + . . . ,

δ
( )

= ⊗ + ⊗ + 2 ⊗ + . . . ,

δ
( )

= ⊗ + 3 ⊗ + . . .

(Here the dots stand for the terms symmetric to the terms that are shown
explicitly.) Looking at these expressions, it is easy to check that the element

− 2 +

is the only, up to multiplication by a scalar, primitive element of Afr3 .

The exact dimensions of Pn are currently (2009) known up to n = 12 (the
last three values, corresponding to n = 10, 11, 12, were found by J. Kneissler
[Kn0]):

n 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 1 1 1 2 3 5 8 12 18 27 39 55

We shall discuss the sizes of the spaces Pn, An and Vn in more detail later
(see Sections 5.5 and 14.4).

If the dimensions of Pn were known for all n, then the dimensions of An
would also be known.

Example. Let us find the dimensions of Afrn , n 6 5, assuming that we
know the values of dimPn for n = 1, 2, 3, 4, 5, which are equal to 1, 1, 1, 2, 3,
respectively. Let pi be the basis element of Pi, i = 1, 2, 3 and denote the
bases of P4 and P5 as p41, p42 and p51, p52, p53, respectively. Nontrivial
monomials up to degree 5 that can be made out of these basis elements are:

Degree 2 monomials (1): p2
1.

Degree 3 monomials (2): p3
1, p1p2.

Degree 4 monomials (4): p4
1, p

2
1p2, p1p3, p

2
2.

Degree 5 monomials (7): p5
1, p

3
1p2, p

2
1p3, p1p

2
2, p1p41, p1p42, p2p3.

A basis of each Afrn can be made up of the primitive elements and
their products of the corresponding degree. For n = 0, 1, 2, 3, 4, 5 we get:

dimAfr0 = 1, dimAfr1 = 1, dimAfr2 = 1 + 1 = 2, dimAfr3 = 1 + 2 = 3,

dimAfr4 = 2 + 4 = 6, dimAfr5 = 3 + 7 = 10.
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The partial sums of this sequence give the dimensions of the spaces

of framed Vassiliev invariants: dimVfr0 = 1, dimVfr1 = 2, dimVfr2 = 4,

dimVfr3 = 7, dimVfr4 = 13, dimVfr5 = 23.

4.6.1. Exercise. Let pn be the sequence of dimensions of primitive spaces
in a Hopf algebra and an the sequence of dimensions of the entire algebra.
Prove the relation between the generating functions

1 + a1t+ a2t
2 + · · · = 1

(1− t)p1(1− t2)p2(1− t3)p3 . . . .

Note that primitive elements of Afr are represented by rather compli-
cated linear combinations of chord diagrams. A more concise and clear
representation can be obtained via connected closed diagrams, to be intro-
duced in the next chapter (Section 5.5).

4.7. Linear chord diagrams

The arguments of this chapter, applied to long knots (see 1.8.3), lead us
naturally to considering the space of linear chord diagrams, that is, diagrams
on an oriented line:

subject to the 4-term relations:

− = −

= − .

Let us temporarily denote the space of linear chord diagrams with n

chords modulo the 4-term relations by (Afrn )long. The space (Afr)long of
such chord diagrams of all degrees modulo the 4T relations is a bialgebra;
the product in (Afr)long can be defined simply by concatenating the oriented
lines.

If the line is closed into a circle, linear 4-term relations become circular

(that is, usual) 4-term relations; thus, we have a linear map (Afrn )long → Afrn .
This map is evidently onto, as one can find a preimage of any circular
chord diagram by cutting the circle at an arbitrary point. This preimage, in
general, depends on the place where the circle is cut, so it may appear that
this map has a non-trivial kernel. For example, the linear diagram shown
above closes up to the same diagram as the one drawn below:
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Remarkably, modulo 4-term relations, all the preimages of any circular

chord diagram are equal in (Afr3 )long (in particular, the two diagrams in

the above pictures give the same element of (Afr3 )long). This fact is proved
by exactly the same argument as the statement that the product of chord
diagrams is well-defined (Lemma 4.4.3); we leave it to the reader as an
exercise.

Summarizing, we have:

Proposition. Closing up the line into the circle gives rise to a vector space
isomorphism (Afr)long → Afr. This isomorphism is compatible with the
multiplication and comultiplication and thus defines an isomorphism of bial-
gebras.

A similar statement holds for diagrams modulo 4T and 1T relations.
Further, one can consider chord diagrams (and 4T relations) with chords
attached to an arbitrary one-dimensional oriented manifold — see Section
5.10.

4.8. Intersection graphs

4.8.1. Definition. ([CD1]) The intersection graph Γ(D) of a chord dia-
gram D is the graph whose vertices correspond to the chords of D and whose
edges are determined by the following rule: two vertices are connected by an
edge if and only if the corresponding chords intersect, and multiple edges are
not allowed. (Two chords, a and b, are said to intersect if their endpoints a1,
a2 and b1, b2 appear in the interlacing order a1, b1, a2, b2 along the circle.)

For example,

5

3

1

2

1

5

4

2

3

4 −→
5

1

2

3

4

The intersection graphs of chord diagrams are also called circle graphs
or interlacement graphs.

Note that not every graph can be represented as the intersection graph
of a chord diagram. For example, the following graphs are not intersection

graphs: , , .

4.8.2. Exercise. Prove that all graphs with no more than 5 vertices are
intersection graphs.
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On the other hand, distinct diagrams may have coinciding intersection
graphs. For example, there are three different diagrams

with the same intersection graph .

A complete characterization of those graphs that can be realized as in-
tersection graphs was given by A. Bouchet [Bou2].

With each chord diagram D we can associate an oriented surface ΣD by
attaching a disc to the circle of D and thickening the chords of D. Then
the chords determine a basis in H1(ΣD,Z2) as in the picture below. The
intersection matrix for this basis coincides with the adjacency matrix of ΓD.
Using the terminology of singularity theory we may say that the intersection
graph ΓD is the Dynkin diagram of the intersection form in H1(ΣD,Z2)
constructed for the basis of H1(ΣD,Z2).

D = ΣD = ΓD =

Intersection graphs contain a good deal of information about chord dia-
grams. In [CDL1] the following conjecture was stated.

4.8.3. Intersection graph conjecture. If D1 and D2 are two chord di-
agrams whose intersection graphs are equal, Γ(D1) = Γ(D2), then D1 = D2

as elements of Afr (that is, modulo four-term relations).

Although wrong in general (see Section 9.5.8), this assertion is true in
some particular situations:

(1) for all diagrams D1, D2 with up to 10 chords (a direct computer
check [CDL1] up to 8 chords and [Mu] for 9 and 10 chords);

(2) when Γ(D1) = Γ(D2) is a tree (see [CDL2]) or, more generally, D1,
D2 belong to the forest subalgebra (see [CDL3]);

(3) when Γ(D1) = Γ(D2) is a graph with a single loop (see [Mel1]);

(4) for weight systems w coming from standard representations of Lie
algebras glN or soN . This means that Γ(D1) = Γ(D2) implies w(D1) =
w(D2); see Chapter 6, proposition on page 175 and exercise 17 on page 192
of the same chapter;

(5) for the universal sl2 weight system and the weight system coming
from the standard representation of the Lie superalgebra gl(1|1) (see [ChL]).



118 4. Chord diagrams

In fact, the intersection graph conjecture can be refined to the following
theorem which covers items (4) and (5) above.

Theorem ([ChL]). The symbol of a Vassiliev invariant that does not dis-
tinguish mutant knots depends on the intersection graph only.

We postpone the discussion of mutant knots, the proof of this theorem
and its converse to Section 9.5.

4.8.4. Chord diagrams representing a given graph. To describe all
chord diagrams representing a given intersection graph we need the notion
of a share [CDL1, ChL]. Informally, a share of a chord diagram is a subset
of chords whose endpoints are separated into at most two parts by the
endpoints of the complementary chords. More formally,

Definition. A share is a part of a chord diagram consisting of two arcs of
the outer circle with the following property: each chord one of whose ends
belongs to these arcs has both ends on these arcs.

Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram is its
own share whose complement contains no chords.

Definition. A mutation of a chord diagram is another chord diagram
obtained by a flip of a share.

For example, three mutations of the share in the first chord diagram
above produce the following chord diagrams:

Obviously, mutations preserve the intersection graphs of chord diagrams.

Theorem. Two chord diagrams have the same intersection graph if and
only if they are related by a sequence of mutations.

This theorem is contained implicitly in papers [Bou1, GSH] where
chord diagrams are written as double occurrence words.
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Proof of the theorem. The proof uses Cunningham’s theory of graph de-
compositions [Cu].

A split of a (simple) graph Γ is a disjoint bipartition {V1, V2} of its set of
vertices V (Γ) such that each part contains at least 2 vertices, and with the
property that there are subsets W1 ⊆ V1, W2 ⊆ V2 such that all the edges
of Γ connecting V1 with V2 form the complete bipartite graph K(W1,W2)
with the parts W1 and W2. Thus for a split {V1, V2} the whole graph Γ can
be represented as a union of the induced subgraphs Γ(V1) and Γ(V2) linked
by a complete bipartite graph.

Another way to think about splits, which is sometimes more convenient
and which we shall use in the pictures below, is as follows. Consider two
graphs Γ1 and Γ2 each with a distinguished vertex v1 ∈ V (Γ1) and v2 ∈
V (Γ2), respectively, called markers. Construct the new graph

Γ = Γ1 ⊠(v1,v2) Γ2

whose set of vertices is V (Γ) = {V (Γ1)− v1} ∪ {V (Γ2)− v2}, and whose set
of edges is

E(Γ) = {(v′1, v′′1)∈E(Γ1) :v′1 6= v1 6= v′′1} ∪ {(v′2, v′′2)∈E(Γ2) :v′2 6= v2 6= v′′2}

∪ {(v′1, v′2) : (v′1, v1) ∈ E(Γ1) and (v2, v
′
2) ∈ E(Γ2)} .

Representation of Γ as Γ1 ⊠(v1,v2) Γ2 is called a decomposition of Γ, the
graphs Γ1 and Γ2 are called the components of the decomposition. The
partition {V (Γ1)− v1, V (Γ2)− v2} is a split of Γ. Graphs Γ1 and Γ2 might
be decomposed further giving a finer decomposition of the initial graph Γ.
Graphically, we represent a decomposition by pictures of its components
where the corresponding markers are connected by a dashed edge.

A prime graph is a graph with at least three vertices admitting no
splits. A decomposition of a graph is said to be canonical if the following
conditions are satisfied:

(i) each component is either a prime graph, or a complete graph Kn,
or a star Sn, which is the tree with a vertex, the center, adjacent
to n other vertices;

(ii) no two components that are complete graphs are neighbors, that
is, their markers are not connected by a dashed edge;

(iii) the markers of two components that are star graphs connected by
a dashed edge are either both centers or both not centers of their
components.

W. H. Cunningham proved [Cu, Theorem 3] that each graph with at
least six vertices possesses a unique canonical decomposition.
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Let us illustrate the notions introduced above by an example of canonical
decomposition of an intersection graph. We number the chords and the
corresponding vertices in our graphs, so that the unnumbered vertices are
the markers of the components.
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The canonical decomposition

The key observation in the proof of the theorem is that components of
the canonical decomposition of any intersection graph admit a unique repre-
sentation by chord diagrams. For a complete graph and star components,
this is obvious. For a prime component, this was proved by A. Bouchet
[Bou1, Statement 4.4] (see also [GSH, Section 6] for an algorithm finding
such a representation for a prime graph).

Now, in order to describe all chord diagrams with a given intersection
graph, we start with a component of its canonical decomposition. There is
only one way to realize the component by a chord diagram. We draw the
chord corresponding to the marker as a dashed chord and call it the marked
chord. This chord indicates the places where we must cut the circle removing
the marked chord together with small arcs containing its endpoints. As a
result we obtain a chord diagram on two arcs. Repeating the same procedure
with the next component of the canonical decomposition, we get another
chord diagram on two arcs. We have to glue the arcs of these two diagrams
together in the alternating order. There are four possibilities to do this,
and they differ by mutations of the share corresponding to one of the two
components. This completes the proof of the theorem. �

To illustrate the last stage of the proof consider our standard example
and take the star 2-3-4 component first and then the triangle component.
We get
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.

Because of the symmetry, the four ways of glueing these diagrams produce
only two distinct chord diagrams with a marked chord:

CUT
and

CUT
.
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Repeating the same procedure with the marked chord for the last 1-6 com-
ponent of the canonical decomposition, we get

��
��
��
��

6

1 �
�
�
� CUT

��
��
��
��

.

Glueing this diagram into the previous two in all possible ways we get the
four mutant chord diagrams from page 118.

4.8.5. 2-term relations and the genus of a diagram. A 2-term (or
endpoint sliding) relation for chord diagrams has the form

= ,

= .

The 4-term relations are evidently a consequence of the 2-term relations;
therefore, any function on chord diagrams that satisfies 2-term relations is a
weight system. An example of such a weight system is the genus of a chord
diagram defined as follows.

Replace the outer circle of the chord diagram and all its chords by nar-
row untwisted bands — this yields an orientable surface with boundary.
Attaching a disk to each boundary component gives a closed orientable sur-
face. This is the same as attaching disks to the boundary components of the
surface ΣD from page 117. Its genus is by definition the genus of the chord
diagram. The genus can be calculated from the number of boundary com-
ponents using Euler characteristic. Indeed, the Euler characteristic of the
surface with boundary obtained by above described procedure from a chord
diagram of degree n is equal to −n. If this surface has c boundary compo-
nents and genus g, then we have −n = 2 − 2g − c while g = 1 + (n − c)/2.
For example, the two chord diagrams of degree 2 have genera 0 and 1, be-
cause the number of connected components of the boundary is 4 and 2,
respectively, as one can see in the following picture:

The genus of a chord diagram satisfies 2-term relations, since sliding
an endpoint of a chord along another adjacent chord does not change the
topological type of the corresponding surface with boundary.

An interesting way to compute the genus from the intersection graph of
the chord diagram was found by Moran (see [Mor]). Moran’s theorem states
that the genus of a chord diagram is half the rank of the adjacency matrix
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over Z2 of the intersection graph. This theorem can be proved transforming
a given chord diagram into the canonical form using the following exercise.

4.8.6. Exercise. A caravan of m1 “one-humped camels” and m2 “two-
humped camels is the product of m1 diagrams with 2 crossing chords and
m2 diagrams with one chord:

Show that any chord diagram is equivalent, modulo 2-term relations, to a
caravan. Show that the caravans form a basis in the vector space of chord
diagrams modulo 2-term relations.

The algebra generated by caravans is thus a quotient algebra of the
algebra of chord diagrams.

Exercises

(1) A short chord is a chord whose endpoints are adjacent, that is, one of the
arcs that it bounds contains no endpoints of other chords. In particular,
short chords are isolated. Prove that the linear span of all diagrams
with a short chord and all four-term relation contains all diagrams with
an isolated chord. This means that the restricted one-term relations
(only for diagrams with a short chord) imply general one-term relations
provided that the four-term relations hold.

(2) Find the number of different chord diagrams of order n with n isolated
chords. Prove that all of them are equal to each other modulo the four-
term relations.

(3) Using Table 4.4.2.1 on page 107, find the space of unframed weight
systems W4.

Answer. The basis weight systems are:

1 0 -1 -1 0 -1 -2

0 1 1 2 0 1 3

0 0 0 0 1 1 1

The table shows that the three diagrams , and form

a basis in the space A4.
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(4) ∗ Is it true that any chord diagram of order 13 is equivalent to its mirror
image modulo 4-term relations?

(5) Prove that the deframing operator ′ (Section 4.5.6) is a homomorphism
of algebras: (w1 · w2)

′ = w′1 · w′2.
(6) Give a proof of Lemma 4.5.8 on page 113.

(7) Find a basis in the primitive space P4.
Answer. A possible basis consists of the elements d4

6−d4
7 and d4

2−2d4
7

from the table on page 107.

(8) Prove that for any primitive element p of degree > 1, w(p) = w′(p)
where w′ is the deframing of a weight system w.

(9) Prove that the symbol of a primitive Vassiliev invariant is a primitive
weight system.

(10) Let Θ be the chord diagram with a single chord. By a direct computa-

tion, check that exp(αΘ) :=
∑∞

n=0
αnΘn

n! ∈ Âfr is a group-like element
in the completed Hopf algebra of chord diagrams.

(11) (a) Prove that no chord diagram is equal to 0 modulo 4-term relations.
(b) Let D be a chord diagram without isolated chords. Prove thatD 6= 0
modulo 1- and 4-term relations.

(12) Let c(D) be the number of chord intersections in a chord diagram D.
Check that c is a weight system. Find its deframing c′.

(13) The generalized 4-term relations.
(a) Prove the following relation:

=

Here the horizontal line is a fragment of the circle of the diagram, while
the grey region denotes an arbitrary conglomeration of chords.
(b) Prove the following relation:

+ = +

or, in circular form: + = + .

(14) Using the generalized 4-term relation prove the following identity:

=
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(15) Prove the proposition of the Section 4.7.

(16) Check that for the chord diagram below, the intersection graph and its
canonical decomposition are as shown:
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Canonical decomposition

(17) ([LZ, example 6.4.11]) Prove that esymb(c2)(D) is equal to the number of
perfect matchings of the intersection graph Γ(D). (A perfect matching
in a graph is a set of disjoint edges covering all the vertices of the graph.)
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Chapter 5

Jacobi diagrams

In the previous chapter we saw that the study of Vassiliev knot invariants, at
least complex-valued, is largely reduced to the study of the algebra of chord
diagrams. Here we introduce two different types of diagrams representing
elements of this algebra, namely closed Jacobi diagrams and open Jacobi
diagrams. These diagrams provide better understanding of the primitive
space PA and bridge the way to the applications of the Lie algebras in the
theory of Vassiliev invariants, see Chapter 6 and Section 11.4.

The name Jacobi diagrams is justified by a close resemblance of the basic
relations imposed on Jacobi diagrams (STU and IHX) to the Jacobi identity
for Lie algebras.

5.1. Closed Jacobi diagrams

5.1.1. Definition. A closed Jacobi diagram (or, simply, a closed diagram)
is a connected trivalent graph with a distinguished embedded oriented cycle,
called Wilson loop, and a fixed cyclic order of half-edges at each vertex not
on the Wilson loop. Half the number of the vertices of a closed diagram
is called the degree, or order, of the diagram. This number is always an
integer.

Remark. Some authors (see, for instance, [HM]) also include the cyclic
order of half-edges at the vertices on the Wilson loop into the structure of
a closed Jacobi diagram; this leads to the same theory.

Remark. A Jacobi diagram is allowed to have multiple edges and hanging
loops, that is, edges with both ends at the same vertex. It is the possible
presence of hanging loops that requires introducing the cyclic order on half-
edges rather than edges.

127
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Example. Here is a closed diagram of degree 4:

The orientation of the Wilson loop and the cyclic orders of half-edges at
the internal vertices are indicated by arrows. In the pictures below, we shall
always draw the diagram inside its Wilson loop, which will be assumed to be
oriented counterclockwise unless explicitly specified otherwise. Inner vertices
will also be assumed to be oriented counterclockwise. (This convention is
referred to as the blackboard orientation.) Note that the intersection of two
edges in the centre of the diagram above is not actually a vertex.

Chord diagrams are closed Jacobi diagrams all of whose vertices lie on
the Wilson loop.

Other terms used for closed Jacobi diagrams in the literature include
Chinese character diagrams [BN1], circle diagrams [Kn0], round diagrams
[Wil1] and Feynman diagrams [KSA].

5.1.2. Definition. The vector space of closed diagrams Cn is the space
spanned by all closed diagrams of degree n modulo the STU relations:

S

=

T

−
U

.

The three diagrams S, T and U must be identical outside the shown frag-
ment. We write C for the direct sum of the spaces Cn for all n > 0.

The two diagrams T and U are referred to as the resolutions of the dia-
gram S. The choice of the plus and minus signs in front of the two resolutions
in the right-hand side of the STU relation, depends on the orientation for the
Wilson loop and on the cyclic order of the three edges meeting at the inter-
nal vertex of the S-term. Should we reverse one of them, say the orientation
of the Wilson loop, the signs of the T- and U-terms change. Indeed,

=
STU
= − = − .

This remark will be important in Section 5.5.3 where we discuss the problem
of detecting knot orientation. One may think of the choice of the direction for
the Wilson loop in an STU relation as a choice of the cyclic order “forward-
sideways-backwards” at the vertex lying on the Wilson loop. In these terms,
the signs in the STU relation depend on the cyclic orders at both vertices
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of the S-term, the relation above may be thought of as a consequence of
the antisymmetry relation AS (see 5.2.2) for the vertex on the Wilson loop,
and the STU relation itself can be regarded as a particular case of the IHX
relation (see 5.2.3).

5.1.3. Examples. There exist two different closed diagrams of order 1:

, , one of which vanishes due to the STU relation:

= − = 0 .

There are ten closed diagrams of degree 2:

, , , ,

, , , , , .

The last six diagrams are zero. This is easy to deduce from the STU re-
lations, but the most convenient way of seeing it is by using the AS relations
which follow from the STU relations (see Lemma 5.2.5 below).

Furthermore, there are at least two relations among the first four dia-
grams:

= − ;

= − = 2 .

It follows that dim C2 6 2. Note that the first of the above equalities

gives a concise representation, , for the basis primitive element of

degree 2.

5.1.4. Exercise. Using the STU relations, rewrite the basis primitive ele-
ment of order 3 in a concise way.

Answer.

− 2 + = .
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We have already mentioned that chord diagrams are a particular case
of closed diagrams. Using the STU relations, one can rewrite any closed
diagram as a linear combination of chord diagrams. (Examples were given
just above.)

A vertex of a closed diagram that lies on the Wilson loop is called ex-
ternal; otherwise it is called internal. External vertices are also called legs.
There is an increasing filtration on the space Cn by subspaces Cmn spanned
by diagrams with at most m external vertices:

C1
n ⊂ C2

n ⊂ ... ⊂ C2n
n .

5.1.5. Exercise. Prove that C1
n = 0.

Hint. In a diagram with only two legs one of the legs can go all around
the circle and change places with the second.

5.2. IHX and AS relations

5.2.1. Lemma. The STU relations imply the 4T relations for chord dia-
grams.

Proof. Indeed, writing the four-term relation in the form

− = −

and applying the STU relations to both parts of this equation, we get the
same closed diagrams. �

5.2.2. Definition. An AS (=antisymmetry) relation is:

= − .

In other words, a diagram changes sign when the cyclic order of three edges
at a trivalent vertex is reversed.

5.2.3. Definition. An IHX relation is:

= − .

As usual, the unfinished fragments of the pictures denote graphs that are
identical (and arbitrary) everywhere but in this explicitly shown fragment.
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5.2.4. Exercise. Check that the three terms of the IHX relation “have
equal rights”. For example, an H turned 90 degrees looks like an I; write an
IHX relation starting from that I and check that it is the same as the initial
one. Also, a portion of an X looks like an H; write down an IHX relation
with that H and check that it is again the same. The IHX relation is in a
sense unique; this is discussed in Exercise 15 on page 165.

5.2.5. Lemma. The STU relations imply the AS relations for the internal
vertices of a closed Jacobi diagram.

Proof. Induction on the distance (in edges) of the vertex in question from
the Wilson loop.

Induction base. If the vertex is adjacent to an external vertex, then the
assertion follows by one application of the STU relation:

= −

= − .

Induction step. Take two closed diagrams f1 and f2 that differ only by
a cyclic order of half-edges at one internal vertex v. Apply STU relations to
both diagrams in the same way so that v gets closer to the Wilson loop.

�

5.2.6. Lemma. The STU relations imply the IHX relations for the internal
edges of a closed diagram.

Proof. The argument is similar to the one used in the previous proof. We
take an IHX relation somewhere inside a closed diagram and, applying the
same sequence of STU moves to each of the three diagrams, move the IHX
fragment closer to the Wilson loop. The proof of the induction base is shown
in these pictures:

= − = − − + ,

= − = − − + ,

= − = − − + .
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Therefore,

= + .

�

5.2.7. Other forms of the IHX relation. The IHX relation can be drawn
in several forms, for example:

• (rotationally symmetric form)

+ + = 0 .

• (Jacobi form)

= + .

• (Kirchhoff form)

= + .

5.2.8. Exercise. By turning your head and pulling the strings of the dia-
grams, check that all these forms are equivalent.

The Jacobi form of the IHX relation can be interpreted as follows. Sup-
pose that to the upper 3 endpoints of each diagram we assign 3 elements of
a Lie algebra, x, y and z, while every trivalent vertex, traversed downwards,
takes the pair of “incoming” elements into their commutator:

x y

[x, y]

.

Then the IHX relation means that

[x, [y, z]] = [[x, y], z] + [y, [x, z]],

which is the classical Jacobi identity. This observation, properly developed,
leads to the construction of Lie algebra weight systems — see Chapter 6.

The Kirchhoff presentation is reminiscent of the Kirchhoff’s law in elec-

trotechnics. Let us view the portion of the given graph as a piece

of electrical circuit, and the variable vertex as an “electron” e with a “tail”
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whose endpoint is fixed. Suppose that the electron moves towards a node of
the circuit:

e

“tail”

Then the IHX relation expresses the well-known Kirchhoff rule: the sum
of currents entering a node is equal to the sum of currents going out of it.
This electrotechnical analogy is very useful, for instance, in the proof of the
generalized IHX relation below.

The IHX relation can be generalized as follows:

5.2.9. Lemma. (Kirchhoff law, or generalized IHX relation). The fol-
lowing identity holds:

1
2···
k

=
k∑

i=1

1···
i···
k

,

where the grey box is an arbitrary subgraph which has only 3-valent vertices.

Proof. Fix a horizontal line in the plane and consider an immersion of the
given graph into the plane with smooth edges, generic with respect to the
projection onto this line. More precisely, we assume that (1) the projections
of all vertices onto the horizontal line are distinct, (2) when restricted to an
arbitrary edge, the projection has only non-degenerate critical points, and
(3) the images of all critical points are distinct and different from the images
of vertices.

Bifurcation points are the images of vertices and critical points of the
projection. Imagine a vertical line that moves from left to right; for every
position of this line take the sum of all diagrams obtained by attaching the
loose end to one of the intersection points. This sum does not depend on
the position of the vertical line, because it does not change when the line
crosses one bifurcation point.

Indeed, bifurcation points fall into six categories:

1) 2) 3) 4) 5) 6) .

In the first two cases the assertion follows from the IHX relation, in cases
3 and 4 — from the AS relation. Cases 5 and 6 by a deformation of the
immersion are reduced to a combination of the previous cases (also, they
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can be dealt with by one application of the IHX relation in the symmetric
form).

�

Example.

= +

= + +

= = +

Remark. The difference between inputs and outputs in the equation of
Lemma 5.2.9 is purely notational. We may bend the left-hand leg to the right
and move the corresponding term to the right-hand side of the equation,
changing its sign because of the antisymmetry relation, and thus obtain:

k+1∑

i=1

1

i

k+1

= 0 .

Or we may prefer to split the legs into two arbitrary subsets, putting
one part on the left and another on the right. Then:

k∑

i=1

1

i

k

=

l∑

i=1

1

i

l

.

5.2.10. A corollary of the AS relation. A simple corollary of the anti-
symmetry relation in the space C is that any diagramD containing a hanging
loop is equal to zero. Indeed, there is an automorphism of the diagram
that changes the two half-edges of the small circle and thus takes D to −D,
which implies that D = −D and D = 0. This observation also applies to
the case when the small circle has other vertices on it and contains a sub-
diagram, symmetric with respect to the vertical axis. In fact, the assertion
is true even if the diagram inside the circle is not symmetric at all. This is
a generalization of Exercise 5.1.5, but cannot be proved by the same argu-
ment. In Section 5.6 we shall prove a similar statement (Lemma 5.6) about
open Jacobi diagrams; that proof also applies here.
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5.3. Isomorphism Afr ≃ C
Let An be the set of chord diagrams of order n and Cn the set of closed
diagrams of the same order. We have a natural inclusion λ : An → Cn.

5.3.1. Theorem. The inclusion λ gives rise to an isomorphism of vector

spaces λ : Afrn → Cn.

Proof. We must check:

(A) that λ leads to a well-defined linear map from Afrn to Cn;
(B) that this map is a linear isomorphism.

Part (A) is easy. Indeed, Afrn = 〈An〉/〈4T〉, Cn = 〈Cn〉/〈STU〉, where
angular brackets denote linear span. Lemma 5.2.1 implies that λ(〈4T〉) ⊆
〈STU〉, therefore the map of the quotient spaces is well-defined.

(B) We shall construct a linear map ρ : Cn → Afrn and prove that it is
inverse to λ.

As we mentioned before, any closed diagram by the iterative use of STU
relations can be transformed into a combination of chord diagrams. This
gives rise to a map ρ : Cn → 〈An〉 which is, however, multivalued, since
the result may depend on the specific sequence of relations used. Here is an
example of such a situation (the place where the STU relation is applied is
marked by an asterisk):

* 7→ − = 2 7→ 2
(

− 2 +
)
,

*
7→ − = 2 * − 2 *

7→ 2
(

− − +
)
.

However, the combination ρ(C) is well-defined as an element of Afrn , that
is, modulo the 4T relations. The proof of this fact proceeds by induction on
the number k of internal vertices in the diagram C.

If k = 1, then the diagram C consists of one tripod and several chords
and may look something like this:
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There are 3 ways to resolve the internal triple point by an STU relation,

and the fact that the results are the same in Afrn is exactly the definition of
the 4T relation.

Suppose that ρ is well-defined on closed diagrams with < k internal
vertices. Pick a diagram in C2n−k

n . The process of eliminating the triple
points starts with a pair of neighboring external vertices. Let us prove,
modulo the inductive hypothesis, that if we change the order of these two
points, the final result will remain the same.

There are 3 cases to consider: the two chosen points on the Wilson loop
are (1) adjacent to a common internal vertex, (2) adjacent to neighboring
internal vertices, (3) adjacent to non-neighboring internal vertices. The
proof for the cases (1) and (2) is shown in the pictures that follow.

(1)

∗
7−→ − ,

∗
7−→ − ,

The position of an isolated chord does not matter, because, as we know, the
multiplication in Afr is well-defined.

(2)

∗
7−→

∗
−

∗

7−→ − − + ,

∗
7−→

∗
−
∗

7−→ − − + .

After the first resolution, we can choose the sequence of further resolutions
arbitrarily, by the inductive hypothesis.

Exercise. Give a similar proof for the case (3).

We thus have a well-defined linear map ρ : Cn → Afrn . The fact that it
is two-sided inverse to λ is clear. �
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5.4. Product and coproduct in C
Now we shall define a bialgebra structure in the space C.

5.4.1. Definition. The product of two closed diagrams is defined in the
same way as for chord diagrams: the two Wilson loops are cut at arbi-
trary places and then glued together into one loop, in agreement with the
orientations:

· = .

5.4.2. Proposition. This multiplication is well-defined, that is, it does not
depend on the place of cuts.

Proof. The isomorphism Afr ∼= C constructed in Theorem 5.3.1 identifies
the product in Afr with the above product in C.

Since the multiplication is well-defined in Afr, it is also well-defined in
C. �

To define the coproduct in the space C, we need the following definition:

5.4.3. Definition. The internal graph of a closed diagram is the graph
obtained by stripping off the Wilson loop. A closed diagram is said to be
connected if its internal graph is connected. The connected components of
a closed diagram are defined as the connected components of its internal
graph.

In the sense of this definition, any chord diagram of order n consists of
n connected components — the maximal possible number.

Now, the construction of the coproduct proceeds in the same way as for
chord diagrams.

5.4.4. Definition. Let D be a closed diagram and [D] the set of its con-
nected components. For any subset J ⊆ [D] denote by DJ the closed dia-
gram with only those components that belong to J and by DJ the “comple-

mentary” diagram (J := [D] \ J). We set

δ(D) :=
∑

J⊆[D]

DJ ⊗DJ .

Example.

δ
( )

= 1⊗ + ⊗ + ⊗ + ⊗1.
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We know that the algebra C, as a vector space, is spanned by chord
diagrams. For chord diagrams, algebraic operations defined in Afr and C,
tautologically coincide. It follows that the coproduct in C is compatible
with its product and that the isomorphisms λ, ρ are, in fact, isomorphisms
of bialgebras.

5.5. Primitive subspace of C
By definition, connected closed diagrams are primitive with respect to the
coproduct δ. It may sound surprising that the converse is also true:

5.5.1. Theorem. [BN1] The primitive space P of the bialgebra C coincides
with the linear span of connected closed diagrams.

Note the contrast of this straightforward characterization of the primi-
tive space in C with the case of chord diagrams.

Proof. If the primitive space P were bigger than the span of connected
closed diagrams, then, according to Theorem A.2.25, it would contain an
element that cannot be represented as a polynomial in connected closed
diagrams. Therefore, to prove the theorem it is enough to show that every
closed diagram is a polynomial in connected diagrams. This can be done
by induction on the number of legs of a closed diagram C. Suppose that
the diagram C consists of several connected components (see 5.4.3). The
STU relation tells us that we can freely interchange the legs of C modulo
closed diagrams with fewer legs. Using such permutations we can separate
the connected components of C. This means that modulo closed diagrams
with fewer legs C is equal to the product of its connected components. �

5.5.2. Filtration of Pn. The primitive space Pn cannot be graded by the
number of legs k, because the STU relation is not homogeneous with respect
to k. However, it can be filtered :

0 = P1
n ⊆ P2

n ⊆ P3
n ⊆ · · · ⊆ Pn+1

n = Pn .

where Pkn is the subspace of Pn generated by connected closed diagrams
with at most k legs.

The connectedness of a closed diagram with 2n vertices implies that the
number of its legs cannot be bigger than n + 1. That is why the filtration
ends at the term Pn+1

n .

The following facts about the filtration are known.

• [ChV] The filtration stabilizes even sooner. Namely, Pnn = Pn
for even n, and Pn−1

n = Pn for odd n. Moreover, for even n the
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quotient space Pnn/Pn−1
n has dimension one and is generated by the

wheel wn with n spokes:

wn =

n spokes

This fact is related to the Melvin-Morton conjecture (see Section
14.1 and Exercise 13).

• [Da1] The quotient space Pn−1
n /Pn−2

n has dimension [n/6] + 1 for
odd n, and 0 for even n.

• [Da2] For even n

dim(Pn−2
n /Pn−3

n ) =

[
(n− 2)2 + 12(n− 2)

48

]
+ 1 .

• For small degrees the dimensions of the quotient spaces Pkn/Pk−1
n

were calculated by J. Kneissler [Kn0] (empty entries in the table
are zeroes):

c
cn
k 1 2 3 4 5 6 7 8 9 10 11 12 dimPn

1 1 1

2 1 1

3 1 1

4 1 1 2

5 2 1 3

6 2 2 1 5

7 3 3 2 8

8 4 4 3 1 12

9 5 6 5 2 18

10 6 8 8 4 1 27

11 8 10 11 8 2 39

12 9 13 15 12 5 1 55

5.5.3. Detecting the knot orientation. One may notice that in the ta-
ble above all entries with odd k vanish. This means that any connected
closed diagram with an odd number of legs is equal to a suitable linear
combination of diagrams with fewer legs. This observation is closely related
to the problem of distinguishing knot orientation by Vassiliev invariants.
The existence of the universal Vassiliev invariant given by the Kontsevich
integral reduces the problem of detecting the knot orientation to a purely
combinatorial problem. Namely, Vassiliev invariants do not distinguish the
orientation of knots if and only if every chord diagram is equal to itself with
the reversed orientation of the Wilson loop, modulo the 4T relations (see
the Corollary in 9.3). Denote the operation of reversing the orientation by
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τ ; its action on a chord diagram D is equivalent to a mirror reflection of
the diagram as a planar picture, and the question is whether D = τ(D) in
Afr. The followng theorem translates this fact into the language of primitive
subspaces.

Theorem. Vassiliev invariants do not distinguish the orientation of knots
if and only if Pkn = Pk−1

n for any odd k and arbitrary n.

To prove the Theorem we need to reformulate the question whether
D = τ(D) in terms of closed diagrams. Reversing the orientation of the
Wilson loop on closed diagrams should be done with some caution, see the
discussion in 5.1.2 on page 128). The correct way of doing it is carrying the
operation τ from chord diagrams to closed diagrams by the isomorphism
λ : Afr → C; then we have the following assertion:

Lemma. Let P = P ′ be a closed diagram with k external vertices.

Then

τ(P ) = (−1)k P ′ .

Proof. Represent P as a linear combination of chord diagrams using STU
relations, and then reverse the orientation of the Wilson loop of all chord
diagrams obtained. After that, convert the resulting linear combination back
to a closed diagram. Each application of the STU relation multiplies the
result by −1 because of the reversed Wilson loop (see page 128). In total,
we have to perform the STU relation 2n− k times, where n is the degree of
P . Therefore, the result gets multiplied by (−1)2n−k = (−1)k. �

In the particular case k = 1 the Lemma asserts that P1
n = 0 for all n —

this fact appeared earlier as Exercise 5.1.5.

The operation τ : C → C is, in fact, an algebra automorphism, τ(C1 ·
C2) = τ(C1) · τ(C2). Therefore, to check the equality τ = idC it is enough
to check it on the primitive subspace, that is, determine whether P = τ(P )
for every connected closed diagram P .

Corollary of the Lemma. Let P ∈ Pk =
∞⊕
n=1
Pkn be a connected closed

diagram with k legs. Then τ(P ) ≡ (−1)kP mod Pk−1.
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Proof of the Corollary. Rotating the Wilson loop in 3-space by 180◦

about the vertical axis, we get:

τ(P ) = (−1)k P ′ = (−1)k P ′

.

The STU relations allow us to permute the legs modulo diagrams with
fewer number of legs. Applying this procedure to the last diagram we can
straighten out all legs and get (−1)kP . �

Proof of the Theorem. Suppose that the Vassiliev invariants do not
distinguish the orientation of knots. Then τ(P ) = P for every connected
closed diagram P . In particular, for a diagram P with an odd number of legs
k we have P ≡ −P mod Pk−1. Hence, 2P ≡ 0 mod Pk−1, which means
that P is equal to a linear combination of diagrams with fewer legs, and
therefore dim(Pkn/Pk−1

n ) = 0.

Conversely, suppose that Vassiliev invariants do distinguish the orien-
tation. Then there is a connected closed diagram P such that τ(P ) 6= P .
Choose such P with the smallest possible number of legs k. Let us show
that k cannot be even. Consider X = P −τ(P ) 6= 0. Since τ is an involution
τ(X) = −X. But, in the case of even k, the non-zero element X has fewer
legs than k, and τ(X) = −X 6= X, so k cannot be minimal. Therefore, the
minimal such k is odd, and dim(Pkn/Pk−1

n ) 6= 0. �

5.5.4. Exercise. Check that, for invariants of fixed degree, the theorem
can be specialized as follows. Vassiliev invariants of degree 6 n do not
distinguish the orientation of knots if and only if Pkm = Pk−1

m for any odd k
and arbitrary m 6 n.

5.5.5. Exercise. Similarly to the filtration in the primitive space P, one can
introduce the leg filtration in the whole space C. Prove the following version
of the above theorem: Vassiliev invariants of degree n do not distinguish the
orientation of knots if and only if Ckn = Ck−1

n for any odd k and arbitrary n.

5.6. Open Jacobi diagrams

The subject of this section is the combinatorial bialgebra B which is iso-
morphic to the bialgebras Afr and C as a vector space and as a coalgebra,
but has a different natural multiplication. This leads to the remarkable fact
that in the vector space Afr ≃ C ≃ B there are two multiplications both
compatible with one and the same coproduct.

5.6.1. Definition. An open Jacobi diagram is a graph with 1- and 3-valent
vertices, cyclic order of (half-)edges at every 3-valent vertex and with at
least one 1-valent vertex in every connected component.
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An open diagram is not required to be connected. It may have loops
and multiple edges. We shall see later that, modulo the natural relations
any diagram with a loop vanishes. However, it is important to include the
diagrams with loops in the definition, because the loops may appear during
natural operations on open diagrams, and it is exactly because of this fact
that we introduce the cyclic order on half-edges, not on whole edges.

The total number of vertices of an open diagram is even. Half of this
number is called the degree (or order) of an open diagram. We denote the
set of all open diagrams of degree n by Bn. The univalent vertices will
sometimes be referred to as legs.

In the literature, open diagrams are also referred to as 1-3-valent dia-
grams, Jacobi diagrams, web diagrams and Chinese characters.

Definition. An isomorphism between two open diagrams is a one-to-one
correspondence between their respective sets of vertices and half-edges that
preserves the vertex-edge adjacency and the cyclic order of half-edges at
every vertex.

Example. Below is the complete list of open diagrams of degree 1 and 2,
up to isomorphism just introduced.

B1 = { , }

B2 =
{

, , , , , ,

, ,
}

Most of the elements listed above will be of no importance to us, as they
are killed by the following definition.

5.6.2. Definition. The space of open diagrams of degree n is the quotient
space

Bn := 〈Bn〉/〈AS, IHX〉,
where 〈Bn〉 is the vector space formally generated by all open diagrams of
degree n and 〈AS, IHX〉 stands for the subspace spanned by all AS and IHX
relations (see 5.2.2, 5.2.3). By definition, B0 is one-dimensional, spanned by

the empty diagram, and B :=
∞⊕
n=0
Bn.

Just as in the case of closed diagrams (Section 5.2.10), the AS relation
immediately implies that any open diagram with a loop ( ) vanishes in B.
Let us give a most general statement of this observation — valid, in fact,
both for open and for closed Jacobi diagrams.
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Definition. An anti-automorphism of a Jacobi diagram b ∈ Bn is a graph
automorphism of b such that the cyclic order of half-edges is reversed in an
odd number of vertices.

5.6.3. Lemma. If a diagram b ∈ Bn admits an anti-automorphism, then
b = 0 in the vector space B.

Proof. Indeed, it follows from the definitions that in this case b = −b. �

Example.

= 0 .

Exercise. Show that dimB1 = 1, dimB2 = 2.

The relations AS and IHX imply the generalized IHX relation, or Kirch-
hoff law (Lemma 5.2.9) and many other interesting identities among the
elements of the space B. Some of them are proved in the next chapter (Sec-
tion 7.2.5) in the context of the algebra Γ. Here is one more assertion that
makes sense only in B, as its formulation refers to univalent vertices (legs).

Lemma. If b ∈ B is a diagram with an odd number of legs, all of which
are attached to one and the same edge, then b = 0 modulo AS and IHX
relations.

Example.

= 0 .

Note that in this example the diagram does not have an anti-automorphism,
so the previous lemma does not apply.

Proof. Any diagram satisfying the premises of the lemma can be put into
the form on the left of the next picture. Then by the generalized IHX
relation it is equal to the diagram on the right which obviously possesses an
anti-automorphism and therefore is equal to zero:

=

where the grey region is an arbitrary subdiagram. �

In particular, any diagram with exactly one leg vanishes in B. This is
an exact counterpart of the corresponding property of closed diagrams (see
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Exercise 5.1.5); both facts are, furthermore, equivalent to each other in view
of the isomorphism C ∼= B that we shall speak about later (in Section 5.7).

Conjecture. Any diagram with an odd number of legs is 0 in B.

This important conjecture is equivalent to the conjecture that Vassiliev
invariants do not distinguish the orientation of knots (see Section 5.8.3).

Relations AS and IHX, unlike STU, preserve the separation of vertices
into 1- and 3-valent. Therefore, the space B has a much finer grading than
Afr. Apart from the main grading by half the number of vertices, indicated
by the subscript in B, it also has a grading by the number of univalent
vertices

B =
⊕

n

⊕

k

Bkn,

indicated by the superscript in B, so that Bkn is the subspace spanned by all
diagrams with k legs and 2n vertices in total.

For disconnected diagrams the second grading can, in turn, be refined
to a multigrading by the number of legs in each connected component of the
diagram:

B =
⊕

n

⊕

k16...6km

Bk1,...,km
n .

Yet another important grading in the space B is the grading by the
number of loops in a diagram, that is, by its first Betti number. In the case
of connected diagrams, we have a decomposition:

B =
⊕

n

⊕

k

⊕

l

lBkn,

The abundance of gradings makes the work with the space B more con-
venient than with C, although both are isomorphic, as we shall soon see.

5.6.4. The bialgebra structure on B. Both the product and the coprod-
uct in the vector space B are defined in a rather straightforward way. We
first define the product and coproduct on diagrams, then extend the oper-
ations by linearity to the free vector space spanned by the diagrams, and
then note that they are compatible with the AS and IHX relations and thus
descend to the quotient space B.

5.6.5. Definition. The product of two open diagrams is their disjoint
union.

Example. · = .

5.6.6. Definition. Let D be an open diagram and [D] — the set of its
connected components. For a subset J ⊆ [D], denote by DJ the union of
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the components that belong to J and by DJ — the union of the components
that do not belong to J . We set

δ(D) :=
∑

J⊆[D]

DJ ⊗DJ .

Example.

δ
( )

= 1⊗ + ⊗ + ⊗ + ⊗ 1,

As the relations in B do not intermingle different connected components
of a diagram, the product of an AS or IHX combination of diagrams by an
arbitrary open diagram belongs to the linear span of the relations of the
same types. Also, the coproduct of any AS or IHX relation vanishes modulo
these relations. Therefore, we have well-defined algebraic operations in the
space B, and they are evidently compatible with each other. The space B
thus becomes a graded bialgebra.

5.7. Linear isomorphism B ≃ C
In this section we construct a linear isomorphism between vector spaces Bn
and Cn. The question whether it preserves multiplication will be discussed
later (Section 5.8). Our exposition follows [BN1], with some details omitted,
but some examples added.

To convert an open diagram into a closed diagram, we join all of its
univalent vertices by a Wilson loop. Fix k distinct points on the circle.
For an open diagram with k legs D ∈ Bk

n there are k! ways of glueing its
legs to the Wilson loop at these k points, and we set χ(D) to be equal to
the arithmetic mean of all the resulting closed diagrams. Thus we get the
symmetrization map

χ : B→ C.
For example,

χ
( )

=
1

24

(
+ + + + +

+ + + + + +

+ + + + + +

+ + + + + +

)
.
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Scrutinizing these pictures, one can see that 16 out of 24 summands are
equivalent to the first diagram, while the remaining 8 are equivalent to the
second one. Therefore,

χ( ) =
1

3
+

2

3
.

Exercise. Express this element via chord diagrams, using the isomorphism
C ≃ Afr.

Answer: − 10

3
+

4

3
.

5.7.1. Theorem. The symmetrization map χ : B→ C descends to a linear
map χ : B → C, which is a graded isomorphism between the vector spaces B
and C.

The theorem consists of two parts:

• Easy part: χ is well-defined.

• Difficult part: χ is bijective.

The proof of bijectivity of χ is difficult because not every closed diagram
can be obtained by a symmetrization of an open diagram. For example, the

diagram is not a symmetrization of any open diagram, even though

it looks very much symmetric. Notice that symmetrizing the internal graph
of this diagram we get 0.

Easy part of the theorem. To prove the easy part, we must show
that the AS and IHX combinations of open diagrams go to 0 in the space
C. This follows from lemmas 5.2.5 and 5.2.6.

Difficult part of the theorem. To prove the difficult part, we con-
struct a linear map τ from C to B, inverse to χ. This will be done inductively
by the number of legs of the diagrams. We shall write τk for the restriction
of τ to the subspace spanned by diagrams with at most k legs.

There is only one way to attach the only leg of an open diagram to the
Wilson loop. Therefore, we can define τ1 on a closed diagram C with one
leg as the internal graph of C. (In fact, both open and closed diagrams with
one leg are all zero in B and C respectively, see Exercise 5.1.5 and Lemma
5.6). For diagrams with two legs the situation is similar. Every closed
diagram with two legs is a symmetrization of an open diagram, since there

is only one cyclic order on the set of two elements. For example, is
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the symmetrization of the diagram . Therefore, for a closed diagram
C with two legs we can define τ2(C) to be the internal graph of C.

In what follows, we shall often speak of the action of the symmetric
group Sk on closed diagrams with k legs. This action preserves the internal
graph of a closed diagram and permutes the points where the legs of the
internal graph are attached to the Wilson loop. Strictly speaking, to define
this action we need the legs of the diagrams to be numbered. We shall
always assume that such numbering is chosen; the particular form of this
numbering will be irrelevant.

The difference of a closed diagram D and the same diagram whose legs
are permuted by some permutation σ, is equivalent, modulo STU relations,
to a combination of diagrams with a smaller number of external vertices.
For every given D and σ we fix such a linear combination.

Assuming that the map τ is defined for closed diagrams having less than
k legs, we define it for a diagram D with exactly k legs by the formula:

(5.7.1.1) τk(D) = D̃ +
1

k!

∑

σ∈Sk

τk−1(D − σ(D)) ,

where D̃ is the internal graph of D, and D − σ(D) is represented as a
combination of diagrams with less than k legs according to the choice above.

For example, we know that τ
( )

= , and we want to find

τ
( )

. By the above formula, we have:

τ3

( )
= + 1

6

(
τ2

(
−

)
+ τ2

(
−

)

+τ2

(
−

)
+ τ2

(
−

)

+τ2

(
−

)
+ τ2

(
−

))

= 1
2τ2

( )
= 1

2 .

We have to prove the following assertions:

(i) The value τk−1(D−σ(D)) in the formula (5.7.1.1) does not depend
on the presentation of D−σ(D) as a combination of diagrams with
a smaller number of external vertices.
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(ii) The map τ respects STU relations.

(iii) χ ◦ τ = idC and τ is surjective.

The first two assertions imply that τ is well-defined and the third means
that τ is an isomorphism. The rest of the section is dedicated to the proof
of these statements.

In the vector space spanned by all closed diagrams (with no relations
imposed) let Dk be the subspace spanned by all diagrams with at most k
external vertices. We have a chain of inclusions

D0 ⊂ D1 ⊂ D2 ⊂ . . . .
We denote by Ik be the subspace in Dk spanned by all STU, IHX and anti-
symmetry relations that do not involve diagrams with more than k external
vertices.

5.7.2. Action of permutations on closed diagrams. The action of
the symmetric group Sk on closed diagrams with k legs can be represented
graphically as the “composition” of a closed diagram with the diagram of
the permutation:

k = 4 ; σ = (4132) = ; D = ;

σD = = .

5.7.3. Lemma. Let D ∈ Dk.
• Modulo Ik, the difference D − σD belongs to Dk−1.

• Any choice Uσ of a presentation of σ as a product of transpositions
determines in a natural way an element ΓD(Uσ) ∈ Dk−1 such that

ΓD(Uσ) ≡ D − σD mod Ik.
• Furthermore, if Uσ and U ′σ are two such presentations, then ΓD(Uσ)

is equal to ΓD(U ′σ) modulo Ik−1.

This is Lemma 5.5 from [BN1]. Rather than giving the details of the
proof (which can be found in [BN1]) we illustrate it on a concrete example.

Take the permutation σ = (4132) and let D be the diagram considered
above. Choose two presentations of σ as a product of transpositions:

Uσ = (34)(23)(34)(12) = ; U ′σ = (23)(34)(23)(12) = .
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For each of these products we represent D − σD as a sum:

D − σD = (D − (12)D) + ((12)D − (34)(12)D) + ((34)(12)D − (23)(34)(12)D)
+((23)(34)(12)D − (34)(23)(34)(12)D)

and

D − σD = (D − (12)D) + ((12)D − (23)(12)D) + ((23)(12)D − (34)(23)(12)D)
+((34)(23)(12)D − (23)(34)(23)(12)D) .

Here, the two terms in every pair of parentheses differ only by a transposition
of two neighboring legs, so their difference is the right-hand side of an STU
relation. Modulo the subspace I4 each difference can be replaced by the
corresponding left-hand side of the STU relation, which is a diagram in D3.
We get

ΓD(Uσ) = + + +

ΓD(U ′σ) = + + +

Now the difference ΓD(Uσ)− ΓD(U ′σ) equals

(
−

)
+
(

−
)

+
(

−
)

Using the STU relation in I3 we can represent it in the form

ΓD(Uσ)− ΓD(U ′σ) = + − = 0

which is zero because of the IHX relation.

5.7.4. Proof of assertions (i) and (ii). Let us assume that the map τ ,
defined by the formula (5.7.1.1), is (i) well-defined on Dk−1 and (ii) vanishes
on Ik−1.

Define τ ′(D) to be equal to τ(D) if D ∈ Dk−1, and if D ∈ Dk − Dk−1

set

τ ′(D) = D̃ +
1

k!

∑

σ∈Sk

τ(ΓD(Uσ)) .

Lemma 5.7.3 means that for any given D ∈ Dk with exactly k external
vertices τ(ΓD(Uσ))) does not depend on a specific presentation Uσ of the
permutation σ as a product of transpositions. Therefore, τ ′ gives a well-
defined map Dk → B.
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Let us now show that τ ′ vanishes on Ik. It is obvious that τ ′ vanishes
on the IHX and antisymmetry relations since these relations hold in B. So
we only need to check the STU relation which relates a diagram Dk−1 with
k − 1 external vertices and the corresponding two diagrams Dk and UiD

k

with k external vertices, where Ui is a transposition Ui = (i, i + 1). Let us
apply τ ′ to the right-hand side of the STU relation:

τ ′(Dk − UiDk) = D̃k + 1
k!

∑
σ∈Sk

τ(ΓDk(Uσ))

−ŨiDk − 1
k!

∑
σ′∈Sk

τ(ΓUiDk(Uσ′)) .

Note that D̃k = ŨiDk. Reparametrizing the first sum, we get

τ ′(Dk − UiDk) =
1

k!

∑

σ∈Sk

τ(ΓDk(UσUi)− ΓUiDk(Uσ)) .

Using the obvious identity ΓD(UσUi) = ΓD(Ui) + ΓUiDk(Uσ) and the fact

that Dk−1 = ΓD(Ui), we now obtain

τ ′(Dk − UiDk) =
1

k!

∑

σ∈Sk

τ(Dk−1) = τ(Dk−1) = τ ′(Dk−1) ,

which means that τ ′ vanishes on the STU relation, and, hence, on the whole
of Ik.

Now, it follows from the second part of Lemma 5.7.3 that τ ′ = τ on Dk.
In particular, this means that τ is well-defined on Dk and vanishes on Ik.
By induction, this implies the assertions (i) and (ii).

5.7.5. Proof of assertion (iii). Assume that χ ◦ τ is the identity for
diagrams with at most k − 1 legs. Take D ∈ Dk representing an element of
C. Then

(χ ◦ τ)(D) = χ
(
D̃ + 1

k!

∑
σ∈Sk

τ(ΓD(Uσ))
)

= 1
k!

∑
σ∈Sk

(
σD + (χ ◦ τ)(ΓD(Uσ))

)
.

Since ΓD(Uσ) is a combination of diagrams with at most k − 1 legs, by the
induction hypothesis χ ◦ τ(ΓD(Uσ)) = ΓD(Uσ) and, hence,

(χ ◦ τ)(D) =
1

k!

∑

σ∈Sk

(
σD + ΓD(Uσ)

)
=

1

k!

∑

σ∈Sk

(
σD +D − σD

)
= D .

The surjectivity of τ is clear from the definition, so we have established
that χ is a linear isomorphism between B and C. �
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5.8. Relation between B and C
It is easy to check that the isomorphism χ is compatible with the coproduct
in the algebras B and C. (Exercise: pick a decomposable diagram b ∈ B and
check that δA(χ(b)) and χ(δB(b)) coincide.) However, χ is not compatible
with the product. For example,

χ( ) = .

The square of the element in B is . However, the corre-
sponding element of C

χ( ) =
1

3
+

2

3

is not equal to the square of .

We can, of course, carry the natural multiplication of the algebra B to the
algebra C with the help of the isomorphism χ, thus obtaining a bialgebra with
two different products, both compatible with one and the same coproduct.

By definition, any connected diagram p ∈ B is primitive. Similarly to
Theorem 5.5.1 we have:

5.8.1. Theorem. The primitive space of the bialgebra B is spanned by con-
nected open diagrams.

Proof. The same argument as in the proof of Theorem 5.5.1, with a simpli-
fication that in the present case we do not have to prove that every element
of B has a polynomial expression in terms of connected diagrams: this holds
by definition. �

Although the isomorphism χ does not respect the multiplication, the two
algebras B and C are isomorphic. This is clear from what we know about
their structure: by Milnor–Moore theorem both algebras are commutative
polynomial algebras over the corresponding primitive subspaces. But the
primitive subspaces coincide, since χ preserves the coproduct! An explicit
algebra isomorphism between B and C will be the subject of Section 11.3.

Situations of this kind appear in the theory of Lie algebras. Namely, the
bialgebra of invariants in the symmetric algebra of a Lie algebra L has a
natural map into the centre of the universal enveloping algebra of L. This
map, which is very similar in spirit to the symmetrization map χ, is an
isomorphism of coalgebras, but does not respect the multiplication. In fact,
this analogy is anything but superficial. It turns out that the algebra C is
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isomorphic to the centre of the universal enveloping algebra for a certain
Casimir Lie algebra in a certain tensor category. For further details see
[HV].

5.8.2. Unframed version of B. The unframed version of the algebras
Afr and C are obtained by taking the quotient by the ideal generated by the
diagram with 1 chord Θ. Although the product in B is different, it is easy
to see that multiplication in C by Θ corresponds to multiplication in B by
the strut s: the diagram of degree 1 consisting of 2 univalent vertices and
one edge. Therefore, the unframed version of the algebra B is its quotient
by the ideal generated by s and we have: B′ := B/(s) ∼= C/(Θ) =: C′.

5.8.3. Grading in B and filtration in C. The space of primitive elements
PB is carried by χ isomorphically onto PC. The space PC = P is filtered
(see Section 5.5.2), the space PB is graded (page 144). It turns out that χ
intertwines the grading on B with the filtration on C. Indeed, the definition
of χ and the construction of the inverse mapping τ imply two facts:

χ(PBi) ⊂ P i ⊂ Pk, if i < k,

τ(Pk) ⊂
k⊕

i=1

PBk.

Therefore, we have an isomorphism

τ : Pkn −→ PB1
n ⊕ PB2

n ⊕ . . .⊕ PBk−1
n ⊕ PBkn .

and, hence, an isomorphism Pkn/Pk−1
n
∼= PBkn.

Using this fact, we can give an elegant reformulation of the theorem
about detecting the orientation of knots (Section 5.5.3, page 140):

Corollary. Vassiliev invariants do distinguish the orientation of knots if
and only if PBkn 6= 0 for an odd k and some n.

Let us clarify that by saying that Vassiliev invariants do distinguish the
orientation of knots we mean that there exists a knot K non-equivalent to
its inverse K∗ and a Vassiliev invariant f such that f(K) 6= f(K∗).

5.8.4. Exercise. Check that in the previous statement the letter P can be
dropped: Vassiliev invariants do distinguish the orientation of knots if and
only if Bkn 6= 0 for an odd k and some n.
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The relation between C and B in this respect can also be stated in the
form of a commutative diagram:

B χ−−−−→ C
τB

y
yτC

B −−−−→
χ

C

where χ is the symmetrization isomorphism, τC is the orientation reversing
map in C defined by the lemma in Section 5.5.3, while τB on an individual
diagram from B acts as multiplication by (−1)k where k is the number of
legs. The commutativity of this diagram is a consequence of the corollary
to the above mentioned lemma (see page 140).

5.9. The three algebras in small degrees

Here is a comparative table which displays some linear bases of the algebras
Afr, C and B in small dimensions.

n Afr C B

0 ∅

1

2

3

4

In every grading up to 4, for each of the three algebras, this table dis-
plays a basis of the corresponding homogeneous component. Starting from
degree 2, decomposable elements (products of elements of smaller degree)
appear on the left, while the new indecomposable elements appear on the
right. The bases of C and B are chosen to consist of primitive elements
and their products. We remind that the difference between the Afr and C
columns is notational rather than anything else, since chord diagrams are a
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special case of closed Jacobi diagrams, the latter can be considered as linear
combinations of the former, and the two algebras are in any case isomorphic.

5.10. Jacobi diagrams for tangles

In order to define chord diagrams and, more generally, closed Jacobi dia-
grams, for arbitrary tangles it suffices to make only minor adjustments to the
definitions. Namely, one simply replaces the Wilson loop with an arbitrary
oriented one-dimensional manifold (the skeleton of the Jacobi diagram). In
the 4-term relations the points of attachment of chords are allowed to belong
to different components of the skeleton, while the STU relations remain the
same.

The Vassiliev invariants for tangles with a given skeleton can be de-
scribed with the help of chord diagrams or closed diagrams with the same
skeleton; in fact the Vassiliev-Kontsevich Theorem is valid for tangles and
not only for knots.

Open Jacobi diagrams can also be defined for arbitrary tangles. If we
consider tangles whose skeleton is not connected, the legs of correspond-
ing open diagrams have to be labeled by the connected components of the
skeleton. Moreover, for such tangles there are mixed spaces of diagrams,
some of whose legs are attached to the skeleton, while others are “hanging
free”. Defining spaces of open and mixed diagrams for tangles is a more
delicate matter than generalizing chord diagrams: here new relations, called
link relations may appear in addition to the STU, IHX and AS relations.

5.10.1. Jacobi diagrams for tangles.

Definition. Let X be a tangle skeleton (see page 28). A tangle closed Jacobi
diagram D with skeleton X is a unitrivalent graph with a distinguished
oriented subgraph identified with X, a fixed cyclic order of half-edges at
each vertex not on X, and such that:

• it has no univalent vertices other than the boundary points of X;

• each connected component of D contains at least one connected
component of X.

A tangle Jacobi diagram whose all vertices belong to the skeleton, is called
a tangle chord diagram. As with usual closed Jacobi diagrams, half the
number of the vertices of a closed diagram is called the degree, or order, of
the diagram.
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Example. A tangle diagram whose skeleton consists of a line segment and
a circle: x1

x2

The vector space of tangle closed Jacobi diagrams with skeleton X mod-
ulo the STU relations is denoted by C(X), or by C(x1, . . . ,xn) where the xi
are the connected components of X. The space Cn(X) is the subspace of
C(X) spanned by diagrams of degree n. It is clear that for any X the space
Cn(X) is spanned by chord diagrams with n chords.

Two tangle diagrams are considered to be equivalent if there is a graph
isomorphism between them which preserves the skeleton and the cyclic order
of half-edges at the trivalent vertices outside the skeleton.

Weight systems of degree n for tangles with skeleton X can now be
defined as linear functions on Cn(X). The Fundamental Theorem 4.2.1
extends to the present case:

Theorem. Each tangle weight system of degree n is a symbol of some degree
n Vassiliev invariant of framed tangles.

In fact, we shall prove this, more general version of the Fundamental
Theorem in Chapter 8 and deduce the corresponding statement for knots as
a corollary.

Now, assume that X is a union of connected components xi and yj and
suppose that the yj have no boundary.

Definition. A mixed tangle Jacobi diagram is a unitrivalent graph with a
distinguished oriented subgraph (the skeleton) identified with ∪xi, with all
univalent vertices, except those on the skeleton, labeled by elements of the
set {yj} and a fixed cyclic order of edges at each vertex not on the skeleton,
and such that each connected component either contains at least one of the
xi, or at least one univalent vertex. A leg of a mixed diagram is a univalent
vertex that does not belong to the skeleton.

Here is an example of a mixed Jacobi diagram:

y y

yy

y

yx
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Mixed Jacobi diagrams, apart from the usual STU, IHX and antisym-
metry relations, are subject to a new kind of relations, called link relations.
To obtain a link relation, take a mixed diagram, choose one of its legs and

one label y. For each y-labeled vertex, attach the chosen leg to the edge,
adjacent to this vertex, sum all the results and set this sum to be equal to
0. The attachment is done according to the cyclic order as illustrated by
the following picture:

yy y

......

......

+

yy y

......

......

+ · · ·+
......

y y

......

y

= 0.

Here the shaded parts of all diagrams coincide, the skeleton is omitted from
the pictures and the unlabeled legs are assumed to have labels distinct from
y.

Note that when the skeleton is empty and y is the only label (that is,
we are speaking about the usual open Jacobi diagrams), the link relations
are an immediate consequence from the Kirchhoff law.

Now, define the vector space C(x1, . . . ,xn |y1, . . . ,ym) to be spanned by
all mixed diagrams with the skeleton ∪xi and label in the yj , modulo the
STU, IHX, antisymmetry and link relations.

Both closed and open diagrams are particular cases of this construction.
In particular, C(x1, . . . ,xn | ∅) = C(X) and C(∅ |y) = B. The latter equality
justifies the notation B(y1, . . . ,ym) or just B(m) for the space of m-colored
open Jacobi diagrams C(∅ |y1, . . . ,ym).

Given a diagram D in C(x1, . . . ,xn |y1, . . . ,ym) we can perform “sym-
metrization of D with respect to the label ym” by taking the average of all
possible ways of attaching the ym-legs of D to a circle with the label ym.
This way we get the map

χym
: C(x1, . . . ,xn |y1, . . . ,ym)→ C(x1, . . . ,xn,ym |y1, . . . ,ym−1).

Theorem. The symmetrization map χym
is an isomorphism of vector spaces.

In particular, iterating χym
we get the isomorphism between the spaces

C(x1, . . . ,xn |y1, . . . ,ym) and C(X ∪ Y ), where X = ∪xi and Y = ∪yj .

Let us indicate the idea of the proof; this will also clarify the origin of
the link relations.

Consider the vector space C(x1, . . . ,xn |y1, . . . ,y
∗
m) defined just like

C(x1, . . . ,xn |y1, . . . ,ym) but without the link relations on the ym-legs.
Also, define the space C(x1, . . . ,xn,y

∗
m |y1, . . . ,ym−1) in the same way as
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C(x1, . . . ,xn,ym |y1, . . . ,ym−1) but with an additional feature that all dia-
grams have a marked point on the component ym.

Then we have the symmetrization map

χy∗
m

: C(x1, . . . ,xn |y1, . . . ,y
∗
m)→ C(x1, . . . ,xn,y

∗
m |y1, . . . ,ym−1)

which consists of attaching, in all possible ways, the ym-legs to a pointed
circle labeled ym, and taking the average of all the results.

Exercise. Prove that χy∗
m

is an isomorphism.

Now, consider the map

C(x1, . . . ,xn,y
∗
m |y1, . . . ,ym−1)→ C(x1, . . . ,xn,ym |y1, . . . ,ym−1)

that simply forgets the marked point on the circle ym. The kernel of this
map is spanned by differences of diagrams of the form

− .

(The diagrams above illustrate the particular case of 4 legs attached to the
component ym.) By the STU relations the above is equal to the following
“attached link relation”:

+ + .

Exercise. Show that the symmetrization map χy∗
m

identifies the sub-
space of link relations in C(x1, . . . ,xn |y1, . . . ,y

∗
m) with the subspace of

C(x1, . . . ,xn,y
∗
m |y1, . . . ,ym−1) spanned by all “attached link relations”.

5.10.2. Pairings on diagram spaces. There are several kinds of pairings
on diagram spaces. The first pairing is induced by the product on tangles; it
generalizes the multiplication in the algebra C. This pairing exists between
the vector spaces C(X1) and C(X2) such that the bottom part of X1 coin-
cides with the top part of X2 and these manifold can be concatenated into
an oriented 1-manifold X1 ◦X2. In this case we have the bilinear map

C(X1)⊗ C(X2)→ C(X1 ◦X2),

obtained by putting one diagram on top of another.

If X is a collection of n intervals, with one top and one bottom point
on each of them, X ◦X is the same thing as X and in this case we have an
algebra structure on C(X). This is the algebra of closed Jacobi diagrams
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for string links on n strands. When n = 1, we, of course, come back to the
algebra C.

The second multiplication is the tensor product of tangle diagrams. It is
induced the tensor product of tangles, and consists of placing the diagrams
side by side.

There is yet another pairing on diagram spaces, which is sometimes
called “inner product”. For diagrams C ∈ C(x |y) and D ∈ B(y) define the
diagram 〈C,D〉y ∈ C(x) as the sum of all ways of glueing all the y-legs of
C to the y-legs of D. If the numbers of y-legs of C and D are not equal,
we set 〈C,D〉y to be zero. It may happen that in the process of glueing we
get closed circles with no vertices on them (this happens if C and D contain
intervals with both ends labeled by y). We set such diagrams containing
circles to be equal to zero.

5.10.3. Lemma. The inner product

〈 , 〉y : C(x |y)⊗ B(y)→ C(x)

is well-defined.

Proof. We need to show that the class of the resulting diagram in C(x)
does not change if we modify the second argument of 〈 , 〉y by IHX or
antisymmetry relations, and the first argument — by STU or link relations.
This is clear for the first three kinds of relations. For link relations it follows
from the Kirchhoff rule and the antisymmetry relation. For example, we
have

+ + =

= − + + = 0.

�

The definition of the inner product can be extended. For example, if
two diagrams C,D have the same number of y1-legs and the same number
of y2-legs, they can be glued together along the y1-legs and then along the
y2-legs. The sum of the results of all such glueings is denoted by 〈C,D〉y1,y2

.
This construction, clearly, can be generalized further.

5.10.4. Actions of C and B on tangle diagrams. While C(X) is not
necessarily an algebra, it is more than just a graded vector space. Namely,
for each component x of X, there is an action of C(x) on C(X), defined as
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the connected sum along the component x. We denote this action by #,
as if it were the usual connected sum. More generally, the spaces of mixed
tangle diagrams C(x1, . . . ,xn |y1, . . . ,ym) are two-sided modules over C(xi)
and B(yj). The algebra C(xi) acts, as before, by the connected sum on the
component xi, while the action of B(yj) consists of taking the disjoint union
with diagrams in B(yj). We shall denote the action of B(yj) by ∪.

We cannot expect the relation of the module structures on the space of
mixed diagrams with the symmetrization map to be straightforward, since
the symmetrization map from B to C fails to be multiplicative. We shall
clarify this remark in 11.3.8.

Exercise. Prove that the above actions are well-defined. In particular,
prove that the action of C(xi) does not depend on the location where the
diagram is inserted into the corresponding component of the tangle diagram,
and show that the action of B(yj) respects the link relations.

5.10.5. Sliding property. There is one important corollary of the IHX
relation (Kirchhoff law), called sliding property ([BLT]), which holds in the
general context of tangle Jacobi diagrams. To formulate it, we need to define

the operation ∆
(n)
x : C(x∪Y )→ C(x1∪· · ·∪xn∪Y ). By definition, ∆

(n)
x (D)

is the lift of D to the n-th disconnected cover of the line x, that is, for each
x-leg of the diagram D we take the sum over all ways to attach it to xi for
any i = 1, . . . , n (the sum consists of nk terms, if k is the number of vertices
of D belonging to x). Example:

∆
(2)
x

( x )
=

x1 x2

+

x1 x2

+

x1 x2

+

x1 x2

.

Proposition. (Sliding relation) Suppose that D ∈ C(x ∪ Y ); let D1 =

∆
(n)
x (D). Then for any diagram D2 ∈ C(x1 ∪ · · · ∪ xn) we have D1D2 =

D2D1. In pictures:

x1···x2

D1

D2

Y =

x1···x2

D1

D2

Y

Proof. Indeed, take the leg in D1 which is closest to D2 and consider the
sum of all diagrams on x1 ∪ · · · ∪ xn ∪ Y where this leg is attached to xi,
i = 1, . . . , n, while all the other legs are fixed. By Kirchhoff law, this sum
is equal to the similar sum where the chosen leg has jumped over D2. In
this way, all the legs jump over D2 one by one, and the commutativity
follows. �
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5.10.6. Closing a component of a Jacobi diagram. Recall that long
knots can be closed up to produce usual knots. This closure induces a
bijection of the corresponding isotopy classes and an isomorphism of the
corresponding diagram spaces.

This fact can be generalized to tangles whose skeleton consists of one
interval and several circles.

Theorem. Let X be a tangle skeleton with only one interval component,
and X ′ be a skeleton obtained by closing this component into a circle. The
induced map

C(X)→ C(X ′)
is an isomorphism of vector spaces.

The proof of this theorem consists of an application of the Kirchhoff’s
law and we leave it to the reader.

We should point out that closing one component of a skeleton with
more that one interval component does not produce an isomorphism of the
corresponding diagram spaces. Indeed, let us denote by A(2) the space of
closed diagrams for string links on 2 strands. A direct calculation shows that
the two diagrams of order 2 below on the left are different in A(2), while
their images under closing one strand of the skeleton are obviously equal:

6= =

The above statements about tangle diagrams, of course, are not arbi-
trary, but reflect the following topological fact that we state as an exercise:

Exercise. Define the map of closing one component on isotopy classes of
tangles with a given skeleton and show that it is bijective if and only if it is
applied to tangles whose skeleton has only one interval component.

5.11. Horizontal chord diagrams

There is yet another diagram algebra which will be of great importance in
what follows, namely, the algebra Ah(n) of horizontal chord diagrams on n
strands.

A horizontal chord diagram on n strands is a tangle diagram whose
skeleton consists of n vertical intervals (all oriented, say, upwards) and all of
whose chords are horizontal. Two such diagrams are considered to be equiv-
alent if one can be deformed into the other through horizontal diagrams.

A product of two horizontal diagrams is clearly a horizontal diagram; by
definition, the algebra Ah(n) is generated by the equivalence classes of all
such diagrams modulo the horizonal 4T relations 4.1.1.4 (see Section 4.1).
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We denote by 1n the the empty diagram in Ah(n) which is the multiplicative
unit.

Each horizontal chord diagram is equivalent to a diagram whose chords
are all situated on different levels, that is, to a product of diagrams of degree
1. Set

ujk =

kj

, 1 6 j < k 6 n,

and for 1 6 k < j 6 n set ujk = ukj . Then Ah(n) is generated by the
ujk subject to the following relations (infinitesimal pure braid relations, first
appeared in [Koh2])

[ujk, ujl + ukl] = 0, if j, k, l are different,

[ujk, ulm] = 0, if j, k, l,m are different.

Indeed, the first relation is just the horizontal 4T relation. The second rela-
tion is similar to the far commutativity relation in braids. The products of
the ujk up to this relation are precisely the equivalence classes of horizontal
diagrams.

The algebra Ah(2) is simply the free commutative algebra on one gen-
erator u12.

5.11.1. Proposition. Ah(3) is a direct product of the free algebra on two
generators u12 and u23, and the free commutative algebra on one generator

u = u12 + u23 + u13.

In particular, Ah(3) is highly non-commutative.

Proof. Choose u12, u23 and u as the set of generators for Ah(3). In terms
of these generators all the relations in Ah(3) can be written as

[u12, u] = 0, and [u23, u] = 0 .

�

For n > 3 the multiplicative structure of the algebra Ah(n) is rather
more involved, even though it admits a simple description as a vector space.
We shall treat this subject in more detail in Chapter 12, as the algebra
Ah(n) plays the same role in the theory of finite type invariants for pure
braids as the algebra A in the theory of the Vassiliev knot invariants.

We end this section with one property of Ah(n) which will be useful in
Chapter 10.

5.11.2. Lemma. Let J,K ⊆ {1, . . . , n} be two non-empty subsets with
J ∩ K = ∅. Then the element

∑
j∈J,k∈K ujk commutes in Ah(n) with any

generator upq with p and q either both in J or both in K.
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Proof. It is clearly sufficient to prove the lemma for the case when K con-
sists of one element, say k, and both p and q are in J . Now, any ujk com-
mutes with upq if j is different from both p and q. But upk + uqk commutes
with upq by the horizontal 4T relation, and this proves the lemma. �

5.11.3. Horizontal diagrams and string link diagrams. Denote by
A(n) be the algebra of closed diagrams for string links. Horizontal diagrams
are examples of string link diagrams and the horizontal 4T relations are a
particular case of the usual 4T relations, and, hence, there is an algebra
homomorphism

Ah(n)→ A(n).

This homomorphism is injective, but this is a surprisingly non-trivial fact;
see [BN8, HM]. We shall give a proof of this in Chapter 12, see page 358.

Exercise.

(a) Prove that the chord diagram consisting of one chord connecting
the two components of the skeleton belongs to the center of the
algebra A(2).

(b) Prove that any chord diagram consisting of two intersecting chords
belongs to the center of the algebra A(2).

(c) Prove that Lemma 5.11.2 is also valid for A(n). Namely, show
that the element

∑
j∈J,k∈K ujk commutes in A(n) with any chord

diagram whose chords have either both ends on the strands in J or
on the strands in K.

Exercises

(1) Prove that = .

(2) Let a1 = , a2 = , a3 = , a4 = , a5 = .

(a) Find a relation between a1 and a2.
(b) Represent the sum a3 + a4 − 2a5 as a connected closed diagram.
(c) Prove the linear independence of a3 and a4 in C.

(3) Express the primitive elements , and of degrees 3 and

4 as linear combinations of chord diagrams.
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(4) Prove the following identities in the algebra C:

= − 1

2
;

= − +
1

4
;

= − 3

2
+

3

4
− 1

8
;

= − 3

2
+

1

2
+

1

4
− 1

8
;

= − 2 + +
1

2
− 1

2
+ .

(5) Show that the symbols of the coefficients of the Conway polynomial
(Section 2.3) take the following values on the basis primitive diagrams
of degree 3 and 4.

symb(c3)
( )

= 0,

symb(c4)
( )

= 0, symb(c4)
( )

= −2.

(6) Show that the symbols of the coefficients of the Jones polynomial (Sec-
tion 3.6.2) take the following values on the basis primitive diagrams of
degrees 3 and 4.

symb(j3)
( )

= −24,

symb(j4)
( )

= 96, symb(j4)
( )

= 18.

(7) ([ChV]) Let tn ∈ Pn+1 be the closed diagram
shown on the right. Prove the following iden-
tity

tn =
1

2n

n bubbles

tn =

n legs

Deduce that tn ∈ P2
n+1.
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(8) Express tn as a linear combination of chord diagrams. In particular,
show that the intersection graph of every chord diagram that occurs in
this expression is a forest.

(9) ([ChV]) Prove the following identity in the space C of closed diagrams:

=
3

4
− 1

12
− 1

48
.

Hint. Turn the internal pentagon of the left-hand side of the identity
in the 3-space by 180◦ about the vertical axis. The result will represent
the same graph with the cyclic orders at all five vertices of the pentagon
changed to the opposite:

= (−1)5 = − + (terms with at most 4 legs) .

The last equality follows from the STU relations which allow us to re-
arrange the legs modulo diagrams with a smaller number of legs. To
finish the solution, the reader must figure out the terms in the paren-
theses.

(10) Prove the linear independence of the three elements in the right-hand
side of the last equality, using Lie algebra invariants defined in Chapter
6.

(11) ([ChV]) Prove that the primitive space in the algebra C is generated by
the closed diagrams whose internal graph is a tree.

(12) ([ChV]) With each permutation σ of n objects associate a closed di-
agram Pσ acting as in Section 5.7.2 by the permutation on the lower
legs of a closed diagram P(12...n) = tn from problem 7. Here are some
examples:

P(2143) = ; P(4123) = ; P(4132) = .

Prove that the diagrams Pσ span the vector space Pn+1.

(13) ([ChV]) Prove that
• Pnn = Pn for even n, and Pn−1

n = Pn for odd n;
• for even n the quotient space Pnn/Pn−1

n has dimension one and
generated by the wheel wn.

(14) Let b1 = , b2 = , b3 = , b4 = .
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Which of these diagrams are zero in B, that is, vanish modulo AS and
IHX relations?

(15) Prove that the algebra generated by all open diagrams modulo the AS
and the modified IHX equation I = aH−bX, where a and b are arbitrary
complex numbers, is isomorphic (equal) to B if and only if a = b = 1, in
all other cases it is a free polynomial algebra on one generator.

(16) • Indicate an explicit form of the isomorphisms Afr ∼= C ∼= B in the
bases given in Section 5.9.
• Compile the multiplication table for Bm×Bn → Bm+n, m+ n 6 4,

for the second product in B (the one pulled back from C along the
isomorphism C ∼= B).

• Find some bases of the spaces Afrn , Cn, Bn for n = 5.

(17) (J. Kneissler). Let Bun be the space of open diagrams of degree n with

u univalent vertices. Denote by ωi1i2...ik the element of Bi1+···+ik
i1+···+ik+k−1

represented by a caterpillar diagram consisting of k body segments with
i1, . . . , ik “legs”, respectively. Using the AS and IHX relations, prove
that ωi1i2...ik is well-defined, that is, for inner segments it makes no
difference on which side of the body they are drawn. For example,

ω0321 = =

(18) ∗ (J. Kneissler) Is it true that any caterpillar diagram in the algebra B
can be expressed through caterpillar diagrams with even indices i1, . . . ,
ik? Is it true that the primitive space P(B) (that is, the space spanned
by connected open diagrams) is generated by caterpillar diagrams?

(19) Call a chord diagram d ∈ Afr even (odd) if d̄ = d (resp. d̄ = −d), where
the bar denotes the reflection of a chord diagram. Prove that under the
isomorphism χ−1 : Afr → B:
• the image of an even chord diagram is a linear combination of open

diagrams with an even number of legs,
• the image of an odd chord diagram in is a linear combination of

open diagrams with an odd number of legs.

(20) ∗ (The simplest unsolved case of Conjecture 5.6). Is it true that an open
diagram with 3 univalent vertices is always equal to 0 as an element of
the algebra B?

(21) Prove that the diagram 1

1

2
is equal to 0 in the space B(2).
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(22) Let uij be the diagram in A(3) with one chord connecting the ith and
the jth component of the skeleton. Prove that for any k the combination
uk12 + uk23 + uk13 belongs to the center of A(3).

(23) Let D3 =
y
∈ C(X,y) and D4 =

y
∈ C(X,y) be tangle

diagrams with exactly three and four y-legs respectively. Show that

C(X|y) ∋ χ−1
y (D3) =

y y y

+ 1
2

y y

=
y y y

+ 1
2

y y

=
y y y

− 1
2

y y

;

C(X|y) ∋ χ−1
y (D4) =

yyyy

+ 1
2

yyy

+ 1
2

yyy

+ 1
8

y y

+ 5
24

y y

.

Hint. Follow the proof of Theorem 5.7.1 on page 147 and then use
link relations.



Chapter 6

Lie algebra weight

systems

Given a Lie algebra g equipped with a non-degenerate invariant bilinear
form, one can construct a weight system with values in the center of the
universal enveloping algebra U(g). In a similar fashion one can define a
map from the space B into the ad-invariant part of the symmetric algebra
S(g). These constructions are due to M. Kontsevich [Kon1], with basic ideas
already appearing in [Pen]. If, in addition, we have a finite dimensional re-
presentation of the Lie algebra then taking the trace of the corresponding
operator we get a numeric weight system. It turns out that these weight
systems are the symbols of the quantum group invariants (Section 3.6.6).
The construction of weight systems based on representations first appeared
in D. Bar-Natan’s paper [BN0]. The reader is invited to consult the Ap-
pendix for basics on Lie algebras and their universal envelopes.

6.1. Lie algebra weight systems for the algebra Afr

6.1.1. Universal Lie algebra weight systems. Kontsevich’s construc-
tion proceeds as follows. Let g be a metrized Lie algebra over R or C, that
is, a Lie algebra with an ad-invariant non-degenerate bilinear form 〈·, ·〉 (see
A.1.1). Choose a basis e1, . . . , em of g and let e∗1, . . . , e

∗
m be the dual basis

with respect to the form 〈·, ·〉.
Given a chord diagram D with n chords, we first choose a base point

on its Wilson loop, away from the chords of D. This gives a linear order
on the endpoints of the chords, increasing in the positive direction of the
Wilson loop. Assign to each chord α an index, that is, an integer-valued

167
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variable, iα. The values of iα will range from 1 to m, the dimension of the
Lie algebra. Mark the first endpoint of the chord with the symbol eiα and
the second endpoint with e∗iα .

Now, write the product of all the eiα and all the e∗iα , in the order in
which they appear on the Wilson loop of D, and take the sum of the mn

elements of the universal enveloping algebra U(g) obtained by substituting
all possible values of the indexes iα into this product. Denote by ϕg(D) the
resulting element of U(g).

For example,

ϕg

( )
=

m∑

i=1

eie
∗
i =: c

is the quadratic Casimir element associated to the chosen invariant form.

Another example: if

D =
*

i
j

k

,

then

ϕg(D) =
m∑

i=1

m∑

j=1

m∑

k=1

eiejeke
∗
i e
∗
ke
∗
j .

6.1.2. Theorem. The above construction has the following properties:

(1) the element ϕg(D) does not depend on the choice of the base point
on the diagram,

(2) it does not depend on the choice of the basis {ei} of the Lie algebra,

(3) it belongs to the ad-invariant subspace U(g)g of the universal en-
veloping algebra U(g) (which coincides with the center ZU(g)).

(4) the function D 7→ ϕg(D) satisfies 4-term relations,

(5) the resulting mapping ϕg : Afr → ZU(g) is a homomorphism of
algebras.

Proof. (1) Introducing a base point means that a circular chord diagram
is replaced by a linear chord diagram (see Section 4.7). Modulo 4-term
relations, this map is an isomorphism, and, hence, the assertion follows
from (4).

(2) An exercise in linear algebra: take two different bases {ei} and {fj}
of g and reduce the expression for ϕg(D) in one basis to the expression in
another using the transition matrix between the two bases. Technically,
it is enough to do this exercise only for m = dim g = 2, since the group
of transition matrices GL(m) is generated by linear transformations in 2-
dimensional planes.
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(3) It is enough to prove that ϕg(D) commutes with any basis element
er. By property (2), we can choose the basis to be orthonormal with respect
to the ad-invariant form 〈·, ·〉, so that e∗i = ei for all i. Now, the commutator
of er and ϕg(D) can be expanded into a sum of 2n expressions, similar to
ϕg(D), only with one of the ei replaced by its commutator with er. Due
to the antisymmetry of the structure constants cijk (Lemma A.1.6), these
expressions cancel in pairs that correspond to the ends of each chord.

To take a concrete example,

[er,
∑

ij

eiejeiej ]

=
∑

ij

[er, ei]ejeiej +
∑

ij

ei[er, ej ]eiej +
∑

ij

eiej [er, ei]ej +
∑

ij

eiejei[er, ej ]

=
∑

ijk

crikekejeiej +
∑

ijk

crjkeiekeiej +
∑

ijk

crikeiejekej +
∑

ijk

crjkeiejeiek

=
∑

ijk

crikekejeiej +
∑

ijk

crjkeiekeiej +
∑

ijk

crkiekejeiej +
∑

ijk

crkjeiekeiej .

Here the first and the second sums cancel with the third and the fourth
sums, respectively.

(4) We still assume that the basis {ei} is 〈·, ·〉–orthonormal. Then one
of the pairwise differences of the chord diagrams that constitute the 4 term
relation in equation (4.1.1.3) (page 98) is sent by ϕg to

∑
cijk . . . ei . . . ej . . . ek . . . ,

while the other goes to
∑

cijk . . . ej . . . ek . . . ei . . .

Due to the cyclic symmetry of the structure constants cijk in an orthonormal
basis (see Lemma A.1.6 on page 419), these two expressions are equal.

(5) Using property (1), we can place the base point in the product
diagram D1 · D2 between D1 and D2. Then the identity ϕg(D1 · D2) =
ϕg(D1)ϕg(D2) becomes evident. �

Remark. If D is a chord diagram with n chords, then

ϕg(D) = cn + {terms of degree less than 2n in U(g)},
where c is the quadratic Casimir element as on page 168. Indeed, we can
permute the endpoints of chords on the circle without changing the highest
term of ϕg(D) since all the additional summands arising as commutators
have degrees smaller than 2n. Therefore, the highest degree term of ϕg(D)
does not depend on D. Finally, if D is a diagram with n isolated chords,
that is, the n-th power of the diagram with one chord, then ϕg(D) = cn.
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By definition, the center ZU(g) of the universal enveloping algebra is
precisely the g-invariant subspace U(g)g ⊂ U(g). According to the Harish-
Chandra theorem (see [Hum]) for a semi-simple Lie algebra g, the center
ZU(g) is isomorphic to the algebra of polynomials in certain variables c1 =
c, c2, . . . , cr, where r = rank(g).

6.1.3. sl2-weight system. Consider the Lie algebra sl2 of 2 × 2 matrices
with zero trace. It is a three-dimensional Lie algebra spanned by the matrices

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)

with the commutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H .

We will use the symmetric bilinear form 〈x, y〉 = Tr(xy):

〈H,H〉 = 2, 〈H,E〉 = 0, 〈H,F 〉 = 0, 〈E,E〉 = 0, 〈E,F 〉 = 1, 〈F, F 〉 = 0.

One can easily check that it is ad-invariant and non-degenerate. The corre-
sponding dual basis is

H∗ =
1

2
H, E∗ = F, F ∗ = E,

and, hence, the Casimir element is c = 1
2HH + EF + FE.

The center ZU(sl2) is isomorphic to the algebra of polynomials in a
single variable c. The value ϕsl2(D) is thus a polynomial in c. In this
section, following [ChV], we explain a combinatorial procedure to compute
this polynomial for a given chord diagram D.

The algebra sl2 is simple, hence, any invariant form is equal to λ〈·, ·〉 for
some constant λ. The corresponding Casimir element cλ, as an element of
the universal enveloping algebra, is related to c = c1 by the formula cλ = c

λ .
Therefore, the weight system

ϕsl2(D) = cn + an−1c
n−1 + an−2c

n−2 + · · ·+ a2c
2 + a1c

and the weight system corresponding to λ〈·, ·〉
ϕsl2,λ(D) = cnλ + an−1,λc

n−1
λ + an−2,λc

n−2
λ + · · ·+ a2,λc

2
λ + a1,λcλ

are related by the formula ϕsl2,λ(D) = 1
λn · ϕsl2(D)|

c=λ·cλ
, or

an−1 = λan−1,λ, an−2 = λ2an−2,λ, . . . a2 = λn−2a2,λ, a1 = λn−1a1,λ.

Theorem. Let ϕsl2(·) be the weight system associated to sl2 and the in-
variant form 〈·, ·〉. Take a chord diagram D and choose a chord a of D.
Then

ϕsl2(D) = (c− 2k)ϕsl2(Da) + 2
∑

16i<j6k

(
ϕsl2(Di,j)− ϕsl2(D

×
i,j)
)
,
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where:
• k is the number of chords that intersect the chord a;
• Da is the chord diagram obtained from D by deleting the chord a;
• Di,j and D×i,j are the chord diagrams obtained from Da in the following
way:

Consider an arbitrary pair of chords ai and aj different from the chord a
and such that each of them intersects a. The chord a divides the circle into
two arcs. Denote by ei and ej the endpoints of ai and aj that belong to the
left arc and by e∗i , e

∗
j the endpoints of ai and aj that belong to the right arc.

There are three ways to connect four points ei, e
∗
i , ej , e

∗
j by two chords. In Da,

we have the case (ei, e
∗
i ), (ej , e

∗
j ). Let Di,j be the diagram with the connection

(ei, ej), (e
∗
i , e
∗
j ). Let D×i,j be the diagram with the connection (ei, e

∗
j ), (e

∗
i , ej).

All other chords are the same in all the diagrams:

D =
ei

ej

e∗i

e∗j

ai

aj

a ; Da =
ei

ej

e∗i

e∗j
; Di,j =

ei

ej

e∗i

e∗j
; D×i,j =

ei

ej

e∗i

e∗j
.

The theorem allows one to compute ϕsl2(D) recursively, because each of
the three diagrams Da, Di,j and D×i,j has one chord less than D.

Examples.

(1) ϕsl2

( )
= (c − 2)c. In this case, k = 1 and the sum in the

theorem is zero, since there are no pairs (i, j).

(2)

ϕsl2

( )
= (c− 4)ϕsl2

( )
+ 2ϕsl2

( )
− 2ϕsl2

( )

= (c− 4)c2 + 2c2 − 2(c− 2)c = (c− 2)2c.

(3)

ϕsl2

( )
= (c− 4)ϕsl2

( )
+ 2ϕsl2

( )
− 2ϕsl2

( )

= (c− 4)(c− 2)c+ 2c2 − 2c2 = (c− 4)(c− 2)c.

Remark. Choosing the invariant form λ〈·, ·〉, we obtain a modified relation

ϕsl2,λ(D) =
(
cλ −

2k

λ

)
ϕsl2,λ(Da) +

2

λ

∑

16i<j6k

(
ϕsl2,λ(Di,j)− ϕsl2,λ(D

×
i,j)
)
.
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If k = 1, the second summand vanishes. In particular, for the Killing form
(λ = 4) and k = 1 we have

ϕg(D) = (c− 1/2)ϕg(Da).

It is interesting that the last formula is valid for any simple Lie algebra g

with the Killing form and any chord a having only one intersection with
other chords. See Exercise 8 for a generalization of this fact.

Exercise. Deduce the theorem from the following lemma by induction (in
case of difficulty see the proof in [ChV]).

Lemma (6-term relations for the universal sl2 weight system). Let ϕsl2(·)
be the weight system associated to sl2 and the invariant form 〈·, ·〉. Then

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
.

These relations also providee a recursive way to compute ϕsl2(D) as the
two chord diagrams on the right-hand side have one chord less than the
diagrams on the left-hand side, and the last three diagrams on the left-hand
side are simpler than the first one since they have less intersections between
their chords. See Section 6.2.3 for a proof of this Lemma.

6.1.4. Weight systems associated with representations. The con-
struction of Bar-Natan, in comparison with that of Kontsevich, uses one
additional ingredient: a representation of a Lie algebra.

A linear representation is a homomorphism of Lie algebras T : g →
End(V ). It extends to a homomorphism of associative algebras U(T ) :
U(g) → End(V ). The composition of following three maps (with the last
map being the trace)

A ϕg→ U(g)
U(T )→ End(V )

Tr→ C

by definition gives the weight system associated with the representation

ϕTg = Tr ◦U(T ) ◦ ϕg

(by abuse of notation, we shall sometimes write ϕVg instead of ϕTg .
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If the representation T is irreducible, then, according to the Schur Lemma
[Hum], every element of the center ZU(g) is represented (via U(T )) by a
scalar operator µ · idV . Therefore its trace equals ϕTg (D) = µdimV . The

number µ =
ϕT

g (D)

dimV , as a function of the chord diagram D, is a weight system
which is clearly multiplicative.

6.1.5. Example: algebra sl2 with the standard representation. Con-
sider the standard 2-dimensional representation St of sl2. Then the Casimir
element is represented by the matrix

c =
1

2
HH + EF + FE =

(
3/2 0
0 3/2

)
=

3

2
· id2.

In degree 3 we have the following weight systems

D

ϕsl2(D) c3 c3 c2(c− 2) c(c− 2)2 c(c− 2)(c− 4)

ϕStsl2
(D) 27/4 27/4 −9/4 3/4 15/4

ϕ′Stsl2
(D) 0 0 0 12 24

Here the last row represents the unframed weight system obtained from
ϕStsl2

(·) by the deframing procedure from Section 4.5.6. A comparison of this

computation with the one from Section 3.6.2 shows that symb(j3) = −1
2ϕ
′St
sl2

.
See Exercises 14 and 15 at the end of the chapter for more information about
these weight systems.

6.1.6. glN with standard representation. Consider the Lie algebra g =
glN of allN×N matrices and its standard representation St. Fix the trace of
the product of matrices as the preferred ad-invariant form: 〈x, y〉 = Tr(xy).

The algebra glN is generated by matrices eij with 1 on the intersection

of i-th row with j-th column and zero elsewhere. We have 〈eij , ekl〉 = δliδ
k
j ,

where δ is the Kronecker delta. Therefore, the duality between glN and
(glN )∗ defined by 〈·, ·〉 is given by the formula e∗ij = eji.

One can check that [eij , ekl] 6= 0 only in the following cases:

• [eij , ejk] = eik, if i 6= k,

• [eij , eki] = −ekj , if j 6= k,

• [eij , eji] = eii − ejj , if i 6= j,
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This gives the following formula for the Lie bracket as a tensor in gl∗N ⊗
gl∗N ⊗ glN :

[·, ·] =
N∑

i,j,k=1

(e∗ij ⊗ e∗jk ⊗ eik − e∗ij ⊗ e∗ki ⊗ ekj).

D. Bar-Natan found the following elegant way of computing the weight sys-
tem ϕStglN

(·).
Theorem ([BN0]). Denote by s(D) the number of connected components
of the curve obtained by doubling all chords of a chord diagram D.

.

Then ϕStglN
(D) = N s(D) .

Example. For D = we obtain the picture . Here s(D) = 2,

hence ϕStglN
(D) = N2.

Proof. For each chord we attach a matrix eij to one endpoint and the matrix
eji to another endpoint. The pair (ij) is an index associated with the given
chord; different chords have different indices that vary in an independent
way. We can label the two copies of the chord as well as the four pieces of
the Wilson loop adjacent to its endpoints, by indices i and j as follows:

eij eji
i

j

i

j

i

j
.

To compute the value of the weight system ϕStglN
(D), we must sum up the

products . . . eijekl . . . . Since we deal with the standard representation of
glN , the product should be understood as the genuine matrix multiplication,
unlike the case of weight systems with values in the universal enveloping
algebra. Since eij · ekl = δjk · eil, we obtain a non-zero summand only if
j = k. This means that the labels of the chords must follow the pattern:

eij ejl
i j j l

i j j l

.

Therefore, all the labels on one and the same connected component of the
curve obtained are equal. Now, if we take the whole product of matrices
along the circle, we will get the operator eii whose trace is 1. Then we
sum up all these ones over all possible labelings. The number of labelings
is equal to the number of possibilities to assign an index i, j, l,. . . to each
connected component of the curve obtained by doubling all the chords. Each
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component giving exactly N possibilities, the total number becomes N s(D).
�

Proposition. The weight system ϕStglN
(D) depends only on the intersection

graph of D.

Proof. Induction on the number of chords in D. If all chords are isolated,
then the assertion is trivial. Otherwise, pick up two intersecting chords α
and β in D and double them according to the theorem. Straightening the
pinced circle with two double chords into a new Wilson loop, we get a chord
diagramD′′ having two chords less thanD. One can see that the intersection
graph Γ(D′′) depends only on the intersection graph Γ(D).

α

β
=

Indeed, for any two vertices i and j different from α, β their connectivity
(by an edge) in Γ(D′′) either coincides with their connectivity in Γ(D) or
changes to the opposite depending on their location with respect to α and
β according to the rules:

location of i and j in Γ(D) connectivity of i and j in Γ(D′′)
i and j are connected with both α and β the same

one of i and j is connected with both α and β,

and another one is connected with only one of
them

opposite

one of i and j is connected with both α and β,

and another one is not connected with them
the same

both i and j are connected with one and the
same of α and β

the same

one of i and j is connected with one of α and

β, and another one is connected with another
one

opposite

one of i and j is connected with one of α and

β, and another one is not connected with them
the same

none of i and j is connected with α and β the same

�

See exercise 9 at the end of this chapter for another proof of this propo-
sition.

6.1.7. slN with standard representation. Here we describe the weight
system ϕStslN

(D) associated with the Lie algebra slN , the invariant form

〈x, y〉 = Tr(xy), and its standard representation by N × N matrices with
zero trace.

Following Section 3.6.2, introduce a state σ for a chord diagram D as
an arbitrary function on the set [D] of chords of D with values in the set
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{1,− 1
N }. With each state σ we associate an immersed plane curve obtained

from D by resolutions of all its chords according to s:

c , if σ(c) = 1; c , if σ(c) = − 1

N
.

Let |σ| denote the number of components of the curve obtained in this way.

Theorem. ϕStslN
(D) =

∑

σ

(∏

c

σ(c)
)
N |σ| , where the product is taken over

all n chords of D, and the sum is taken over all 2n states for D.

One can prove this theorem in the same way as we did for glN picking an
appropriate basis for the vector space slN and then working with the product
of matrices (see exercise 13). However, we prefer to prove it in a different
way, via several reformulations using the algebra structure of weight systems
which is dual to the coalgebra structure of chord diagrams (Section 4.5).

Reformulation 1. For a subset J ⊆ [D] (the empty set and the whole [D]
are allowed) of chords of D, let DJ be the chord diagram formed by chords
from J , let s(DJ) denote the number of connected components of the curve
obtained by doubling of all chords of DJ , let |J | be the number of chords in
J , and let n−|J | = |J | stand for the number of chords in J = [D]\J . Then

ϕStslN
(D) =

∑

J⊆[D]

(−1)n−|J |N s(DJ )−n+|J |.

This assertion is obviously equivalent to the theorem where, for every
state s, the subset J consists of all chords c with value s(c) = 1.

Consider the weight system e−
I1
N from Section 4.5.6, which is equal to

the constant 1
(−N)n on any chord diagram with n chords.

Reformulation 2.

ϕStslN
= e−

I1
N · ϕStglN

.

Indeed, by the definition of the product of weight systems (Section 4.5),
(
e−

I1
N · ϕStglN

)
(D) :=

(
e−

I1
N ⊗ ϕStglN

)
(δ(D)) ,

where δ(D) is the coproduct (Section 4.4) of the chord diagram D. It splits
D into two complementary parts DJ and DJ : δ(D) =

∑
J⊆[D]

DJ ⊗ DJ .

The weight system ϕStglN
(DJ) gives N s(DJ ). The remaining part is given

by e−
I1
N (DJ).
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Reformulation 3.

ϕStglN
= e

I1
N · ϕStslN

.

The equivalence of this formula to the previous one follows from the fact

that the weight systems e−
I1
N and e

I1
N are inverse to each other as elements

of the completed algebra of weight systems.

Proof. We will prove the theorem in reformulation 3. The Lie algebra glN
is a direct sum of slN and the trivial one-dimensional Lie algebra generated
by the identity matrix idN . Its dual is id∗N = 1

N idN . We can choose a basis
for the vector space glN consisting of the basis for slN and the unit matrix
idN . To every chord we must assign either a pair of dual basic elements
of slN , or the pair (idN ,

1
N idN ), which is equivalent to forgetting the chord

and multiplying the obtained diagram by 1
N . This means precisely that we

are applying the weight system e
I1
N to the chord subdiagram DJ formed by

forgotten chords, and the weight system ϕStslN
to the chord subdiagram DJ

formed by the remaining chords. �

6.1.8. soN with the standard representation. In this case a state σ
for D is a function on the set [D] of chords of D with values in the set
{1/2,−1/2}. The rule of resolution of a chord according to its state is

c , if σ(c) =
1

2
; c , if σ(c) = −1

2
.

As before, |σ| denotes the number of components of the obtained curve.

Theorem ([BN0, BN1]). ϕStsoN
(D) =

∑

σ

(∏

c

σ(c)
)
N |σ| , where the prod-

uct is taken over all n chords of D, and the sum is taken over all 2n states
for D.

We leave the proof of this theorem to the reader as an exercise (number
16 at the end of the chapter).
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Here is the table of values of ϕStsoN
(D) for basic diagrams of small degree:

D

ϕsoN (D) 1
2
(N2−N) 1

4
(N2−N) 1

8
(N2−N) 1

8
N(−N2+4N−3)

D

ϕsoN (D) 1
16
N(3N2−8N+5) 1

8
N(N−1)2 1

16
N(N3−4N2+6N−3)

Exercises 17—21 contain additional information about this weight sys-
tem.

6.1.9. sp2N with the standard representation. It turns out that ϕStsp2N
(D) =

(−1)n+1ϕso−2N (D), where the last notation means the formal substitution of
−2N instead of the variable N in the polynomial ϕsoN (D), and n, as usual,
means the number of chords of D. This implies that the weight system
ϕStsp2N

does not provide any new knot invariant. Some details about it can

be found in [BN0, BN1].

It would be interesting to find a combinatorial description of weight
systems for the exceptional simple Lie algebras E6, E7, E8, F4, G2.

6.2. Lie algebra weight systems for the algebra C
We would like to extend the weight system ϕg(·) to the weight system ρg(·)
for the algebra C in such a way that the diagram

A
ϕg //

λ̂
��

U(g)

C
ρg

77ppppppppppppp

becomes commutative. Here λ̂ is the isomorphism of A and C from section
5.3.1. (Since A and C are isomorphic, the word ‘extension’ is not quite
appropriate; we use it because the set of closed diagrams generating C is
strictly wider than the set of chord diagrams generating A and we are going
to explain the rule of computing the value of ρ on any closed diagram.)

The STU relation (Section 5.1.2), defining the algebra C, gives us a hint.
Namely, if we assign elements ei, ej to the endpoints of chords of the T- and
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U- diagrams from the STU relations,

ei ej

e∗i e∗j

T
−

ej ei

e∗i e∗j

U
=

[ei,ej ]

e∗i e∗j

S
,

then it is natural to assign the commutator [ei, ej ] to the trivalent vertex in
the S-diagram. The formal construction goes as follows.

For any closed Jacobi diagram C ∈ Cn let V = {v1, . . . , vm} be the
set of its external vertices (lying on the Wilson loop) ordered according to
the orientation of the loop. We construct a tensor Tg(C) ∈ g⊗m whose i-
th tensor factor g corresponds to the element vi of the set V . Then we put
ρg(C) to be equal to the image of the tensor Tg(C) in U(g) under the natural
projection. This is the weight system for the algebra C.

To construct the tensor Tg(C), we cut all the edges between the trivalent
vertices of C. This splits C into a union of elementary pieces (tripods), each
consisting of one trivalent vertex and three univalent vertices. Here is an
example:

With each elementary piece we associate a copy of the tensor −J ∈ g⊗g⊗g

whose factors correspond to the univalent vertices in agreement with the
cyclic ordering of the edges. This tensor is defined as follows. Consider the
Lie bracket [·, ·] as an element of g∗ ⊗ g∗ ⊗ g. Identification of g∗ and g via
〈·, ·〉 provides the tensor J ∈ g⊗ g⊗ g.

6.2.1. Exercise. Use the properties of [·, ·] and 〈·, ·〉 to prove that the tensor
J thus obtained is skew-symmetric under the permutations of the three
tensor factors (see Lemma A.1.6 on page 419).

This result ensures that the previous construction makes sense. Al-
though it does not really matter, please note that we associate the tensor
−J , not J , to each vertex. This convention proves useful in the case g = glN :
it makes the graphical algorithm for the calculation of the weight system look
more natural.

The tensor Tg(C) corresponding to C is combined from these elementary
ones in the following way. Let us restore C from the tripod pieces. Each
time two univalent vertices are put together, we contract the two tensor
factors corresponding to these vertices by taking the form 〈·, ·〉 on them.
For example, if −J =

∑
αj ⊗βj ⊗γj , then the tensor we relate to the union

of two pieces will be:
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γj αk

αj

βj

γk

βk

∑

i,j,k

〈γj , αk〉αj ⊗ βj ⊗ βk ⊗ γk.

Gluing and contracting in such a way over all the edges previously cut
we obtain an element of the tensor product of several copies of g whose
factors correspond to the univalent vertices of C. This is what we denote
by Tg(C).

Speaking pictorially, we suspend a copy of the tensor cube of g with the
distinguished element −J living inside it at every internal vertex of C, then
take the tensor product over all internal vertices and compute the complete
contraction of the resulting tensor, applying the bilinear form 〈·, ·〉 to every
pair of factors that correspond to the endpoints of one internal edge, for
example:

1

2

4

3

g

BB
BB

BB
BB

BB
BB

BB
BB

g

||
||

||
||

||
||

||
||

g

g
g⊗

g

g
g⊗

g

||||||||

||||||||
g

BBBBBBBB

BBBBBBBB

−→ g⊗ g⊗ g⊗ g ,

where the numbers at univalent vertices on the graph correspond to the
order of tensor factors from left to right in the resulting space g⊗4. Doing
this with all internal vertices and edges we get the tensor Tg(C) ∈ g⊗m

Note that the correspondence C → Tg(C) satisfies the AS and IHX
relations:

(1) the AS relation follows from the fact that the tensor J changes sign
under odd permutations of the three factors in g⊗ g⊗ g.

(2) the IHX relation is a corollary of the Jacobi identity in g.

Moreover, the element ρg(C), which is the image of the tensor Tg(C) under
the natural projection g⊗m → U(g), satisfies also the STU relation:

(3) the STU relation follows from the definition of commutator in the
universal enveloping algebra.

To exemplify this construction, we prove the following lemma relating
the tensor corresponding to a ‘bubble’ with the quadratic Casimir tensor.
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6.2.2. Lemma. For the Killing form 〈·, ·〉K as the preferred invariant form
we have

Tg( ) = Tg( ) .

For the bilinear form µ〈·, ·〉K the rule changes as follows: Tg( ) =

1
µTg( ).

Proof. The cut and glue procedure above gives the following tensor written
in an orthonormal basis {ei}.

ei

ek ej′

ej ek′

ei′
∑

i,i′

∑

k,j,k′,j′

cijkci′j′k′〈ek, ej′〉K〈ej , ek′〉Kei ⊗ ei′

=
∑

i,i′

(∑

j,k

cijkci′kj

)
ei ⊗ ei′ ,

where cijk are the structure constants: J =
d∑

i,j,k=1

cijkei ⊗ ej ⊗ ek.

To compute the coefficient
(∑
j,k

cijkci′kj

)
let us find the value of the

Killing form 〈ei′ , ei〉K = Tr(adei′
adei). Since adei(ej) =

∑
k

cijkek and

adei′
(ek) =

∑
l

ci′klel, the (j, l)-entry of the matrix of the product adei′
adei

will be
∑
k

cijkci′kl. Therefore 〈ei′ , ei〉K =
∑
j,k

cijkci′kj . Orthonormality of the

basis {ei} implies that
∑
j,k

cijkci′kj = δi,i′ . This means that the tensor in the

right-hand side equals
∑
i
ei⊗ ei, which is the quadratic Casimir tensor from

the left-hand side. �

6.2.3. The sl2-weight system.

Theorem ([ChV]). For the invariant form 〈x, y〉 = Tr(xy) the following
equality of tensors holds:

Tsl2

( )
= 2Tsl2

( )
− 2Tsl2

( )
.

If the chosen invariant form is λ〈·, ·〉, then the coefficient 2 in this equa-
tion is replaced by 2

λ .
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Proof. For the algebra sl2 the Casimir tensor and the Lie bracket tensor
are

C =
1

2
H ⊗H + E ⊗ F + F ⊗ E ;

−J = −H⊗F⊗E+F⊗H⊗E+H⊗E⊗F−E⊗H⊗F−F⊗E⊗H+E⊗F⊗H.
Then the tensor corresponding to the right-hand side is (we numerate the
vertices according to the tensor factors)

Tsl2

( 1

2

4

3

)
= −H⊗F⊗H⊗E+H⊗F⊗E⊗H+F⊗H⊗H⊗E

−F⊗H⊗E⊗H−H⊗E⊗H⊗F+H⊗E⊗F⊗H+E⊗H⊗H⊗F−E⊗H⊗F⊗H
+2F⊗E⊗F⊗E−2F⊗E⊗E⊗F−2E⊗F⊗F⊗E+2E⊗F⊗E⊗F

= 2
(

1
4
H⊗H⊗H⊗H+ 1

2
H⊗E⊗F⊗H+ 1

2
H⊗F⊗E⊗H+ 1

2
E⊗H⊗H⊗F

+E⊗E⊗F⊗F+E⊗F⊗E⊗F+ 1
2
F⊗H⊗H⊗E+F⊗E⊗F⊗E+F⊗F⊗E⊗E

)

−2
(

1
4
H⊗H⊗H⊗H+ 1

2
H⊗E⊗H⊗F+ 1

2
H⊗F⊗H⊗E+ 1

2
E⊗H⊗F⊗H

+E⊗E⊗F⊗F+E⊗F⊗F⊗E+ 1
2
F⊗H⊗E⊗H+F⊗E⊗E⊗F+F⊗F⊗E⊗E

)

= 2Tsl2

( )
− 2Tsl2

( )
.

�

Remark. During the reduction of a closed diagram according to this theo-
rem a closed circle different from the Wilson loop may occur (see the exam-
ple below). In this situation we replace the circle by the numeric multiplier
3 = dim sl2 which is the trace of the identity operator in the adjoint repre-
sentation of sl2.

Remark. In the context of weight systems this relation was first noted in
[ChV]. Then it was rediscovered several times. But in more general context
of graphical notation for tensors it was known to R. Penrose [Pen] circa 1955.
In a certain sense, this relation goes back to Euler and Lagrange because
it is an exact counterpart of the classical “bac − cab” rule, a × (b × c) =
b(a · c)− c(a · b), for the ordinary cross product of vectors in 3-space.

Example.

ρsl2

( )
= 2ρsl2

( )
− 2ρsl2

( )
= 4ρsl2

( )

−4ρsl2

( )
− 4ρsl2

( )
+ 4ρsl2

( )

= 12c2 − 4c2 − 4c2 + 4c2 = 8c2 .
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The next corollary implies the 6-term relation from Section 6.1.3.

Corollary.

ρsl2

( )
= 2ρsl2

(
−

)
; ρsl2

( )
= 2ρsl2

(
−

)
;

ρsl2

( )
= 2ρsl2

(
−

)
; ρsl2

( )
= 2ρsl2

(
−

)
.

6.2.4. glN with the standard representation. For a closed diagram
C ∈ Cn with the set IV of t internal trivalent vertices we double each
internal edge (not a piece of the Wilson loop) and count the number of
components of the obtained curve as before. The only problem here is how
to connect the lines near an internal vertex. This can be decided by means
of a state function s : IV → {−1, 1}.

Theorem ([BN1]). Let ρStglN
(·) be the weight system associated to the Lie

algebra glN , its standard representation, and the invariant form 〈x, y〉 =
Tr(xy).

For a closed diagram C and a state s : IV → {−1, 1} double every
internal edge and connect the lines together in a neighborhood of a vertex
v ∈ IV according to the state s:

v , if s(v) = 1; v , if s(v) = −1.

Let |s| denote the number of components of the curve obtained in this way.
Then

ρStglN
(C) =

∑

s

(∏

v

s(v)
)
N |s| ,

where the product is taken over all t internal vertices of C, and the sum is
taken over all the 2t states for C.

Proof. A straightforward way to prove this theorem is to use the STU
relation and the theorem of Section 6.1.6. However we prefer a different way
based on the graphical notation for tensors developed below.

Using the identification of (glN )∗ with glN and generators eij indicated
at the beginning of Section 6.1.6 we can rewrite the Lie bracket as

J =
N∑

i,j,k=1

(eji ⊗ ekj ⊗ eik − eji ⊗ eik ⊗ ekj).
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To each internal trivalent vertex we associate the tensor

−J =
N∑

i,j,k=1

(eji ⊗ eik ⊗ ekj − eji ⊗ ekj ⊗ eik) .

6.2.5. Graphical notation for tensors. Here we introduce a system of
graphical notation for a special class of the elements of (glN )⊗n similar to
that invented by R. Penrose in [Pen] (see also [BN1]). Consider a plane
diagram (T -diagram) that consists of n pairs of mutually close points con-
nected pairwise by n lines. Formally speaking, a T -diagram is a set X of
cardinality 2n endowed with two involutions without fixed points (or, in
other words, two partitions of X into n two-point subsets ). In the pictures
below, X is the set of all protruding endpoints of the lines which indicate
the second partition, while the pairs of the first partition are the endpoints
that are drawn close to each other.

Given a T -diagram, we can write out the corresponding element of the
n-th tensor power of glN in the following way. We put the same index at
either end of each line, and then, traveling around the encompassing circle,
write a factor eij each time we encounter a pair of neighboring points, the
first of which is assigned the index i and the second, the index j. Then we
consider the sum of all such tensors when all the indices range from 1 to N .
In a sense, this procedure gives a graphical substitute for the formal Einstein
summation rule in multi-index expressions. We must admit that in general
the element of ⊗nglN thus obtained may depend on the choice of the starting
point of the circle, — but the corresponding element of the symmetric power,
obtained by symmetrization, will not depend on this choice.

For example, to find the tensor corresponding to the diagram we

take three indices i, j and k and write:
j
i

i k

j
k

N∑

i,j,k=1

eji ⊗ eik ⊗ ekj .

Here is another example:
j
i

k j

k
i

N∑

i,j,k=1

eji ⊗ ekj ⊗ eik.

These two examples are sufficient to graphically express the tensor J :

J = −

With every trivalent vertex of an open diagram we associate a copy of
the tensor −J : −
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depending on the value of state on the vertex. After all such resolutions
we get a linear combination of 2t tensor monomials representing the tensor
TglN

(C). Then taking the corresponding element in the universal envelop-
ing algebra U(glN ) and the trace of its standard representation we get the
polynomial weight system ρStglN

(C). Now repeating the argument at the end

of the proof on p.174 we get the Theorem. �

Example. Let us compute the value ρStglN

( )
. There are four resolu-

tions of the triple points:Q
s(v)=1

|s|=4

Q
s(v)=−1

|s|=2

Q
s(v)=−1

|s|=2

Q
s(v)=1

|s|=2

Therefore, ρStglN

( )
= N4 −N2.

Other properties of the weight system ρStglN
(·) are formulated in exercises

29 - 33.

6.2.6. soN with standard representation. Now a state for C ∈ Cn will
be a function s : IE → {−1, 1} on the set IE of internal edges (those which
are not on the Wilson loop). The value of a state indicates the way of
doubling the corresponding edge:

e
, if s(e) = 1;

e
, if s(e) = −1.

In a neighborhood of a trivalent vertex we connect the lines in a standard
fashion. For example, if the values of the state on three edges e1, e2, e3
meeting at a vertex v are s(e1) = −1, s(e2) = 1, and s(e3) = −1, then we
have

ve1
e2 e3

.

As usual, |s| denotes the number of components of the curve obtained in
this way.

Theorem ( [BN1]). Let ρStsoN
(·) be the weight system associated to the Lie

algebra soN , its standard representation, and the invariant form 〈x, y〉 =
Tr(xy). Then

ρStsoN
(C) = 2#(IV )−#(IE)

∑

s

(∏

e

s(e)
)
N |s| ,



186 6. Lie algebra weight systems

where the product is taken over all internal edges of C, the sum is taken over
all states for C, and #(IV ), #(IE) denote the numbers of internal vertices
and edges respectively.

The Theorem can be reformulated as follows. For an internal vertex v
consider one of the following 8 resolutions (two for each edge incident to v)
together with the corresponding sign:

+ − − −

+ + + −

Now let s be a choice of one of these resolution for every internal trivalent
vertex, and let sign(s) be the product of the corresponding signs over all
internal trivalent vertices. Then

ρStsoN
(C) =

1

4#(IV )

∑

s

sign(s)N |s| ,

In this form the Theorem can be easily proved by using the STU relation
and the theorem of Section 6.1.8.

Example.

ρStsoN

( )
= 1

4(N3 −N2 −N2 −N2 +N +N +N −N)

= 1
4(N3 − 3N2 + 2N) = 1

4N(N − 1)(N − 2) .

6.3. Lie algebra weight systems for the algebra B
In this section for a metrized Lie algebra g we construct a weight system
ψ : B → S(g), defined on the space of open diagrams B and taking values
in the complete symmetric algebra of the vector space g (in fact, even in its
g-invariant subspace S(g)g).

Let O ∈ B be an open diagram. Denote by V the set of its legs (univalent
vertices). Just as in Section 6.2 we construct a tensor

Tg(O) ∈
⊗

v∈V
g,

where the symbol
⊗
v∈V

g means the tensor product whose factors correspond

to the elements of the set V : it is defined like the usual tensor product,
only instead of linearly ordered arrays (g1, ..., gm), gi ∈ g we use families of
elements of g indexed by the set V .
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A numbering ν of the set of univalent vertices V yields an isomorphism

between
⊗
v∈V

g and the conventional tensor power
m⊗
i=1

g = g⊗m (with a linear

order of the factors). This isomorphism takes Tg(O) to T νg (O). The average
over all numberings ν is the element of the symmetric power which we wanted
to construct:

ψg(O) =
1

m!

∑

ν∈Sm

T νg (O) ∈ Sm(g).

Algorithmically, this step means that we forget the symbols of the tensor
product and view the result as an ordinary commutative polynomial in the
variables that correspond to a basis of g.

6.3.1. The formal PBW theorem. The relation between the Lie algebra
weight system for chord diagrams and for open diagrams is expressed by the
following theorem.

Theorem. For any metrized Lie algebra g the diagram

B ψg−−−−→ S(g)

χ

y
yβg

A −−−−→
ϕg

U(g)

is commutative.

Proof. The assertion becomes evident as soon as one recalls the definitions
of all the constituents of the diagram: the isomorphism χ between the alge-
bras A and B described in section 5.7, the weight systems ϕg and ψg, defined
in sections 6.1 and 6.3, and βg — the Poincaré–Birkhoff–Witt isomorphism
taking an element x1x2...xn into the arithmetic mean of xi1xi2 ...xin over
all permutations (i1, i2, ..., in) of the set {1, 2, . . . , n}. Its restriction to the
invariant subspace S(g)g is an isomorphism with the center of U(g). �

6.3.2. Example. Let g be the Lie algebra so3. It has a basis {a, b, c}
which is orthonormal with respect to the Killing form 〈·, ·〉K and with the
commutators [a, b] = c, [b, c] = a, [c, a] = b. So as a metrized Lie algebra so3

is isomorphic to Euclidean 3-space with the cross product as a Lie bracket.
The tensor that we put in every 3-valent vertex in this case is

J = a ∧ b ∧ c
= a⊗ b⊗ c+ b⊗ c⊗ a+ c⊗ a⊗ b− b⊗ a⊗ c− c⊗ b⊗ a− a⊗ c⊗ b.

Since the basis is orthonormal, the only way to get a non-zero element
in the process of contraction along the edges is to choose the same basic
element on either end of each edge. On the other hand, the formula for
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J shows that in every vertex we must choose a summand with different
basic elements corresponding to the 3 edges. This leads to the following
algorithm to compute the tensor Tso3(O) for a given diagram O: one must
list all 3-colorings of the edges of the graph by 3 colors a, b, c such that the 3
colors at every vertex are always different, then sum up the tensor products
of the elements written on the legs, each taken with the sign (−1)s, where
s is the number of negative vertices (i. e. vertices where the colors, read
counterclockwise, come in the negative order a, c, b).

For example, consider the diagram (the Pont-Neuf diagram with para-
meters (1, 3) in the terminology of O. Dasbach [Da3], see also p.412 below):

O =

It has 18 edge 3-colorings, which can be obtained from the following three
by permutations of (a, b, c):

b
c

c

c

c
*

a
b

ca

b
c

a

b

a a
b

c
a

c
*

a
b

ca

b
c

a

b

c

c
c

b
a

c
*

a
b

ca

b
c

a

b

b

In these pictures, negative vertices are marked by small empty circles. Writ-
ing the tensors in the counterclockwise order starting from the marked point,
we get:

2(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b+ c⊗ c⊗ c⊗ c)
+a⊗ b⊗ b⊗ a+ a⊗ c⊗ c⊗ a+ b⊗ a⊗ a⊗ b
+b⊗ c⊗ c⊗ b+ c⊗ a⊗ a⊗ c+ c⊗ b⊗ b⊗ c
+a⊗ a⊗ b⊗ b+ a⊗ a⊗ c⊗ c+ b⊗ b⊗ a⊗ a
+b⊗ b⊗ c⊗ c+ c⊗ c⊗ a⊗ a+ c⊗ c⊗ b⊗ b.

This tensor is not symmetric with respect to permutations of the 4 tensor
factors (although — we note this in passing — it is symmetric with respect
to the permutations of the 3 letters a, b, c). Symmetrizing, we get:

ψso3(O) = 2(a2 + b2 + c2)2.
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This example shows that the weight system defined by the Lie algebra
so3, is closely related to the 4-color theorem, see [BN3] for details.

6.3.3. The glN weight system for the algebra B. We are going to
adapt the graphical notation for tensors from Section 6.2.4 to this situation.
Namely, with every trivalent vertex of an open diagram O we associate two
resolutions (T -diagrams):

−

After all such resolutions we get a linear combination of 2t T -diagrams,
where t is the number of trivalent vertices of O. Each diagram consists of m
pairs of points and 2m lines connecting them, and represents a tensor from
glN
⊗m. Permuting the tensor factors in glN

⊗m corresponds to interchanging
the pairs of points in the diagram:

Therefore, if we consider a T -diagram up to an arbitrary permutation of
the pairs, it correctly defines an element of Un(glN )/Un−1(glN ) ≃ Sn(glN ).
On a purely combinatorial level, a T -diagram considered up to an arbitrary
permutation of pairs of legs is a set of cardinality 2n endowed with a splitting
into n ordered pairs and a splitting into n unordered pairs. Thus, the linear
combination of T -diagrams which is considered up to such permutations
represents the element ψglN

(C).

6.3.4. The center of U(glN ). It is known [Zh] that ZU(glN ) is generated
by N variables cj , 1 6 j 6 N (generalized Casimir elements):

cj =
N∑

i1,...,ij=1

ei1i2ei2i3ei3i4 . . . eij−1ijeiji1

as a free commutative polynomial algebra.

In the graphical notation

cj =

︸ ︷︷ ︸
j pairs

.
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In particular, c1 = =
N∑
i=1

eii is the unit matrix (note that it is not the unit

of the algebra S(g)), c2 = =
N∑

i1,i2=1
ei1i2ei2i1 is the quadratic Casimir

element.

It is convenient to extend the list c1, . . . , cN of our variables by setting
c0 = N . The graphical notation for c0 will be a circle. (Indeed, a circle has
no legs, so it must correspond to an element of the 0-th symmetric power
of g, which is the ground field. When the index written on the circle runs
from 1 to N , we must take the sum of ones in the quantity N , thus getting
N .)

Example.

ψglN

( )
= − − +

= − − + = 2(c0c2 − c21).

Exercises

(1) Let (g1, 〈·, ·〉1) and (g2, 〈·, ·〉2) be two metrized Lie algebras. Then their
direct sum g1⊕g2 is also a metrized Lie algebra with respect to the form
〈·, ·〉1 ⊕ 〈·, ·〉2. Prove that ϕg1⊕g2 = ϕg1 · ϕg2 .

The general aim of exercises (2)-(8) is to compare the behavior of ϕsl2 (D) with that

of the chromatic polynomial of a graph. In these exercises we use the form 2〈·, ·〉 as the

invariant form.

(2) ∗ Prove that ϕsl2(D) depends only on the intersection graph Γ(D) of the
chord diagram D (see Section 4.8).

(3) Prove that the polynomial ϕsl2(D) has alternating coefficients.

(4) Show that for any chord diagram D the polynomial ϕsl2(D) is divisible
by c.

(5) ∗ Prove that the sequence of coefficients of the polynomial ϕsl2(D) is
unimodal (i.e. its absolute values form a sequence with only one maxi-
mum).

(6) Let D be a chord diagram with n chords for which Γ(D) is a tree. Prove
that ϕsl2(D) = c(c− 2)n−1.

(7) Prove that the highest three coefficients of the polynomial ϕsl2(D) are

ϕsl2(D) = cn − e · cn−1 + (e(e− 1)/2− t+ 2q) · cn−2 − . . . ,
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where e is the number of intersections of chords of D; t and q are the
numbers of triangles and quadrangles of D respectively. A triangle is a
subset of three chords of D with all pairwise intersections. A quadrangle
of D is an unordered subset of four chords a1, a2, a3, a4 which form a
circle of length four. This means that, after a suitable relabeling, a1

intersects a2 and a4, a2 intersects a3 and a1, a3 intersects a4 and a2,
a4 intersects a1 and a3 and any other intersections are allowed. For
example,

e
( )

= 6, t
( )

= 4, q
( )

= 1 .

(8) (A. Vaintrob [Vai2]). Define vertex multiplication of chord diagrams as
follows:

* ∨ * := = .

Of course, the result depends of the choice of vertices where multiplica-
tion is performed. Prove that for any choice

ϕsl2(D1 ∨D2) =
ϕsl2(D1) · ϕsl2(D2)

c
.

(9) (S. Lando [LZ], B. Mellor [Mel2]). Let s(D)
be the number of connected components of
the curve obtained by doubling all chords of a
chord diagram D, and N be a formal variable. Consider the adjacency
matrix M of the intersection graph of D as a matrix over the field of
two elements F2 = {0, 1}. Prove that s(D)− 1 is equal to the corank of
M (over F2), and deduce from this that ϕStglN

(D) depends only on the

intersection graph Γ(D).
Essentially the same weight system was independently rediscovered

by B. Bollobás and O. Riordan [BR2] who used it to produce a poly-
nomial invariant of ribbon graphs generalizing the Tutte polynomial
[BR3].

(10) (D. Bar-Natan, S. Garoufalidis [BNG]) Prove that the weight system
ϕStglN

satisfies the 2-term relations (see 4.8.5). (A similar fact for ϕStsoN

can be found in [Mel2].)

(11) (D. Bar-Natan, S. Garoufalidis [BNG]) Let cn be the coefficient of tn

in the Conway polynomial and D, a chord diagram of degree n. Prove
that symb(cn)(D) equals, modulo 2, the determinant of the adjacency
matrix of the intersection graph Γ(D).
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(12) Let Dn be a chord diagram with n chords
whose intersection graph is a circle. Prove
that ϕStglN

(Dn) = ϕStglN
(Dn−2). Deduce from

this that ϕStglN
(Dn) = N2 for odd n, and

ϕStglN
(Dn) = N3 for even n.

Dn =

n chords

(13) Work out a proof of the theorem from Section 6.1.7 about slN weight
system with standard representation, similar to the one given in Sec-
tion 6.1.6. Use the basis of the vector space slN consisting of the matri-
ces eij for i 6= j and the matrices eii − ei+1,i+1.

(14) Prove that ϕ′StslN
≡ ϕ′StglN

.

Hint. ϕ′StslN
= e−

N2−1
N

I1 · ϕStslN
= e−NI1 · ϕStglN

= ϕ′StglN
.

(15) Compare the symbol of the coefficient jn of the Jones polynomial (sec-
tion 3.6.2) with the weight system coming form sl2, and prove that

symb(jn) =
(−1)n

2
ϕ′Stsl2

.

Hint. Compare the formula for ϕ′Stsl2
from the previous problem and

the formula for symb(jn) from Section 3.6.2, and prove that

(|s| − 1) ≡ #{chords c such that s(c) = 1} mod 2 .

(16) Work out a proof of the theorem from Section 6.1.8 about soN weight
system in standard representation. Use the basis of soN formed by
matrices eij − eji for i < j. (In case of difficulty consult [BN0, BN1].)

(17) Work out a proof, similar to the proof of the Proposition from Sec-
tion 6.1.6, that ϕStsoN

(D) depends only on the intersection graph of D.

(18) (B. Mellor [Mel2]). For any subset J ⊆ [D], let MJ denotes marked
adjacency matrix of the intersection graph of D over the filed F2 , that
is the adjacency matrix M only the diagonal elements corresponding to
elements of J are switched to 1. Prove that

ϕStsoN
(D) =

Nn+1

2n

∑

J⊆[D]

(−1)|J |N−rank(MJ ) ,

where the rank is computed as the rank of a matrix over F2. This gives
another proof of the fact that ϕStsoN

(D) depends only on the intersection
graph Γ(D).

(19) Show that N = 0 and N = 1 are roots of polynomial ϕStsoN
(D) for any

chord diagram D.

(20) Let D be a chord diagram with n chords, such that the intersection
graph Γ(D) is a tree. Show that ϕStsoN

(D) = 1
2nN(N − 1).
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(21) Let Dn be a chord diagram from problem 12. Prove that
a). ϕStsoN

(Dn) = 1
2

(
ϕStsoN

(Dn−2)− ϕStsoN
(Dn−1)

)
;

b). ϕStsoN
(Dn) = 1

(−2)nN(N − 1)(an−1N − an) , where the recurrent

sequence an is defined by a0 = 0, a1 = 1, an = an−1+2an−2.

(22) Compute ρsl2

( )
, ρsl2

( )
, and show that these two closed

diagrams are linearly independent.

(23) Let tn ∈ Cn+1 be a closed diagram with n legs
as shown in the figure.
Show that ρsl2(tn) = 2nc.

tn =

n legs

(24) Let wn ∈ Cn be a wheel with n spokes.
Show that
ρsl2(w2) = 4c, ρsl2(w3) = 4c, and

wn =

n spokes

ρsl2(wn) = 2c · ρsl2(wn−2) + 2ρsl2(wn−1)− 2n−1c.

(25) Let w2n ∈ B2n be a wheel with 2n spokes and
( )n ∈ Bn be the n-th power of the element

in the algebra B.

Show that for the tensor Tsl2 from 6.2.3 the

w2n =

2n spokes

( )n =
}
n segments

following equality holds Tsl2(w2n) = 2n+1 Tsl2(( )n).

Therefore, ψsl2(w2n) = 2n+1 ψsl2(( )n).

(26) Let p ∈ Pkn ⊂ Cn be a primitive element of degree n > 1 with at most k
external vertices. Show that ρsl2(p) is a polynomial in c of degree 6 k/2.

Hint. Use the theorem from 6.2.3 and the calculation of ρsl2(t3) from
exercise (23).

(27) Let ϕ′sl2 be the deframing of the weight system ϕsl2 according to the

procedure of Section 4.5.6. Show that for any element D ∈ An, ϕ′sl2(D)
is a polynomial in c of degree 6 [n/2]

Hint. Use the previous exercise, exercise (8) of Chapter 4, and Sec-
tion 5.5.2.

(28) Denote by Vk the k-dimensional irreducible representation of sl2 (see

Appendix A.1.1). Let ϕ′Vk
sl2

be the corresponding weight system. Show

that for any element D ∈ An of degree n, ϕ′Vk
sl2

(D)/k is a polynomial in
k of degree at most n.

Hint. The quadratic Casimir number in this case is k2−1
2 .
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(29) Let C ∈ Cn (n > 1) be a closed diagram (primitive element) which
remains connected after deleting the Wilson loop. Prove that
ρStglN

(C) = ρStslN
(C).

Hint. For the Lie algebra glN the tensor J ∈ gl⊗3
N lies in the subspace

sl⊗3
N .

(30) Consider a closed diagram C ∈ Cn and a glN -state s for it (see p. 183).
Construct a surface Σs(C) by attaching a disk to the Wilson loop, re-
placing each edge by a narrow band and gluing the bands together at
trivalent vertices — flatly, if s = 1, and with a twist, if s = −1. Here is
an example:

C =
+

−
−

+
=: Σs(C) .

a). Show that the surface Σs(C) is orientable.
b). Compute the Euler characteristic of Σs(C) in terms of C, and show

that it depends only on the degree n of C.
c). Prove that ρStglN

(C) is an odd polynomial for even n, and it is an

even polynomial for odd n.

(31) Show that N = 0, N = −1, and N = 1 are roots of the polynomial
ρStglN

(C) for any closed diagram C ∈ Cn (n > 1).

(32) Compute ρStglN
(tn), where tn is the closed diagram from problem 23.

Answer. For n > 1, ρStglN
(tn) = Nn(N2 − 1).

(33) For the closed diagram wn as in the problem 24, prove that ρStglN
(wn) =

N2(Nn−1 − 1) for odd n, and ρStglN
(wn) = N(Nn +N2 − 2) for even n.

Hint. Prove the recurrent formula ρStglN
(wn) = Nn−1(N2 − 1) +

ρStglN
(wn−2) for n > 3.

(34) Extend the definition of the weight system symb(cn)(·) of the coefficient
cn of the Conway polynomial to Cn, and prove that

symb(cn)(C) =
∑

s

(∏

v

s(v)
)
δ1,|s| ,

where the states s are precisely the same as in the theorem of Sec-
tion 6.2.4 for the weight system ρStglN

(·). In other words, prove that

symb(cn)(C) equals to the coefficient at N in the polynomial ρStglN
(C). In

particular, show that symb(cn)(wn) = −2 for even n, and symb(cn)(wn) =
0 for odd n.

(35) Show that N = 0, and N = 1 are roots of the polynomial ρStsoN
(C) for

any closed diagram C ∈ Cn (n > 0).
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(36) a). Let C ∈ C be a closed diagram with at least one internal trivalent
vertex. Prove that N = 2 is a root of the polynomial ρStsoN

(C).

b). Deduce that ρStso2
(C) = 0 for any primitive closed diagram C.

Hint. Consider the eight states that differ only on three edges meet-
ing at an internal vertex (see p.186). Show that the sum over these eight

states,
∑

sign(s)2|s|, equals zero.

(37) Prove that ρStsoN
(tn) = N−2

2 ρStsoN
(tn−1) for n > 1.

In particular, ρStsoN
(tn) = (N−2)n

2n+1 N(N − 1).

(38) Using some bases in A2 and B2, find the matrix of the isomorphism χ,
then calculate (i.e. express as polynomials in the standard generators)
the values on the basic elements of the weight systems ϕg and ψg for the
Lie algebras g = so3 and g = glN and check the validity of the relation
β ◦ ψ = ϕ ◦ χ in this particular case.

(39) Prove that the mapping ψ : B → S(g) is well-defined, i.e. that the IHX
relation follows from the Jacobi identity.





Chapter 7

Algebra of 3-graphs

The algebra of 3-graphs, introduced in [DKC], is obtained by a construc-
tion which is very natural from an abstract point of view. The elements of
this algebra differ from closed diagrams in that they do not have any distin-
guished cycle, like Wilson loop; they differ from open diagrams in that these
graphs are regular, without univalent vertices. So it looks as a simplification
of both algebras C and B. Strictly speaking, there are two different algebra
structures on the same vector space Γ of 3-graphs given by the edge (section
7.2) and the vertex (section 7.3) multiplications. These algebras are closely
related to the Vassiliev invariants in several ways. Namely,

• the vector space Γ is isomorphic to the subspace P2 of the primitive
space P of Jacobi diagrams spanned by connected diagrams with 2
legs (section 7.4.2);

• the algebra Γ acts on the primitive space P in two ways, via edge,
and via vertex multiplications (see sections 7.4.1 and 7.4.3);

• these actions behave nicely with respect to Lie algebra weight sys-
tems (see chapter 6); as a consequence, the algebra Γ is as good a
tool for the proof of existence of non-Lie-algebraic weight systems
as the algebra Λ in Vogel’s original approach (section 7.7);

• and finally, the space Γ describes the combinatorics of finite type
invariants of integral homology 3-spheres in much the same way as
the space of chord diagrams describes the combinatorics of Vassiliev
knot invariants. This topic, however, lies outside of the scope of
our book and we refer an interested reader to [Oht1].

Unlike C and B, the algebra Γ does not have any natural coproduct.

197
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7.1. The space of 3-graphs

7.1.1. Definition. A 3-graph is a connected 3-valent graph with a fixed
rotation. The rotation is the choice of a cyclic order of edges at every
vertex, i. e. one of the two cyclic permutations in the set of three edges
adjacent to this vertex. Note that the number of vertices of a 3-valent graph
is always even, and the number of edges a multiple of 3. Half the number of
the vertices will be referred to as the degree (or order) of a 3-graph.

In this definition, graphs are allowed to have multiple edges and loops.
In the case of graphs with loops, the notion of rotation requires the following
refinement: the cyclic order is introduced not in the set of edges incident to
a given vertex, but in the corresponding set of half-edges.

A topology free combinatorial definition of the set of half-edges can be
given as follows. Let E, V be the sets of edges and vertices, respectively,
of the graph under study. Then the set of half-edges is a ‘double fibering’

E
α← H

β→ V , that is a set H supplied with two projections α : H → E and
β : H → V such that (a) the inverse image of every edge α−1(e) consists
of two elements, (b) the cardinality of each set β−1(v) equals the valency
of the vertex v, (c) for any point h ∈ H the vertex β(h) is one of the two
endpoints of the edge α(h). Then the rotation is a cyclic permutation in the
inverse image of each vertex β−1(v).

One can forget about edges and vertices altogether and adopt the fol-
lowing clear-cut, although less pictorial, definition of a 3-graph: this is a
set of cardinality 6n equipped with two permutations, one with the cyclic
structure (3)(3) . . . (3), another with the cyclic structure (2)(2) . . . (2), with
the requirement that there is no proper subset invariant under both permuta-
tions. The relation to the previous definition consists in that H is the set of
half-edges, the first permutation corresponds to the rotation in the vertices
and the second, to the transition from one endpoint of an edge to another.
A vertex (resp. edge) of the graph is an orbit of the first (resp. second)
permutation.

7.1.2. Definition. Two 3-graphs are said to be isomorphic if there is a
one-to-one correspondence between their sets of half-edges which preserves
the rotation and induces a usual graph isomorphism — or, in other words,
which preserves both structural permutations.

Remark. It is convenient to include the circle into the set of 3-graphs
viewing it as a graph with a zero number of vertices.
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Example. Up to an isomorphism, there are three different 3-graphs of
degree 1:

Remark. Graphs with rotation are often called ribbon graphs (see [LZ]),
because such a graph can be represented as an orientable surface with bound-
ary having the form of a narrow strip along the skeleton that has the shape
of the given graph:

The construction of the surfaces starting from a graph proceeds as follows.
Replace each vertex and each edge by an oriented disk (imagine that disks
for vertices are ‘round’ while the disks for edges are ‘oblong’). Then glue
them together along pieces of boundary in agreement with the orientation
and so that the attachment of edge-disks to vertex-disks follows the cyclic
order prescribed at the vertices in the direction of the boundary induced by
the chosen orientation of the disks.

7.1.3. Definition. The space Γn is the quotient space of the vector space
over Q spanned by connected 3-graphs of degree n (i. e., having 2n vertices)
modulo the AS and IHX relations (see p. 130). By definition, Γ0 is one-
dimensional and spanned by the circle.

That is, the space of 3-graphs Γ differs from the space of open Jacobi di-
agrams B (p. 141) in that here we consider only connected diagrams without
univalent vertices, while the space B is spanned by diagrams with necessarily
at least one univalent vertex in each connected component.

7.1.4. Exercise.
Check that the 3-graph on the right is equal to zero as an
element of the space Γ3.

7.2. Edge multiplication

In the graded space

Γ = Γ0 ⊕ Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ . . .

there is a natural structure of a commutative algebra.

7.2.1. Definition. The edge product of two non-zero 3-graphs x and y is
the 3-graph obtained in the following way. Choose arbitrarily an edge in x
and an edge in y. Cut each of these two edges in the middle and attach
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the endpoints that appear on one edge, to the endpoints appearing on the
other.

x

y

x

y

= x · y .

The edge product of 3-graphs can be understood as the connected sum
of x and y along the chosen edges, and also as the result of insertion of one
graph, say x, into an edge of y.

Remark. The product of two connected graphs may yield a disconnected
graph, for example:

× =

This happens, however, only in the case when each of the two graphs be-
comes disconnected after cutting the chosen edge, and in this case both
graphs are 0 modulo AS and IHX relations (see Lemma 7.2.7(b) below).

7.2.2. Theorem. The edge product of 3-graphs, viewed as an element of
the space Γ, is well-defined.

Note that, as soon as this assertion is proved, one immediately sees that
the multiplication is commutative.

The claim that the product is well-defined consists of two parts. First,
that modulo the AS and IHX relations the product does not depend on the
choice of the two edges x and y which are cut and pasted. Second, that it
does not depend on the way they are put together (clearly, the two loose
ends of one graph can be glued to the two loose ends of another graph in
two different ways). These two facts are established in the following two
lemmas.

7.2.3. Lemma.
(a) A vertex with an attached edge can
be dragged through a subgraph that has
two legs.

x

y′
=

x

y′

(b) A subgraph with two legs can be
carried through a vertex.

x
=

x

Proof. Taking a closer look at these pictures, the reader will understand
that assertions (a) and (b) have exactly the same meaning and in fact are
nothing but a particular case (k = 1) of the Kirchhoff law (see page 133). �
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Another wording for Lemma 7.2.3 is: the results of insertion of a 3-graph
x into two adjacent edges of 3-graph y, are equal. Since y is connected, this
implies that the product does not depend on the choice of the edge in y.

7.2.4. Lemma. Two different ways to glue together two graphs with edges
cut give the same result in the space Γ:

x

y
=

x

y
.

Proof. Choosing the vertex of x which is nearest to the right exit of y in
the product, one can, by Lemma 7.2.3, effectuate the following manoeuvres:

x

y

= x

y

= x

y

= x

y

.

Therefore,
x

y
=

x

y

=

x

y
.

The lemma is proved, and edge multiplication of 3-graphs is thus well de-
fined. �

The edge product of 3-graphs is extended to the product of arbitrary
elements of the space Γ in the usual way, by linearity.

Corollary. The edge product in Γ is well-defined, associative, and dis-
tributive.

This follows from the fact that the product of 3-graphs is well-defined
and a linear combination of either AS or IHX type, when multiplied by
an arbitrary graph, is a combination of the same type. Distributivity and
associativity are obvious.

7.2.5. Some identities. We will prove several identities elucidating the
structure of the 3-graph algebra. They are easy consequences of the defining
relations. Note that these identities make sense and hold also in the algebras
of closed and open diagrams, C and B.

The first identity (Lemma 7.2.6) links the two operations defined in the
set of 3-graphs: the insertion of a triangle into a vertex (which is a particular
case of the vertex multiplication we shall study later) and the insertion of a
bubble into an edge. To insert a bubble into an edge of a graph is the same
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thing as to multiply this graph by the element β = iq q∈ Γ1. The correctness
of multiplication in Γ implies that the result of the bubble insertion does
not depend on the chosen edge; then it follows from Lemma 7.2.6 that the
result of the triangle insertion does not depend on the choice of the vertex.

7.2.6. Lemma. A triangle is equal to one half of a bubble:

=
1

2
=

1

2
=

1

2
.

Proof.

= + = −

= −

�
Corollary. If a bubble (or a triangle) travels along a connected component
of a diagram, the latter does not change.

It follows that there is a well-defined operator of bubble insertion Γ →
Γ : x 7→ βx that raises the grading by 1. For a long time it was conjectured
that this operator is injective. Recently, Pierre Vogel [Vo2] proved that it
has non-trivial kernel.

The second lemma describes two classes of 3-graphs which are equal to
0 in the algebra Γ, i. e. modulo the AS and IHX relations.

7.2.7. Lemma.
(a) A graph with a loop is 0 in Γ. = 0

(b) More generally, if the edge connectiv-
ity of the graph γ is 1, i. e., it becomes
disconnected after removal of an edge, then
γ = 0.

γ = = 0

Proof. (a) A graph with a loop is zero because of antisymmetry. Indeed,
changing the rotation in the vertex of the loop yields a graph which is, on
one hand, isomorphic to the initial one, and on the other hand, differs from
it by a sign.

(b) Such a graph can be represented as a product of two graphs, one of
which is a graph with a loop, i.e., zero according to (a):

γ = x y = x × y = 0 .
�
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7.2.8. The Zoo. The next table shows the dimensions dn and displays the
bases of the vector spaces Γn for n 6 11, obtained by computer calculations.

n dn additive generators

1 1

2 1

3 1

4 2

5 2

6 3

7 4

8 5

9 6

10 8

11 9

Table 7.2.8.1. Additive generators of the algebra of 3-graphs Γ

Note that the column for dn coincides with the column for k = 2 in the
table of primitive spaces on page 139. This will be proved in Proposition
7.4.2.

From the table one can see that the following elements can be chosen as
multiplicative generators of the algebra Γ up to degree 11 (notations in the
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lower line mean: β — ‘bubble’, ωi — ‘wheels’, δ — ‘dodecahedron’):

1 4 6 7 8 9 10 11

β ω4 ω6 ω7 ω8 ω9 ω10 δ ω11

7.2.9. Conjecture. The algebra Γ is generated by planar graphs.

The reader might have noted that the table of additive generators does
not contain the elements ω2

4 of degree 8 and ω4ω6 of degree 10. This is not
accidental. It turns out that the following relations (found by A. Kaishev
[Kai]) hold in the algebra Γ:

ω2
4 =

5

384
β8 − 5

12
β4ω4 +

5

2
β2ω6 −

3

2
βω7,

ω4ω6 =
305

27648
β10 − 293

864
β6ω4 +

145

72
β4ω6 −

31

12
β3ω7 + 2β2ω8 −

3

4
βω9.

In fact, as we shall see in section 7.3, it is true in general that the product
of an arbitrary pair of homogeneous elements of Γ of positive degree belongs
to the ideal generated by β.

Since there are non-trivial relations between the generators, the algebra
of 3-graphs, in contrast to the algebras A, B and C, is not free and hence
does not possess the structure of a Hopf algebra.

7.3. Vertex multiplication

In this section we define the vertex multiplication on the space

Γ>1 = Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4 ⊕ . . . .
It is different from Γ in that it does not contain the one-dimensional subspace
Γ0 spanned by the circle, the only graph without vertices.

7.3.1. Definition. The vertex product of two 3-graphs G1 and G2 is the
3-graph obtained in the following way. Choose arbitrarily a vertex in G1 and
a vertex in G2. Cut each of these two vertices together with the half-edges
incident to them. Then attach the endpoints that appear on one graph, to
the endpoints appearing on the other. There are six possibilities for this.
Take the alternating average of all of them. We take with the sign minus
those three attachments where the cyclic orders at two removed vertices are
coherent and with the plus sign those three which switch the cyclic orders.

Pictorially, if we draw the graphs G1, G2 like this G1 =
G1

, G2 =
G2

,

then to draw their vertex product we have to merge them and insert a
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permutation of the three strands between them. Then we take the result
with the sign of the permutation and average it over all six permutations:

G1 ∨
G2

=
1

6

[

G2

G1

−
G2

G1

−
G2

G1

−
G2

G1

+
G2

G1

+
G2

G1
]
.

As an example, let us compute the vertex multiplication by the theta
graph:

β ∨
G

= ∨
G

=
1

6

[

G
−

G
−

G
−

G
+

G
+

G

]
=

G
,

because all summands in the brackets are equal to each other due to the
AS relation. So β is going to be the unit for the algebra Γ>1 with vertex
multiplication.

The vertex product of 3-graphs can be understood as the average result
of insertions of one graph, say G1, into a vertex of G2 over all possible ways.

To shorten the notation, we will draw diagrams with shaded disks, un-
derstanding them as alternated linear combinations of six graphs like above.
For example:

G1 ∨
G2

=
G2

G1

=
G2

G1

.

7.3.2. Theorem. The vertex multiplication in Γ>1 is well-defined, commu-
tative and associative.

Proof. We must only prove that the following equality holds due to the AS
and IHX relations:

X1 = G = G = X2.

where G denotes an arbitrary subgraph with three legs (and each picture is
the alternating sum of six diagrams).

By the Kirchhoff law we have:

*
G =

*
G +

*

G

= G + G + G + G
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(the stars indicate the place where the tail of the ‘moving electron’ is fixed in
Kirchhoff’s relation). Now, in the last line the first and the fourth diagrams
are equal to X2, while the sum of the second and the third diagrams is
equal to −X1 (again, by an application of Kirchhoff’s rule). We thus have
2X1 = 2X2 and therefore X1 = X2.

Commutativity and associativity are obvious. �

7.3.3. Remark. The vertex multiplication shifts the degrees by one. So it
is an operation of degree −1: Γn ∨ Γm ⊂ Γn+m−1.

7.3.4. Proposition. (Relation between two multiplications in Γ.)
The edge multiplication “·” in the algebra of 3-graphs Γ is related to the
vertex multiplication “∨” as follows:

G1 ·G2 = β · (G1 ∨G2)

Proof. Choose a vertex in each of the given graphs G1 and G2 and call
what remains G′1 and G′2, respectively:

G1 =
G′

1

=
G′

1

, G2 =
G′

2

,

where, as explained above, the shaded region means an alternating average
over the six permutations of the three legs.

Then, by theorem 7.3.2 we have:

G1 ·G2 =
G′

1

G1

G′
2

G2

=
G′

1 G′
2

= β · G′
1 G′

2
= β · (G1 ∨G2) .

�

7.4. Action of Γ on the primitive space P
7.4.1. Edge action of Γ on P. As we know (section 5.5) the primitive
space P of the algebra C is spanned by connected diagrams, i. e. closed
Jacobi diagrams which remain connected after the Wilson loop is stripped
off. It is natural to define the edge action of Γ on such a diagram P simply
by edge multiplication of a graph G ∈ Γ with P , using an internal edge of
P . More specifically, we cut an arbitrary edge of the graph G. Then we cut
an edge in P not lying on the Wilson loop and attach the new endpoints of
P to those of G, like we did before for the algebra Γ itself. The graph that
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results is G · P ; it has one Wilson loop and is connected, hence it belongs
to P. Because of the connectivity of P and lemmas 7.2.3, 7.2.4 this result
G · P does not depend on the choices of the edge in G and the internal
edge in P . So this action is well-defined. The action is compatible with the
gradings: Γn · Pm ⊂ Pn+m. We shall use the edge action in the next
chapter in conjunction with Lie-algebraic weight systems.

7.4.2. Proposition. The vector space Γ = Γ0 ⊕ Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ . . . is
isomorphic to the subspace P2 = P2

1 ⊕ P2
2 ⊕ P2

3 ⊕ P2
4 ⊕ · · · ⊂ P of closed

diagrams generated by connected diagrams with 2 legs as a graded vector
space: Gn ∼= P2

n+1 for n > 0.

Proof. The required mapping Γ → P2 is given by the edge action of 3-
graphs on the element Θ ∈ P2 represented by the chord diagram with a
single chord, G 7→ G · Θ. The inverse mapping can be constructed in a
natural way. For a closed diagram P ∈ P2 strip off the Wilson loop and
glue together the two loose ends of the obtained diagram. The result will be
a 3-graph of degree one less than P . Obviously, this mapping is well-defined
and inverse to the previous one. �

7.4.3. Vertex action of Γ on P. To perform the vertex multiplication,
we need at least one vertex in each of the factors. So the natural action we
are speaking about is the action of the algebra Γ>1 (with the vertex product)
on the space P>1 of primitive elements of degree strictly greater than 1. The
action is defined in a natural way. Pick a vertex in G ∈ Γ>1, and an internal
vertex in P ∈ P>1. Then the result G∨P will be the alternated average over
all six ways to insert G with the removed vertex into P with the removed
internal vertex. Again, because of connectivity of P and by Theorem 7.3.2,
the action is well-defined. This action decreases the total grading by 1 and
preserves the number of legs: Γn ∨ Pkm ⊂ Pkn+m−1.

The simplest element of P on which one can act in this way is the

“Mercedes diagram” t1 = . This action has the following important

property.

7.4.4. Lemma. (a) The map Γ>1 → P defined as G 7→ G ∨ t1 is an inclu-
sion, i. e. it has no kernel.

(b) The vertex and edge actions are related to each other via the formula:

G ∨ t1 =
1

2
G ·Θ .

Proof. Indeed, t1 = 1
2β ·Θ. Therefore, G∨ t1 = 1

2(G∨β) ·Θ = 1
2G ·Θ. Since

the mapping G 7→ G ·Θ is an isomorphism (proposition 7.4.2), the mapping
G 7→ G ∨ t1 is also an isomorphism Γ>1

∼= P2
>1. �
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7.4.5. Multiplication in the primitive space P. By construction, the
space of primitive elements P of the algebra C (see Sec. 5.5), considered by
itself, does not possess any a priori defined multiplicative structure. Primi-
tive elements only generate the algebra C in the same way as the variables
x1, . . . , xn generate the polynomial algebra R[x1, . . . , xn]. However, the link
between the space P and the algebra of 3-graphs Γ allows one to introduce
in P a natural (non-commutative) multiplication. This can be done using
two auxiliary maps between Γ and P.

1. There is a linear inclusion i : Γn → Pn+1, defined on the generators
as follows: we cut an arbitrary edge of the graph and attach a Wilson loop
to the two resulting endpoints. The orientation of the Wilson loop can be
chosen arbitrarily. This is precisely the inclusion from proposition 7.4.2:
G 7→ G ·Θ.

2. There is a projection π : Pn → Γn, which consists in introducing the
rotation in the vertices of the Wilson loop according to the rule ‘forward–
sideways–backwards’ and then forgetting the fact that the Wilson loop was
distinguished.

The composition homomorphism Γ→ Γ in the sequence

Γ
i−→ P π−→ Γ

coincides with the multiplication by the bubble G 7→ β ·G.

The edge action · : Γ×P → P gives rise to an operation ∗ : P ×P → P
which can be defined by the rule

p ∗ q = π(p) · q,

where π : P → Γ is the homomorphism of forgetting the Wilson loop defined
above.

The operation ∗ is, in general, non-commutative:

∗ = , but ∗ = .

These two elements of the space P are different; they can be distin-
guished, e. g., by the sl2-invariant (see exercise 22 at the end of the next
chapter). However, π projects these two elements into the same element
β · ω4 ∈ Γ5.

7.4.6. Conjecture. The algebra of primitive elements P has no divisors of
zero with respect to multiplication ∗.
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7.5. Vogel’s algebra Λ

In this section, we describe the relation between the algebra Γ and Vogel’s
algebra Λ.

Diagrams with 1- and 3-valent vertices can be considered with different
additional structures on the set of univalent vertices (legs). If there is no
structure, then we get the notion of an open Jacobi diagram. The space of
open diagrams is considered modulo AS and IHX relations. If the legs are
attached to a circle or a line, then we obtain closed Jacobi diagrams. In the
space spanned by closed diagrams, AS, IHX and STU relations are used.
Diagrams with a linear order (numbering) on the set of legs, considered
modulo AS and IHX, but without STU relations, will be referred to as fixed
diagrams.

We will denote the set of all such diagrams equipped, as usual, with a
rotation in the 3-valent vertices, by X. By definition, speaking about the
numbering means that an isomorphism between two such diagrams must
preserve the numbering of the legs. In the set X there are two gradings:
by the number of legs (denoted by the superscript) and by half the total
number of vertices (denoted by the subscript).

7.5.1. Definition. The vector space spanned by connected fixed diagrams
with k legs modulo the usual AS and IHX relations

X kn = 〈Xk
n〉/〈AS, IHX〉,

is called the space of fixed diagrams of degree n with k legs.

Remark. There is a lot of relations between the spaces X k. For exam-
ple, one may think about the diagram as of a linear operator from X 4

to X 3. Namely, it acts on an element G of X 4 as follows

: G

123 4

7→
G

1 23

.

Exercise. Prove the following relation

+ + = 0,

between the three linear operators from X 4 to X 3.

The space of open diagrams Bk studied in Chapter 5 is the quotient
of X k by the permutation group Sk acting by renumbering the legs. The
mapping of taking the quotient X → B has a nontrivial kernel, for example,
a tripod which is nonzero in X 3 becomes zero in B:
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0 6=
21

3

7−→ = 0.

7.5.2. Definition. The algebra Λ is the subspace of all elements of X 3, an-
tisymmetric with respect to the permutations of legs. The multiplication is
defined on the generators via a sort of vertex multiplication. Namely, choose
a vertex in the first diagram, remove it together with 3 adjacent halfedges
and insert the second diagram instead — in compliance with the rotation.
The fact that this operation is well-defined, is proved in the same way as for
the vertex multiplication in Γ. Since antisymmetry is presupposed, we do
not need to take the alternated average over the six ways of insertion, like
in Γ, — all the six summands will be equal to each other.

Example.

1 2

3

∨
1 2

3

=

1 2

3

.

Conjecturally, the antisymmetry requirement in this definition is super-
fluous:

7.5.3. Conjecture. Λ = X 3, i.e., any fixed diagram with 3 legs is antisym-
metric with respect to leg permutations.

Multiplication in the algebra Λ naturally generalizes to the action of Λ
on different spaces generated by 1- and 3-valent diagrams, e. g. the space of
open diagrams B and the space of 3-graphs Γ. The same argument as above
leads to the following theorem.

7.5.4. Theorem. The action of the algebra Λ on any space spanned by
diagrams modulo AS and IHX relations is well-defined.

7.5.5. Relation between Λ and Γ. Recall that by Γ>1 we denoted the
direct sum of all homogeneous components of Γ except for Γ0:

Γ>1 =
∞⊕

n=1

Γn.

The vector space Γ>1 is an algebra with respect to vertex multiplication.

There are two naturally defined maps between Λ and Γ>1:
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• Λ→ Γ>1. Add three half-edges and a vertex to an element of Λ in agreement
with the leg numbering:

1

2

3

7→ .

• Γ>1 → Λ. Choose an arbitrary vertex of a 3-graph, delete it together with the
three adjacent half-edges and antisymmetrize:

7→ 1

6

[ 1

2
3

−
2

1
3

−
1

3
2

−
3

2
1

+

2

3
1

+

3

1
2
]
.

It is fairly evident that these maps are mutually inverse (in particular,
this implies that the map Γ>1 → Λ is well-defined). We thus arrive at the
following result.

Proposition. The vector spaces Γ>1 and Λ are isomorphic.

It is evident by definition that under this isomorphism the multiplication
in Λ corresponds to the vertex multiplication in Γ, therefore we have:

Corollary. The algebra Λ is isomorphic to (Γ>1,∨).

Remark. If conjecture 7.5.3 is true for k = 3 then all the six terms
(together with their signs) in the definition of the map Γ>1 → Λ are equal
to each other. This means that there is no need to antisymmetrize. What
we do is remove one vertex (with a small neighbourhood) and number the
three legs obtained according to their cyclic ordering at the deleted vertex.
Also this would simplify the definition of the vertex multiplication in section
7.3 because in this case

G = G ,

and we truly insert one graph in a vertex of another.

Conjecture. ([Vo1]) The algebra Λ is generated by the elements t and
xk with odd k = 3, 5, ...:

1 2

3

1 2

3

1 2

3

1 2

3

· · ·

t x3 x4 x5 · · ·



212 7. Algebra of 3-graphs

7.6. Lie algebra weight systems for the algebra Γ

The construction of the Lie algebra weight system ηg(·) for the algebra of
3-graphs proceeds in the same way as for the algebra C (Sec. 6.2), using the
structure tensor J . Since 3-graphs have no univalent vertices, this weight
system takes values in the ground field C. For a graph G ∈ Γ we put
ηg(G) := Tg(G) ∈ g0 ∼= C.

When computing the weight systems ηslN (·), and ηsoN (·) it is important
to remember that their value on the circle (i.e. the unit of algebra Γ, or
in other words, the 3-graph without vertices) is equal to the dimension of
the corresponding Lie algebra, N2 − 1, and 1

2N(N − 1). However, when we
apply state sum formulas form sections 6.2.4 and 6.2.6 for graphs of degree
> 1 we replace every circle in the curve obtained by the resolutions just by
N .

7.6.1. Changing the bilinear form. Tracing the construction of ηg(·), it
is easy to see that the function ηg,λ(·), corresponding to the form λ〈·, ·〉 is
proportional to ηg(·):

ηg,λ(G) = λ−nηg(G)

for G ∈ Γn.

7.6.2. Proposition. Multiplicativity with respect to the edge prod-
uct in Γ. For a simple Lie algebra g and any choice of the ad-invariant
non-degenerate symmetric bilinear form 〈·, ·〉 the function 1

dim g
ηg : Γ → C

is multiplicative with respect to the edge product in Γ.

Proof. This fact follows from the property that up to proportionality the
quadratic Casimir tensor of a simple Lie algebra is the only ad-invariant,
symmetric, non-degenerate tensor from g⊗ g.

Cut an arbitrary edge of the graph G1 and consider the tensor that
corresponds to the obtained graph with two univalent vertices. This tensor
is proportional to the quadratic Casimir tensor c ∈ g⊗ g:

a · c = a

dim g∑

i=1

ei ⊗ ei .

Now, ηg,K(G1) can be obtained by contracting these two tensor factors. This
gives ηg,K(G1) = adim g because of orthonormality of the basis {ei}. So we

can find the coefficient a = 1
dim g

ηg(G1). Similarly, for the second graph G2

we get the tensor 1
dim g

ηg(G2)·c. Now, if we put together one pair of univalent

vertices of the graphs G1 and G2 thus cut, then the partial contraction of the
element c⊗c ∈ g⊗g⊗g⊗g will give an element 1

(dim g)2
ηg(G1)·ηg(G2)c ∈ g⊗g.
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But, on the other hand, this tensor equals 1
dim g

ηg(G1 · G2)c ∈ g ⊗ g. This

proves the multiplicativity of the function 1
dim g

ηg. �

7.6.3. Compatibility with the edge action of Γ on C. Recall the de-
finition of the edge action of 3-graphs on closed diagrams (see Sec. 7.4.1).
We choose an edge in G ∈ Γ and an internal edge in C ∈ C, and then take
the connected sum of G and C along the chosen edges. In fact, this action
depends on the choice of the connected component of C \ {Wilson loop}
containing the chosen edge. It is well defined only on the primitive subspace
P ⊂ C. In spite of this indeterminacy we have the following lemma.

Lemma. For any choice of the gluing edges, ρg(G · C) =
ηg(G)
dim g

ρg(C).

Indeed, in order to compute ρg(C) we assemble the tensor Tg(C) from
elementary piece tensors gluing them along the edges by contraction with
the quadratic Casimir tensor c. By the previous argument, to compute the
tensor Tg(G · C) one must use the tensor 1

dim g
ηg(G) · c instead of simply c

for the chosen edge. This gives the coefficient 1
dim g

ηg(G) in the expression

for ρg(G · C) as compared with ρg(C).

One particular case of this action is especially interesting: when the
graph G varies, while C is fixed and equal to Θ, the chord diagram with
only one chord. In this case the action is an isomorphism of the vector space
Γ with the subspace P2 of the primitive space P generated by connected
closed diagrams with 2 legs (section 7.4.2).

Corollary. For the weight systems associated to a simple Lie algebra g

and the Killing form 〈·, ·〉K :

ηg,K(G) = ρadg,K(G ·Θ) ,

where ρadg,K is the weight system corresponding to the adjoint representation
of g.

Proof. Indeed, according to the Lemma, for the universal enveloping alge-
bra invariants we have

ρg,K(G ·Θ) =
1

dim g
ηg(G)ρg,K(Θ) =

1

dim g
ηg(G)

dim g∑

i=1

eiei ,

where {ei} is a basis orthonormal with respect to the Killing form. Now to
compute ρadg,K(G · Θ) we take the trace of the product of operators in the
adjoint representation:

ρadg,K(G ·Θ) =
1

dim g
ηg(G)

dim g∑

i=1

Tr(adeiadei) = ηg(G)
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by the definition of the Killing form. �

7.6.4. Proposition. Multiplicativity with respect to the vertex prod-
uct in Γ. Let w : Γ → C be an edge-multiplicative weight system, and
w(β) 6= 0. Then 1

w(β)w : Γ → C is multiplicative with respect to the ver-

tex product. In particular, for a simple Lie algebra g, 1
ηg(β)ηg(·) is vertex-

multiplicative.

Proof. According to 7.3.4 the edge product is related to the vertex product
like this: G1 ·G2 = β · (G1∨G2) because of edge-multiplicativity. Therefore,

w(G1) · w(G2) = w(β · (G1 ∨G2)) = w(β) · w(G1 ∨G2) .

This means that the weight system 1
w(β)w : Γ → C is multiplicative with

respect to the vertex product. �

Corollary. The weight systems 1
2N(N2−1)

ηslN ,
2

N(N−1)(N−2)ηsoN : Γ →
C associated with the ad-invariant form 〈x, y〉 = Tr(xy) are multiplicative
with respect to the vertex product in Γ.

This follows from the direct computation on a “bubble”:
ηslN (β) = 2N(N2 − 1), and ηsoN (β) = 1

2N(N − 1)(N − 2).

7.6.5. Compatibility with the vertex action of Γ on C. The vertex
action G∨C of a 3-graph G ∈ Γ on a closed digram C ∈ C (see Sec. 7.4.3) is
defined as the alternating sum of 6 ways to glue the graph G with the closed
diagram C along chosen internal vertices in C and G. Again this action is
well defined only on the primitive space P.

Lemma. Let g be a simple Lie algebra. Then for any choice of the
gluing vertices in G and C:

ρg(G ∨ C) =
ηg(G)

ηg(β)
ρg(C) .

Proof. Using the edge action (section 7.6.3) and its relation to the vertex
action (section 7.3.4) we can write

ηg(G)

dim g
ρg(C) = ρg(G · C) = ρg(β · (G1 ∨ C)) =

ηg(β)

dim g
ρg(G1 ∨ C) ,

which is equivalent to what we need. �
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7.6.6. slN - and soN -polynomials. In this section we consider weight sys-
tems ηslN (·) supplied with the bilinear form 〈x, y〉 = Tr(xy), and ηsoN (·)
supplied with the bilinear form 〈x, y〉 = 1

2Tr(xy). In the soN case this form
is more convenient since it gives polynomials with integral coefficients. In
particular, for such a form ηsoN (β) = N(N − 1)(N − 2), and in the state
sum formula from the Theorem of Sec. 6.2.6 the coefficient in front of the
sum will be 1.

The polynomial ηslN (G) (= ηglN
(G)) is divisible by 2N(N2−1) (exercise

9) and the quotient is a multiplicative function with respect to the vertex
product. We call the quotient the reduced sl-polynomial and denote it by

s̃l(G).

Dividing the so-polynomial ηsoN (G) by N(N − 1)(N − 2) (see exercise
10), we obtain the reduced so-polynomial s̃o(G), which is also multiplicative
with respect to the vertex product.

A. Kaishev [Kai] computed the values of s̃l-, and s̃o-polynomials on
the generators of Γ of small degrees (for s̃o-polynomial the substitution
M = N − 2 is used).

deg s̃l-polynomial s̃o-polynomial

1 β 1 1

4 ω4 N3+12N M3−3M2+30M−24

6 ω6 N5+32N3+48N M5−5M4+80M3−184M2+408M−288

7 ω7 N6+64N4+64N2 M6−6M5+154M4−408M3+664M2−384

8 ω8 N7+128N5+128N3

+192N

M7−7M6+294M5−844M4+1608M3−2128M2

+4576M−3456

9 ω9 N8+256N6+256N4

+256N2

M8−8M7+564M6−1688M5+3552M4−5600M3

−5600M3+6336M2+6144M−9216

10 ω10 N9+512N7+512N5

+512N3+768N

M9−9M8+1092M7−3328M6+7440M5−13216M4

+18048M3−17920M2+55680M−47616

10 δ N9+11N7+114N5

−116N3

M9−9M8+44M7−94M6+627M5+519M4

−2474M3−10916M2+30072M−17760

11 ω11 N10+1024N8+1024N6

+1024N4+1024N2

M10−10M9+2134M8−6536M7+15120M6

−29120M5+45504M4−55040M3+48768M2

+145408M−165888

One may find a lot of recognizable patterns in this table. For example,
wee see that

s̃l(ωn) = Nn−1 + 2n−1(Nn−3 + · · ·+N2), for odd n > 5;

s̃l(ωn) = Nn−1 + 2n−1(Nn−3 + · · ·+N3) + 2n−23N , for even n > 4.
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It would be interesting to know if these observations make part of some
general theorems.

Later we will need the values of the sl- and so-polynomials on the “Mer-

cedes element” τ = = 1
2β

2. They are s̃l(τ) = N , and s̃o(τ) = M =

N − 2.

7.7. Weight systems not coming from Lie algebras

Must be rewritten

In this section we shall briefly describe the construction of P. Vogel
[Vo1] which proves the existence of a weight system independent from Lie
algebraic weight systems for all semisimple Lie algebras.

Instead of Vogel’s Λ we will use its isomorphic copy, the algebra Γ>1

with vertex multiplication. It is enough to construct an element from C
with the following properties:

• it is non-zero;

• all semisimple Lie algebra weight systems vanish on it.

The construction consists of two steps. At the first step we will find a
non-zero element of Γ>1 on which all Lie algebra weight systems vanish. We
represent this element as a polynomial in the generators of small degree with
respect to the vertex product. At the second step we construct the required
element of the algebra of closed diagrams C.

Consider the following three elements

Γ7 ∋ Xsl := 3ω6 ∨ τ − 6ω4 ∨ τ∨3 − ω∨2
4 + 4τ∨6 ;

Γ10 ∋ Xso := −108ω10 + 3267ω8 ∨ τ∨2 − 1920ω6 ∨ ω4 ∨ τ
−20913ω6 ∨ τ∨4 + 372ω∨3

4 + 8906ω∨2
4 ∨ τ∨3

+13748ω3 ∨ τ∨6 − 3352τ∨9 ;

Γ7 ∋ Xex := 45ω6 ∨ τ − 71ω4 ∨ τ∨3 − 18ω∨2
4 + 32τ∨6 .

Using the multiplicativity with respect to the vertex product and the tables
from the previous subsection one can check that

s̃l(Xsl) = 0, and s̃o(Xso) = 0.

Vogel [Vo1] shows that weight systems associated to the exceptional Lie
algebras vanish onXex. Therefore, any semisimple Lie algebra weight system
vanishes on the product

X := Xsl ∨Xso ∨Xex ∈ Γ22 .
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On the other hand, according to Vogel [Vo1], X is a non-zero element of Γ,
because there is a Lie superalgebra D(2, 1, α) weight system which takes a
non-zero value on X.

The study of the Lie superalgebra weight systems is beyond the scope
of this book, so we restrict ourselves with a reference to [Kac] for a gen-
eral theory of Lie superalgebras and to [FKV, Lieb] as regards the weight
systems coming from Lie superalgebras.

Now we are going to construct the required primitive element of C. Con-
sider the “Mercedes closed diagram” represented by the same graph

t1 = ,

where the circle is understood as the Wilson loop and there is only one
internal trivalent vertex. According to Sec. 7.4.3, the algebra of 3-graphs Γ
acts on the primitive space P via vertex multiplication. By Lemma 7.4.4,
the map G 7→ G ∨ t1 is an injection Γn → Pn+1. Therefore, the element

X ∨ t1
is a non-zero primitive element of degree 23 in the algebra of closed diagrams.

By Lemma 7.6.5, all simple (and therefore semisimple) Lie algebra weight
systems vanish on X ∨ t1. Therefore a weight system which is non-zero on
X ∨ t1 cannot come from semisimple Lie algebras. In fact (see [Vo1]), even
the Lie superalgebra weight system which is non-zero on X vanishes on
X ∨ t1. So even Lie superalgebra weight systems are not enough to generate
all weight systems.

Exercises

(1) Find explicitly a chain of IHX and AS relations that proves the following
equality in the algebra Γ of 3-graphs:

=

(2) Let τ2 : X 2 ∈ X 2 denote the transposition of legs in a fixed diagram.
Prove that τ2 is an identity. Hint: (1) prove that a hole can be dragged
through a trivalent vertex (as in Lemma 7.2.3, where x is empty), (2)
to change the numbering of the two legs, use manoeuvres like in Lemma
7.2.4 with y = ∅).

(3) ∗ Let Γ be the algebra of 3-graphs.
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• Is it true that Γ is generated by plane graphs?
• Find generators and relations of the algebra Γ.
• Suppose that a graph G ∈ Γ consists of two parts G1 and G2

connected by three edges. Is the following equality:

G1 G2 = G1 G2

true?

(4) Let X k be the space of 1- and 3-valent graphs with k numbered legs.
Consider the transposition of two legs of an element of X k.
• Give a example of a non-zero element of X k with even k which is

changed under such a transposition.
• ∗ Is it true that any such transposition changes the sign of the

element if k is odd? (The first nontrivial case is when k = 3 — this
is Conjecture 7.5.3.)

(5) ∗ Let Λ be Vogel’s algebra, i.e. the subspace of X 3 consisting of all
antisymmetric elements.
• Is it true that Λ = X 3 (this is again Conjecture 7.5.3)?
• Is it true that Λ is generated by the elements t and xk (this is the

Conjecture 7.5.5; see also Exercises 6 and 7)?

(6) Let t, x3, x4, x5, ... be the elements of the space X 3 defined above.
• Prove that xi’s belong to Vogel’s algebra Λ, i.e. that they are

antisymmetric with respect to permutations of legs.
• Prove the relation x4 = −4

3 t ∨ x3 − 1
3 t
∨4.

• Prove that xk with an arbitrary even k can be expressed through
t, x3, x5, ...

(7) Prove that the dodecahedron
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1 2

3

belongs to Λ, and express it as a vertex polynomial in t, x3, x5, x7, x9.

(8) ∗ The group S3 acts in the space of fixed diagrams with 3 legs X 3,
splitting it into 3 subspaces:
• symmetric, which is isomorphic to B3 (open diagrams with 3 legs),
• totally antisymmetric, which is Vogel’s Λ by definition, and
• some subspace Q, corresponding to a 2-dimensional irreducible re-

presentation of S3.
Question: is it true that Q = 0?

(9) Show that N = 0, N = −1, and N = 1 are roots of the polynomial
ηglN

(G) for any 3-graph G ∈ Γn (n > 1).
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(10) Show that N = 0, N = 1 and N = 2 are roots of polynomial ηsoN (G)
for any 3-graph G ∈ Γn (n > 0).





Part 3

The Kontsevich

Integral





Chapter 8

The Kontsevich

integral

The Kontsevich integral appeared in the paper [Kon1] by M. Kontsevich as
a tool to prove the Fundamental Theorem of the theory of Vassiliev invari-
ants (that is, Theorem 4.2.1). Any Vassiliev knot invariant with coefficients
in a field of characteristic 0 can be factored through the universal invariant
defined by the Kontsevich integral.

Detailed (and different) expositions of the construction and properties of
the Kontsevich integral can be found in [BN1, CD3, Les]. Other important
references are [Car1], [LM1], [LM2].

About the notation: in this chapter we shall think of R3 as the product
of a (horizontal) complex plane C with the complex coordinate z and a
(vertical) real line R with the coordinate t. All Vassiliev invariants are
always thought of having values in the complex numbers.

8.1. First examples

We start with two examples where the Kontsevich
integral appears in a simplified form and with a clear
geometric meaning.

8.1.1. The braiding number of a 2-braid.
A braid on two strands has a complete invari-

ant: the number of full twists that one strand makes
around the other.

Let us consider the horizontal coordinates of

z(t)

w(t)
C

t

points on the strands, z(t) and w(t), as functions of the vertical coordinate

223
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t, 0 6 t 6 1, then the number of full twists can be computed by the integral
formula

1

2πi

∫ 1

0

dz − dw
z − w .

Note that the number of full twists is not necessarily an integer; however,
the number of half-twists always is.

8.1.2. Kontsevich type formula for the linking number. The Gauss
integral formula for the linking number of two spatial curves lk(K,L) (dis-
cussed in Section 2.2.2) involves integration over a torus (namely, the prod-
uct of the two curves). Here we shall give a different integral formula for the
same invariant, with the integration over an interval, rather than a torus.
This formula generalizes the expression for the braiding number of a braid on
two strands and, as we shall later see, gives the first term of the Kontsevich
integral of a two-component link.

Definition. A link in R3 is a Morse link if the function t (the vertical
coordinate) on it has only non-degenerate critical points. A Morse link is
a strict Morse link if the critical values of the vertical coordinate are all
distinct. Similarly one speaks of Morse tangles and strict Morse tangles.

Theorem. Suppose that two disjoint connected curves K, L are embedded
into R3 as a strict Morse link.

zj(t) wj(t)

Then

lk(K,L) =
1

2πi

∫ ∑

j

(−1)↓j
d(zj(t)− wj(t))
zj(t)− wj(t)

,

where the index j enumerates all possible choices of a pair of strands on
the link as functions zj(t), wj(t) corresponding to K and L, respectively,
and the integer ↓j is the number of strands in the pair which are oriented
downwards.

Remark. In fact, the condition that the link in question is a strict
Morse link can be relaxed. One may consider piecewise linear links with no
horizontal segments, or smooth links whose vertical coordinate function has
no flattening points (those where all the derivatives vanish).
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Proof. The proof consists of three steps which — in a more elaborate setting
— will also appear in the full construction of the Kontsevich integral.

Step 1. The value of the sum in the right hand side is an integer. Note
that for a strict Morse link with two components K and L, the configuration
space of all horizontal chords joining K and L is a closed one-dimensional
manifold, that is, a disjoint union of several circles.

For example, assume that two adjacent critical values m and M (with
m < M) of the vertical coordinate correspond to a minimum on the com-
ponent K and a maximum on the component L respectively:

z (t)z (t) w (t) w (t)1 12 2

m A

M A

A

B B

B

0

01

1

2

2

t

The space of all horizontal chords that join the shown parts of K and L
consists of four intervals which join together to form a circle. The motion
along this circle starts, say, at a chord A1B0 and proceeds as

A1B0 → A0B1 → A2B0 → A0B2 → A1B0.

Note that when the moving chord passes a critical level (either m or M),
the direction of its motion changes, and so does the sign (−1)↓j . Another
example see in the exercise (1) on page 246.

It is now clear that our integral formula counts the number of complete
turns made by the horizontal chord while running through the whole con-
figuration space of chords with one end (zj(t), t) on K and the other end
(wj(t), t) on L. This is, clearly, an integer.

Step 2. The value of the right hand side remains unchanged under a
continuous horizontal deformation of the link. (By a horizontal deformation
we mean a deformation of a link which moves every point in a horizontal
plane t = const.) The assertion is evident, since the integral changes con-
tinuously while always remaining an integer. Note that this is true even
if we allow self-intersections within each of the components; this does not
influence the integral because zj(t) and wj(t) lie on the different components.

Step 3. Reduction to the combinatorial formula for the linking number
(Section 2.2). Choose a vertical plane in R3 and represent the link by
a generic projection to that plane. By a horizontal deformation, we can
flatten the link so that it lies in the plane completely, save for the small
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fragments around the diagram crossings between K and L (as we noted
above, self-intersections of each component are allowed). Now, the rotation
of the horizontal chord for each crossing is by ±π, and the signs are in
agreement with the number of strands oriented downwards. The reader is
invited to draw the two different possible crossings, then, for each picture,
consider the four possibilities for the orientations of the strands and make
sure that the sign of the half-turn of the moving horizontal chord always
agrees with the factor (−1)↓j . (Note that the integral in the theorem is
computed over t, so that each specific term computes the angle of rotation
of the chord as it moves from bottom to top.) �

The Kontsevich integral can be regarded as a generalization of this for-
mula. Here we kept track of one horizontal chord moving along the two
curves. The full Kontsevich integral keeps track of how finite sets of hor-
izontal chords on the knot (or a tangle) rotate when moved in the ver-
tical direction. This is the somewhat näıve approach that we use in the
next section. Later, in Section 10.1, we shall adopt a more sophisticated
point of view, interpreting the Kontsevich integral as the monodromy of
the Knizhnik–Zamolodchikov connection in the complement to the union of
diagonals in Cn.

8.2. The construction

Let us recall some notation and terminology of the preceding section. For
points of R3 we use coordinates (z, t) with z complex and t real; the planes
t = const are thought of being horizontal. Having chosen the coordinates,
we can speak of strict Morse knots, namely, knots with the property that the
coordinate t restricted to the knot has only non-degenerate critical points
with distinct critical values.

We define the Kontsevich integral for strict Morse knots. Its values

belong to the graded completion Â of the algebra of chord diagrams with
1-term relations A = Afr/(Θ). (By definition, the elements of a graded
algebra are finite linear combinations of homogeneous elements. The graded
completion consists of all infinite combinations of such elements.)

8.2.1. Definition. The Kontsevich integral Z(K) of a strict Morse knot K
is given by the following formula:

Z(K) =
∞∑

m=0

1

(2πi)m

∫

tmin<tm<···<t1<tmax

tj are noncritical

∑

P={(zj ,z′j)}
(−1)↓PDP

m∧

j=1

dzj − dz′j
zj − z′j

.

The ingredients of this formula have the following meaning.
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The real numbers tmin and tmax are the minimum and the maximum of
the function t on K.

The integration domain is the set of all points of the m-dimensional
simplex tmin < tm < · · · < t1 < tmax none of whose coordinates ti is a
critical value of t. The m-simplex is divided by the critical values into
several connected components. For example, for the following embedding
of the unknot and m = 2 the corresponding integration domain has six
connected components and looks like

t

tmax

tc1
tc2

tmin

z

t2

tmax

tc1

tc2

tmin

t1tmaxtc1tc2tmin

The number of summands in the integrand is constant in each connected
component of the integration domain, but can be different for different com-
ponents. In each plane {t = tj} ⊂ R3 choose an unordered pair of distinct
points (zj , tj) and (z′j , tj) on K, so that zj(tj) and z′j(tj) are continuous func-

tions. We denote by P = {(zj , z′j)} the set of such pairs for j = 1, . . . ,m
and call it a pairing.

1

6 summands

(−1)

1 summand

2 (−1) 2

2

21

36 summands

(−1)

1 summand

(−1)

6 summands

(−1)

1 summand

(−1)

The integrand is the sum over all choices of the pairing P . In the example
above for the component {tc1 < t1 < tmax, tmin < t2 < tc2}, at the bottom-
right corner, we have only one possible pair of points on the levels {t = t1}
and {t = t2}. Therefore, the sum over P for this component consists of only
one summand. In contrast, in the next to it component, {tc2 < t1 < tc1 ,
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tmin < t2 < tc2}, we still have only one possibility for the chord (z2, z
′
2) on

the level {t = t2}, but the plane {t = t1} intersects our knot K in four

points. So we have
(
4
2

)
= 6 possible pairs (z1, z

′
1) and the total number of

summands here is six (see the picture above).

For a pairing P the symbol ‘↓P ’ denotes the number of points (zj , tj) or
(z′j , tj) in P where the coordinate t decreases as one goes along K.

Fix a pairing P . Consider the knot K as an oriented circle and connect
the points (zj , tj) and (z′j , tj) by a chord. We obtain a chord diagram with m

chords. (Thus, intuitively, one can think of a pairing as a way of inscribing
a chord diagram into a knot in such a way that all chords are horizontal and
are placed on different levels.) The corresponding element of the algebra A
is denoted by DP . In the picture below, for each connected component in
our example, we show one of the possible pairings, the corresponding chord
diagram with the sign (−1)↓P and the number of summands of the integrand
(some of which are equal to zero in A due to the one-term relation).

Over each connected component, zj and z′j are smooth functions in tj .

By
m∧

j=1

dzj − dz′j
zj − z′j

we mean the pullback of this form to the integration domain

of the variables t1, . . . , tm. The integration domain is considered with the
orientation of the space Rm defined by the natural order of the coordinates
t1, . . . , tm.

By convention, the term in the Kontsevich integral corresponding to
m = 0 is the (only) chord diagram of order 0 taken with coefficient one. It

is the unit of the algebra Â.

8.2.2. Basic properties. We shall see later in this chapter that the Kont-
sevich integral has the following basic properties:

• Z(K) converges for any strict Morse knot K.

• It is invariant under the deformations of the knot in the class of
(not necessarily strict) Morse knots.

• It behaves in a predictable way under the deformations that add a
pair of new critical points to a Morse knot.

Let us explain the last item in more detail. While the Kontsevich integral
is indeed an invariant of Morse knots, it is not preserved by deformations that
change the number of critical points of t. However, the following formula
shows how the integral changes when a new pair of critical points is added
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to the knot:

(8.2.2.1) Z

( )
= Z(H) · Z

( )
.

Here the first and the third pictures represent two embeddings of an arbi-
trary knot that coincide outside the fragment shown,

H :=

is the hump (an unknot with two maxima), and the product is the product

in the completed algebra Â of chord diagrams. The equality (8.2.2.1) allows
to define a genuine knot invariant by the formula

I(K) =
Z(K)

Z(H)c/2
,

where c denotes the number of critical points of K and the ratio means the

division in the algebra Â according to the rule (1+a)−1 = 1−a+a2−a3+. . .
The knot invariant I(K) is sometimes referred to as the final Kontsevich
integral as opposed to the preliminary Kontsevich integral Z(K).

The central importance of the final Kontsevich integral in the theory
of finite-type invariants is that it is a universal Vassiliev invariant in the
following sense.

Consider an unframed weight system w of degree n (that is, a function
on the set of chord diagrams with m chords satisfying one- and four-term
relations). Applying w to the m-homogeneous part of the series I(K), we
get a numerical knot invariant w(I(K)). This invariant is a Vassiliev in-
variant of order m and any Vassiliev invariant can be obtained in this way.
This argument will be used to prove the Fundamental Theorem on Vassiliev
Invariants, see Section 8.8.

The Kontsevich integral has many interesting properties that we shall
describe in this and in the subsequent chapters. Among these are its behav-
iour with respect to the connected sum of knots (Section 8.4 and 8.7.1) to
the coproduct in the Hopf algebra of chord diagrams (Section 9.1), cablings
(Section 9.7), taking satellites (Section ???), mutation (Section 9.5.4). We
shall see that it can be computed combinatorially (Section 10.2) and has
rational coefficients (Section ???).

8.3. Example of calculation

Here we shall calculate the coefficient of the chord diagram in Z(H),
where H is the hump (plane curve with 4 critical points, as in the previous
section) directly from the definition of the Kontsevich integral. The following
computation is valid for an arbitrary shape of the curve, provided that the
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length of the segments a1a2 and a3a4 (see picture below) decreases with t1,
while that of the segment a2a3 increases.

First of all, note that out of the total number of 51 pairings shown in the
picture on page 227, the following 16 contribute to the coefficient of :

We are, therefore, interested only in the band between the critical values
c1 and c2. Denote by a1, a2, a3, a4 (resp. b1, b2, b3, b4) the four points of
intersection of the knot with the level {t = t1} (respectively, {t = t2}):

a4a3a2a1

b2b1 b3 b4

c

1

t

c
2

t

z

t

1

2

The sixteen pairings shown in the picture above correspond to the differential
forms

(−1)j+k+l+md ln ajk ∧ d ln blm,

where ajk = ak − aj , blm = bm − bl, and the pairs (jk) and (lm) can
take 4 different values each: (jk) ∈ {(13), (23), (14), (24)} =: A, (lm) ∈
{(12), (13), (24), (34)} =: B. The sign (−1)j+k+l+m is equal to (−1)↓P , be-
cause in our case upward oriented strings have even numbers, while down-
ward oriented strings have odd numbers.

The coefficient of is therefore equal to

1

(2πi)2

∫

∆

∑

(jk)∈A

∑

(lm)∈B
(−1)j+k+l+md ln ajk ∧ d ln blm

=− 1

4π2

∫

∆

∑

(jk)∈A
(−1)j+k+1d ln ajk ∧

∑

(lm)∈B
(−1)l+m−1d ln blm

=− 1

4π2

∫

∆

d ln
a14a23

a13a24
∧ d ln

b12b34
b13b24

,
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where the integration domain ∆ is the triangle described by the inequalities
c2 < t1 < c1, c2 < t2 < t1. Assume the following notation:

u =
a14a23

a13a24
, v =

b12b34
b13b24

.

It is easy to see that u is an increasing function of t1 ranging from 0 to 1,
while v is an decreasing function of t2 ranging from 1 to 0. Therefore, the
mapping (t1, t2) 7→ (u, v) is a diffeomorphism with a negative Jacobian, and
after the change of variables the integral we are computing becomes

1

4π2

∫

∆′

d lnu ∧ d ln v

where ∆′ is the image of ∆. It is obvious that the boundary of ∆′ contains
the segments u = 1, 0 6 v 6 1 and v = 1, 0 6 u 6 1 that correspond to
t1 = c1 and t2 = c2. What is not immediately evident is that the third side
of the triangle ∆ also goes into a straight line, namely, u+ v = 1. Indeed, if
t1 = t2, then all b’s are equal to the corresponding a’s and the required fact
follows from the identity a12a34 + a14a23 = a13a24.

1

2

c1

c2 c1

t

t2

1

1

v

u
0

c

Therefore,

1

4π2

∫

∆′

d lnu ∧ d ln v =
1

4π2

1∫

0




1∫

1−u

d ln v


 du

u

= − 1

4π2

1∫

0

ln(1− u)du
u
.

Taking the Taylor expansion of the logarithm we get

1

4π2

∞∑

k=1

1∫

0

uk

k

du

u
=

1

4π2

∞∑

k=1

1

k2
=

1

4π2
ζ(2) =

1

24
.

Two things are quite remarkable in this answer: (1) that it is expressed
via a value of the zeta function, and (2) that the answer is rational. In fact,
for any knot K the coefficient of any chord diagram in Z(K) is rational and
can be computed through the values of multivariate ζ-functions:

ζ(a1, . . . , an) =
∑

0<k1<k2<···<kn

k−a1
1 . . . k−an

n .
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We shall speak about that in more detail in Section 10.3.

For a complete formula for Z(H) see Section 11.4.

8.4. The Kontsevich integral for tangles

The definition of the preliminary Kontsevich integral for knots (see Sec-
tion 8.2) makes sense for an arbitrary strict Morse tangle T . One only needs

to replace the completed algebra Â of chord diagrams by the graded com-
pletion of the vector space of tangle chord diagrams on the skeleton of T ,
and take tmin and tmax to correspond to the bottom and the top of T , re-
spectively. In the section 8.5 we shall show that the coefficients of the chord
diagrams in the Kontsevich integral of any (strict Morse) tangle actually
converge.

In particular, one can speak of the Kontsevich integral of links or braids.

8.4.1. Exercise. For a two-component link, what is the coefficient in the
Kontsevich integral of the chord diagram of degree 1 whose chord has ends
on both components?

Hint: see Section 8.1.2.

8.4.2. Exercise. Compute the integrals

R := Z

( )
and R−1 := Z

( )
.

Answer:

R = · exp
(

2

)
, R−1 = · exp

(
−

2

)

where exp a is the series 1 + a+ a2

2! + a3

3! + . . ..

Strictly speaking, before describing the properties of the Kontsevich in-
tegral we need to show that it is always well-defined. This will be done in
the following section. Meanwhile, we shall assume that this is indeed the
case for all the tangles in question.

8.4.3. Proposition. The Kontsevich integral for tangles is multiplicative:

Z(T1 · T2) = Z(T1) · Z(T2)

whenever the product T1 · T2 is defined.

Proof. Let tmin and tmax correspond to the bottom and the top of T1 · T2,
respectively, and let tmid be the level of the top of T2 (or the bottom of
T1, which is the same). In the expression for the Kontsevich integral of the
tangle T1 · T2 let us remove from the domain of integration all points with
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at least one coordinate t equal to tmid. This set is of codimension one, so
the value of integral remains unchanged. On the other hand, the connected
components of the new domain of integration are precisely all products of
the connected components for T1 and T2, and the integrand for T1 ·T2 is the
exterior product of the integrands for T1 and T2. The Fubini theorem on
multiple integrals implies that Z(T1 · T2) = Z(T1) · Z(T2). �

The behaviour of the Kontsevich integral under the tensor product of
tangles is more complicated. In the expression for Z(T1 ⊗ T2) indeed there
are terms that add up to the tensor product Z(T1) ⊗ Z(T2): they involve
pairings without chords that connect T1 with T2. However, the terms with
pairings that do have such chords are not necessarily zero and we have no
effective way of describing them. Still, there is something we can say but
we need a new definition for this.

8.4.4. Parameterized tensor products. By a (horizontal) ε-rescaling
of R3 we mean the map sending (z, t) to (εz, t). For ε > 0 it induces an
operation on tangles; we denote by εT the result of an ε-rescaling applied to
T . Note that ε-rescaling of a tangle does not change its Kontsevich integral.

Let T1 and T2 be two tangles such that T1⊗T2 is defined. For 0 < ε 6 1
we define the ε-parameterized tensor product T1⊗εT2 as the result of placing
εT1 next to εT2 on the left, with the distance of 1−ε between the two tangles:

T1 =
1

; T2 =
1

; T1 ⊗ε T2 =
εεε 1−
.

More precisely, let 01−ε be the empty tangle of width 1−ε and the same
height and depth as εT1 and εT2. Then

T1 ⊗ε T2 = εT1 ⊗ 01−ε ⊗ εT2.

When ε = 1 we get the usual tensor product. Note that when ε < 1, the
parameterized tensor product is, in general, not associative.

8.4.5. Proposition. The Kontsevich integral for tangles is asymptotically
multiplicative with respect to the parameterized tensor product:

lim
ε→0

Z(T1 ⊗ε T2) = Z(T1)⊗ Z(T2)

whenever the product T1 ⊗ T2 is defined. Moreover, the difference Z(T1 ⊗ε
T2) − Z(T1) ⊗ Z(T2) as ε tends to 0 is of the same or smaller order of
magnitude as ε.

Proof. As we have already noted before, Z(T1⊗ε T2) consists of two parts:
the terms that do not involve chords that connect εT1 with εT2, and the
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terms that do. The first part does not depend on ε and is equal to Z(T1)⊗
Z(T2), and the second part tends to 0 as ε→ 0.

Indeed, each pairing P = {(zj , z′j)} for T1 ⊗ T2 give rise to a continuous

family of pairings Pε = {(zj(ε), z′j(ε))} for T1 ⊗ε T2. Consider one such
family Pε. For all k

dzk(ε)− dz′k(ε) = ε(dzk − dz′k).
If the kth chord has has both ends on εT1 or on εT2, we have

zk(ε)− z′k(ε) = ε(zk − z′k)
for all ε. Therefore the limit of the first part is equal to Z(T1)⊗ Z(T2).

On the other hand, if Pε has at least one chord connecting the two fac-
tors, we have |zk(ε)− z′k(ε)| → 1 as ε→ 0. Thus the integral corresponding
to the pairing Pε tends to zero as ε get smaller, and we see that the whole
second part of the Kontsevich integral of T1 ⊗ε T2 vanishes in the limit at
least as fast as ε,

Z(T1 ⊗ε T2) = Z(T1)⊗ Z(T2) +O(ε) .

�

8.5. Convergence of the integral

8.5.1. Proposition. For any strict Morse tangle T , the Kontsevich integral
Z(T ) converges.

Proof. The integrand of the Kontsevich integral may have singularities near
the boundaries of the connected components. This happens near a critical
point of a tangle when the pairing includes a “short” chord whose ends are
on the branches of the knot that come together at a critical point.

Let us assume that the tangle T has at most one critical point. This
is sufficient since any strict Morse tangle can be decomposed as a product
of such tangles. The argument in the proof of Proposition 8.4.3 shows that
the Kontsevich integral of a product converges whenever the integral of the
factors does.

Suppose, without loss of generality, that T has a critical point which is
a maximum with the value tc. Then we only need to consider pairings with
no chords above tc. Indeed, for any pairing its coefficient in the Kontsevich
integral of T is a product of two integrals: one corresponding to the chords
above tc, and the other - to the chords below tc. The first integral obvi-
ously converges since the integrand has no singularities, so it is sufficient to
consider the factor with chords below tc.

Essentially, there are two cases.
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1) An isolated chord (z1, z
′
1) tends to zero:

z1 z′1

In this case the corresponding chord diagram DP is equal to zero in A by
the one-term relation.

2) A chord (zj , z
′
j) tends to zero near a critical point but is separated

from that point by one or more other chords:

tc

t2 z2 z′2

z1

zc z′c
z′1

z′′2

Consider, for example, the case shown on the figure, where the “short”
chord (z2, z

′
2) is separated from the critical point by another, “long” chord

(z1, z
′
1). We have:
∣∣∣∣∣∣

tc∫

t2

dz1 − dz′1
z1 − z′1

∣∣∣∣∣∣
6 C

∣∣∣∣∣∣

tc∫

t2

d(z1 − z′1)

∣∣∣∣∣∣

= C
∣∣(zc − z2)− (z′c − z′′2 )

∣∣ 6 C ′|z2 − z′2|
for some positive constants C and C ′. This integral is of the same order as
z2 − z′2 and this compensates the denominator corresponding to the second
chord.

More generally, one shows by induction that if a “short” chord (zj , z
′
j)

is separated from the maximum by j−1 chords, the first of which is “long”,
the integral

∫

tj<tj−1<···<t1<tc

j−1∧

i=1

dzi − dz′i
zi − z′i

is of the same order as zj−z′j . This implies the convergence of the Kontsevich
integral. �

8.6. Invariance of the integral

8.6.1. Theorem. The Kontsevich integral is invariant under the deforma-
tions in the class of (not necessarily strict) Morse knots.

The proof of this theorem spans the whole of this section.

Any deformation of a knot within the class of Morse knots can be
approximated by a sequence of deformations of three types: orientation-
preserving re-parameterizations, horizontal deformations and movements of
critical points.



236 8. The Kontsevich integral

The invariance of the Kontsevich integral under orientation-preserving
re-parameterizations is immediate since the parameter plays no role in the
definition of the integral apart from determining the orientation of the knot.

A horizontal deformation is an isotopy of a knot in R3 which preserves
all horizontal planes {t = const} and leaves all the critical points (together
with some small neighbourhoods) fixed. The invariance under horizontal
deformations is the most essential point of the theory. We prove it in the
next subsection.

A movement of a critical point C is an isotopy which is identical every-
where outside a small neighborhood of C and does not introduce new criti-
cal points on the knot. In subsection 8.6.3 we consider invariance under the
movements of critical points.

As we mentioned before, the Kontsevich integral is not invariant under
isotopies that change the number of critical points. Its behavior under such
deformations will be discussed in section 8.7.

8.6.2. Invariance under horizontal deformations. Let us decompose
the given knot into a product of tangles without critical points of the func-
tion t and very thin tangles containing the critical levels. A horizontal
deformation keeps fixed the neighbourhoods of the critical points, so, due
to multiplicativity, it is enough to prove that the Kontsevich integral for
a tangle without critical points is invariant under horizontal deformations
that preserve the boundary pointwise.

Proposition. Let T0 be a tangle without critical points and Tλ, a horizontal
deformation of T0 to T1 (preserving the top and the bottom of the tangle).
Then Z(T0) = Z(T1).

Proof. Denote by ω the integrand form in the mth term of the Kontsevich
integral:

ω =
∑

P={(zj ,z′j)}
(−1)↓DP

m∧

j=1

dzj − dz′j
zj − z′j

.

Here the functions zj , z
′
j depend not only on t1, ..., tm, but also on λ, and

all differentials are understood as complete differentials with respect to all
these variables. This means that the form ω is not exactly the form which
appears in the Kontsevich’s integral (it has some additional dλ’s), but this
does not change the integrals over the simplices

∆λ = {tmin < tm < · · · < t1 < tmax} × {λ},
because the value of λ on such a simplex is fixed.

We must prove that the integral of ω over ∆0 is equal to its integral over
∆1.
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Consider the product polytope

∆ = ∆0 × [0, 1] =

∆0 ∆1

.

By Stokes’ theorem, we have

∫

∂∆

ω =

∫

∆

dω .

The form ω is exact: dω = 0. The boundary of the integration domain
is ∂∆ = ∆0 −∆1 +

∑ {faces}. The theorem will follow from the fact that
ω|{face} = 0. To show this, consider two types of faces.

The first type corresponds to tm = tmin or t1 = tmax . In this situation,
dzj = dz′j = 0 for j = 1 or m, since zj and z′j do not depend on λ.

The faces of the second type are those where we have tk = tk+1 for some
k. In this case we have to choose the kth and (k + 1)st chords on the same
level {t = tk}. In general, the endpoints of these chords may coincide and
we do not get a chord diagram at all. Strictly speaking, ω and DP do not
extend to such a face so we have to be careful. It is natural to extend DP

to this face as a locally constant function. This means that for the case in
which some endpoints of kth and (k+ 1)st chords belong to the same string
(and therefore coincide) we place kth chord a little higher than (k + 1)st
chord, so that its endpoint differs from the endpoint of (k+1)st chord. This
trick yields a well-defined prolongation of DP and ω to the face, and we use
it here.

All summands of ω are divided into three parts:

1) kth and (k + 1)st chords connect the same two strings;

2) kth and (k+1)st chords are chosen in such a way that their endpoints
belong to four different strings;

3) kth and (k + 1)st chords are chosen in such a way that there exist
exactly three different strings containing their endpoints.

Consider all these cases one by one.

1) We have zk = zk+1 and z′k = z′k+1 or vice versa. So d(zk − z′k) ∧
d(zk+1 − z′k+1) = 0 and therefore the restriction of ω to the face is zero.

2) All choices of chords in this part of ω appear in mutually canceling
pairs. Fix four strings and number them by 1, 2, 3, 4. Suppose that for
a certain choice of the pairing, the kth chord connects the first two strings
and (k+1)st chord connects the last two strings. Then there exists another
choice for which on the contrary the kth chord connects the last two strings
and (k + 1)st chord connects the first two strings. These two choices give
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two summands of ω differing by a sign:

· · · d(zk − z′k) ∧ d(zk+1 − z′k+1) · · ·+ · · · d(zk+1 − z′k+1) ∧ d(zk − z′k) · · · = 0.

3) This is the most difficult case. The endpoints of kth and (k + 1)st
chords have exactly one string in common. Call the three relevant strings

1, 2, 3 and denote by ωij the 1-form
dzi − dzj
zi − zj

. Then ω is the product of a

certain (m− 2)-form and the sum of the following six 2-forms:

(−1)↓ ω12 ∧ ω23 + (−1)↓ ω12 ∧ ω13

+(−1)↓ ω13 ∧ ω12 + (−1)↓ ω13 ∧ ω23

+(−1)↓ ω23 ∧ ω12 + (−1)↓ ω23 ∧ ω13 .

Using the fact that ωij = ωji, we can rewrite this as follows:
(

(−1)↓ − (−1)↓
)
ω12 ∧ ω23

+

(
(−1)↓ − (−1)↓

)
ω23 ∧ ω31

+

(
(−1)↓ − (−1)↓

)
ω31 ∧ ω12 .

The four-term relations in horizontal form (page 99) say that the expressions
in parentheses are one and the same element of AT , hence the whole sum is
equal to
(

(−1)↓ − (−1)↓
)

(ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12).

The 2-form that appears here is actually zero! This simple, but remarkable
fact, known as Arnold’s identity (see [Ar1]) can be put into the following
form:

f + g + h = 0 =⇒ df

f
∧ dg
g

+
dg

g
∧ dh
h

+
dh

h
∧ df
f

= 0

(in our case f = z1 − z2, g = z2 − z3, h = z3 − z1) and verified by a direct
computation.

This finishes the proof. �
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Remark. The Kontsevich integral of a tangle may change, if the bound-
ary points are moved. Examples may be found below in Exercises ?? and
6—9.

8.6.3. Moving the critical points. Let T0 and T1 be two tangles which
are identical except a sharp “tail” of width ε, which may be twisted:

T1T0

D
Dt

ε

More exactly, we assume that (1) T1 is different from T0 only inside a region
D which is the union of disks Dt of diameter ε lying in horizontal planes
with fixed t ∈ [t1, t2], (2) each tangle T0 and T1 has exactly one critical point
in D, and (3) each tangle T0 and T1 intersects every disk Dt at most in two
points. We call the passage from T0 to T1 a special movement of the critical
point. To prove Theorem 8.6.1 it is sufficient to show the invariance of the
Kontsevich integral under such movements. Note that special movements of
critical points may take a Morse knot out of the class of strict Morse knots.

Proposition. The Kontsevich integral remains unchanged under a special
movement of the critical point: Z(T0) = Z(T1).

Proof. The difference between Z(T0) and Z(T1) can come only from the
terms with a chord ending on the tail.

If the highest of such chords connects the two sides of the tail, then the
corresponding tangle chord diagram is zero by a one-term relation.

So we can assume that the highest, say, the kth, chord is a “long” chord,
which means that it connects the tail with another part of T1. Suppose the
endpoint of the chord belonging to the tail is (z′k, tk). Then there exists
another choice for kth chord which is almost the same but ends at another
point of the tail (z′′k , tk) on the same horizontal level:

zk zkzk zk

The corresponding two terms appear in Z(T1) with the opposite signs due
to the sign (−1)↓.
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Let us estimate the difference of the integrals corresponding to such kth
chords:

∣∣∣∣∣∣∣

tc∫

tk+1

d(ln(z′k − zk)) −
tc∫

tk+1

d(ln(z′′k − zk))

∣∣∣∣∣∣∣
=

∣∣∣∣∣ ln

(
z′′k+1 − zk+1

z′k+1 − zk+1

)∣∣∣∣∣

=

∣∣∣∣∣ ln

(
1 +

z′′k+1 − z′k+1

z′k+1 − zk+1

)∣∣∣∣∣ ∼
∣∣z′′k+1 − z′k+1

∣∣ 6 ε

(here tc is the value of t at the uppermost point of the tail).

Now, if the next (k + 1)st chord is also long, then, similarly, it can
be paired with another long chord so that they give a contribution to the
integral proportional to

∣∣z′′k+2 − z′k+2

∣∣ 6 ε.

In the case the (k + 1)st chord is short (that is, it connects two points
z′′k+1, z

′
k+1 of the tail) we have the following estimate for the double integral

corresponding to kth and (k + 1)st chords:

∣∣∣∣∣∣∣

tc∫

tk+2

( tc∫

tk+1

d(ln(z′k − zk)) −
tc∫

tk+1

d(ln(z′′k − zk))
)
dz′′k+1 − dz′k+1

z′′k+1 − z′k+1

∣∣∣∣∣∣∣

6 const ·

∣∣∣∣∣∣∣

tc∫

tk+2

∣∣z′′k+1 − z′k+1

∣∣ dz
′′
k+1 − dz′k+1∣∣z′′k+1 − z′k+1

∣∣

∣∣∣∣∣∣∣

= const ·

∣∣∣∣∣∣∣

tc∫

tk+2

d(z′′k+1 − z′k+1)

∣∣∣∣∣∣∣
∼
∣∣z′′k+2 − z′k+2

∣∣ 6 ε .

Continuing this argument, we see that the difference between Z(T0) and
Z(T1) is O(ε). Now, by horizontal deformations we can make ε tend to zero.
This proves the theorem and completes the proof of the Kontsevich integral’s
invariance in the class of knots with nondegenerate critical points. �

8.7. Changing the number of critical points

The multiplicativity of the Kontsevich integral for tangles (Propositions 8.4.3
and 8.4.5) have several immediate consequences for knots.
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8.7.1. From long knots to usual knots. A long (Morse) knot can be
closed up so as to produce a usual (Morse) knot:

Recall that the algebras of chord diagrams for long knots and for usual
knots are essentially the same; the isomorphism is given by closing up a
linear chord diagram.

Proposition. The Kontsevich integral of a long knot T coincides with that
of its closure KT .

Proof. Denote by 1 the tangle consisting of one vertical strand. Then KT

can be written as Tmax ·(T ⊗ε1) ·Tmin where Tmax and Tmin are a maximum
and a minimum respectively, and 0 < ε 6 1.

Since the Kontsevich integral of KT does not depend on ε, we can take
ε→ 0. Therefore,

Z(KT ) = Z(Tmax) · (Z(T )⊗ Z(1)) · Z(Tmin).

However, the Kontsevich integrals of Tmax, Tmin and 1 consist of one dia-
gram with no chords, and the Proposition follows. �

A corollary of this is the formula (8.2.2.1) (page 229) which describes the
behavior of the Kontsevich integral under the addition of a pair of critical
points. Indeed, adding a pair of critical points to a long knot T is the same
as multiplying it by

,

and (8.2.2.1) then follows from the multiplicativity of the Kontsevich integral
for tangles.

8.7.2. The universal Vassiliev invariant. The formula (8.2.2.1) allows
one to define the universal Vassiliev invariant by either

I(K) =
Z(K)

Z(H)c/2

or

I ′(K) =
Z(K)

Z(H)c/2−1
,
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where c denotes the number of critical points of K in an arbitrary Morse

representation, and the quotient means division in the algebra Â: (1+a)−1 =
1− a+ a2 − a3 + . . . .

Any isotopy of a knot in R3 can be approximated by a sequence con-
sisting of isotopies within the class of (not necessarily strict) Morse knots
and insertions/deletions of “humps”, that is, pairs of adjacent maxima and
minima. Hence, the invariance of Z(K) in the class of Morse knots and
the formula (8.2.2.1) imply that both I(K) and I ′(K) are invariant under
an arbitrary deformation of K. (The meaning of the “universality” will be
explained in the next section.)

The version I ′(K) has the advantage of being multiplicative with respect
to the connected sum of knots; in particular, it vanishes (more precisely,
takes the value 1) on the unknot. However, the version I(K) is also used
as it has a direct relationship with the quantum invariants (see ???). In
particular, we shall use the term “Kontsevich integral of the unknot”; this,
of course, refers to I, and not I ′.

8.8. Proof of the Kontsevich theorem

First of all we reformulate the Kontsevich theorem (or, more exactly, the
Kontsevich part of the Vassiliev–Kontsevich theorem 4.2.1) as follows.

8.8.1. Theorem. Let w be an unframed weight system of order n. Then
there exists a Vassiliev invariant of order n whose symbol is w.

Proof. The desired knot invariant is given by the formula

K 7−→ w(I(K)).

Let D be a chord diagram of order n and let KD be a singular knot with
chord diagram D. The theorem follows from the fact that I(KD) = D +
(terms of order > n). Since the denominator of I(K) starts with the unit of
the algebra A, it is sufficient to prove that

(8.8.1.1) Z(KD) = D + (terms of order > n).

In fact, we shall establish (8.8.1.1) for D an arbitrary tangle chord diagram
and KD = TD - a singular tangle with the diagram D.

If n = 0, the diagramD has no chords and TD is non-singular. For a non-
singular tangle the Kontsevich integral starts with a tangle chord diagram
with no chords, and (8.8.1.1) clearly holds. Note that the Kontsevich integral
of any singular tangle (with at least one double point) necessarily starts with
terms of degree at least 1.

Consider now the case n = 1. If TD is a singular 2-braid, there is only
one possible term of degree 1, namely the chord diagram with the chord
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connecting the two strands. The coefficients of this diagram in Z(T+) and
Z(T−), where T+ − T− is a resolution of the double point of TD, simply
measure the number of full twists in T+ and T− respectively. The difference
of these numbers is 1, so in this case (8.8.1.1) is also true.

Now, let TD be an arbitrary singular tangle with exactly one double
point, and Vε be the ε-neighbourhood of the singularity. We can assume
that the intersection of TD with Vε is a singular 2-braid, and that the double
point of TD is resolved as TD = T ε+ − T ε− where T ε+ and T ε− coincide with T
outside Vε.

Let us write the degree 1 part of Z(T ε±) as a sum Z ′± + Z ′′± where Z ′± is
the integral over all chords whose both ends are contained in Vε and Z ′′± is
the rest, that is, the integral over the chords with at least one end outside
Vε. As ε tends to 0, Z ′′+−Z ′′− vanishes. On the other hand, for all ε we have
that Z ′′+ − Z ′′− equals to the diagram D with the coefficient 1. This settles
the case n = 1.

Finally, if n > 1, using a suitable deformation, if necessary, we can
always achieve that TD is a product of n singular tangles with one double
point each. Now (8.8.1.1) follows from the multiplicativity of the Kontsevich
integral for tangles.

�

8.8.2. Universality of I(K). In the proof of the Kontsevich Theorem we
have seen that for a singular knot K with n double points, I(K) starts
with terms of degree n. This means that if In(K) denotes the nth graded
component of the series I(K), then the function K 7→ In(K) is a Vassiliev
invariant of order n.

In some sense, all Vassiliev invariants are of this type:

8.8.3. Proposition. Any Vassiliev invariant can be factored through I: for

any v ∈ V there exists a linear function f on Â such that v = f ◦ I.

Proof. Let v ∈ Vn. By the Kontsevich theorem we know that there is a
function f0 such that v and f0 ◦ In have the same symbol. Therefore, the
difference v− f0 ◦ In belongs to Vn−1 and is thus representable as f1 ◦ In−1.
Proceeding in this way, we shall finally obtain:

v =
n∑

i=1

fi ◦ In−i.

�
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Remark. The construction of the foregoing proof shows that the uni-
versal Vassiliev invariant induces a splitting of the filtered space V into a
direct sum with summands isomorphic to the factors Vn/Vn−1. Elements of
these subspaces are referred to as canonical Vassiliev invariants. We shall
speak about them in more detail later in Section 11.2.

As a corollary, we get the following statement:

8.8.4. Theorem. The universal Vassiliev invariant I is exactly as strong
as the set of all Vassiliev invariants: for any two knots K1 and K2 we have

I(K1) = I(K2) ⇐⇒ ∀v ∈ V v(K1) = v(K2).

8.9. Towards the combinatorial Kontsevich integral

Since the Kontsevich integral comprises all Vassiliev invariants, calculating
it explicitly is a very important problem. Knots are, essentially, combina-
torial objects so it is not surprising that the Kontsevich integral, which we
have defined analytically, can be calculated combinatorially from the knot
diagram. Different versions of such combinatorial definition were proposed
in several papers ([BN2, Car1, LM1, LM2, Piu]) and treated in several
books ([Kas, Oht1]). Such a definition will be given in Chapter 10; here
we shall explain the idea behind it.

The multiplicativity of the Kontsevich integral hints at the following
method of computing it: present a knot as a product of several standard
tangles whose Kontsevich integral is known and then multiply the corre-
sponding values of the integral. This method works well for the quantum
invariants, see Sections 2.6.5 and 2.6.6; however, for the Kontsevich integral
it turns out to be too näıve to be of direct use.

Indeed, in the case of quantum invariants we decompose the knot into
elementary tangles, that is, crossings, max/min events and pieces of vertical
strands using both the usual product and the tensor product of tangles.
While the Kontsevich integral behaves well with respect to the usual product
of tangles, there is no simple expression for the integral of the tensor product
of two tangles, even if one of the factors is a trivial tangle. As a consequence,
the Kontsevich integral is hard to calculate even for the generators of the
braid group, not to mention other possible candidates for “standard” tangles.

Still, we know that the Kontsevich integral is asymptotically multiplica-
tive with respect to the parameterized tensor product. This suggests the
following procedure.

Write a knot K as a product of tangles K = T1 · . . . · Tn where each Ti
is a tensor product of several elementary tangles. Let us think of each Ti as
of an ε-parameterized tensor product of elementary tangles with ε = 1. We
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want to vary this ε to make it very small. There are two issues here that
should be taken care of.

Firstly, the ε-parameterized tensor product is not associative for ε 6= 1,
so we need a parenthesizing on the factors in Ti. We choose the parenthe-
sizing arbitrarily on each Ti and denote by T εi the tangle obtained from Ti
by replacing ε = 1 by an arbitrary positive ε 6 1.

Secondly, even though the tangles Ti and Ti+1 are composable, the tan-
gles T εi and T εi+1 may fail to be composable for ε < 1. Therefore, for each i
we have to choose a family of associating tangles without crossings Qεi which
connect the bottom endpoints of T εi with the corresponding top endpoints
of T εi+1.

Now we can define a family of knots Kε as

Kε = T ε1 ·Qε1 · T ε2 · . . . ·Qεn−1 · T εn.
The following picture illustrates this construction on the example of a trefoil
knot:

min←−

(id⊗ε min←−)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(id⊗ε
−→
max )⊗ε id∗

−→
max

T ε7

Qε6

T ε6

Qε5

T ε5

T ε4

T ε3

Qε2

T ε2

Qε1

T ε1

∼ε2

∼ε

∼ε2 ∼1

Figure 8.9.0.1. A decomposition of the trefoil into associating tangles
and ε-parameterized tensor products of elementary tangles, with the
notations from Section 1.7.7. The associating tangles between T ε

3 , T ε
4

and T ε
5 are omitted since these tangles are composable for all ε.

Since for each ε the knot Kε is isotopic to K it is tempting to take ε→ 0,
calculate the limits of the Kontsevich integrals of the factors and then take
their product. The limit

lim
ε→0

Z(T εi )

is easily evaluated, so it only remains to calculate the limit of Z(Qεi ) as ε
tends to zero.
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Calculating this last limit is not a straightforward task, to say the least.
In particular, if Qε is the simplest associating tangle

0

ε

ε 1−ε 1

1−ε

1

t

z

we shall see in the next chapter that asymptotically, as ε→ 0 we have

Z
( )

≃ ε 1
2πi · ΦKZ · ε−

1
2πi ,

where εx is defined as the formal power series exp(x log ε) and ΦKZ is the
power series known as the Knizhnik-Zamolodchikov associator. Similar for-
mulae can be written for other associating tangles.

There are two difficulties here. One is that the integral Z(Qε) does not
converge as ε tends to 0. However, all the divergence is hidden in the terms

ε
1

2πi and ε−
1

2πi and careful analysis shows that all such terms from all
associating tangles cancel each other out in the limit, and can be omitted.
The second problem is to calculate the associator. This a highly non-trivial
task, and is the main subject of the next chapter.

Exercises

(1) For the link with two components K and L
shown on the right draw the configuration
space of horizontal chords joining K and L as
in the proof of the linking number theorem
from Section 8.1.2 (see page 224). Compute
the linking number of K and L using this
theorem.

K

L

(2) Is it true that Z(H) = Z(H), where H is the hump as shown in page
229 and H is the same hump reflected in a horizontal line?

(3) M. Kontsevich in his pioneering paper [Kon1] and some of his followers
(for example, [BN1, CD3]) defined the Kontsevich integral slightly
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differently, numbering the chords upwards. Namely, ZKont(K) =

=
∞∑

m=0

1

(2πi)m

∫

tmin<t1<···<tm<tmax

tj are noncritical

∑

P={(zj ,z′j)}
(−1)↓PDP

m∧

j=1

dzj − dz′j
zj − z′j

.

Prove that for any tangle T , ZKont(T ) = Z(T ), as series of tangle chord
diagrams.

Hint. Change of variables in multiple integrals.

(4) Prove that for the tangle shown on

the right Z( ) = exp
(

2πi · ln ε
)
.

0 ε 1 z

1−ε
t

t=1−z

(5) The Euler dilogarithm is defined by the power series Li2(z) =

∞∑

k=1

zk

k2
for

|z| 6 1. Prove the following identities

Li2(0) = 0; Li2(1) = π2

6 ; Li′2(z) = − ln(1−z)
z ;

d
dz

(
Li2(1− z) + Li2(z) + ln z ln(1− z)

)
= 0 ;

Li2(1− z) + Li2(z) + ln z ln(1− z) = π2

6 .

About these and other remarkable properties of Li2(z) see [Lew, Kir,
Zag2].

(6) Consider the associating tangle shown

on the right. Compute Z
( )

up to the
second order.
Answer. − 1

2πi ln
(

1−ε
ε

) (
−

)

− 1
8π2 ln2

(
1−ε
ε

) (
+

)

0 ε 1−ε 1 z

ε

1−ε

t
z=t

+ 1
4π2

(
ln(1− ε) ln

(
1−ε
ε

)
+ Li2(1− ε)− Li2(ε)

)

− 1
4π2

(
ln(ε) ln

(
1−ε
ε

)
+ Li2(1− ε)− Li2(ε)

)

The calculation here uses the dilogarithm function defined in prob-
lem (5). Note that the Kontsevich integral diverges as ε→ 0.

(7) Make the similar computation Z
( )

for the reflected tangle. Describe
the difference with the answer to the previous problem.
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(8) Compute the Kontsevich integral Z
( )

of the
maximum tangle shown on the right.
Answer. + 1

2πi ln(1− ε)
+ 1

4π2

(
Li2
(

ε
2−ε
)
− Li2

( −ε
2−ε
))

0 1−ε 1 z

1−ε

1

t t=−z2+(2−ε)z

+ 1
8π2

(
ln2 2− ln2

(
1−ε
2−ε

)
+ 2Li2

(
1
2

)
− 2Li2

(
1−ε
2−ε
))

+ 1
8π2

(
ln2 2− ln2(2− ε) + 2Li2

(
1
2

)
− 2Li2

(
1

2−ε
))

(9) Compute the Kontsevich integral Z
( )

of the
minimum tangle shown on the right.
Answer. − 1

2πi ln(1− ε)
+ 1

4π2

(
Li2
(

ε
2−ε
)
− Li2

( −ε
2−ε
))

0 ε 1 z

ε

t t=z2−εz+ε

+ 1
8π2

(
ln2 2− ln2

(
1−ε
2−ε

)
+ 2Li2

(
1
2

)
− 2Li2

(
1−ε
2−ε
))

+ 1
8π2

(
ln2 2− ln2(2− ε) + 2Li2

(
1
2

)
− 2Li2

(
1

2−ε
))

Note that all nontrivial terms in the last two problems tend to zero
as ε→ 0.

(10) Express the Kontsevich integral of the hump as the product of tangle
chord diagrams from problems 6, 8, 9:

Z
( )

= Z
( )

· Z
( )

· Z
( )

.

To do this introduce shorthand notation for the coefficients:
Z
( )

= + A + B + C + D

Z
( )

= + E
(

−
)

+ F
(

+
)

+ G + H

Z
( )

= + I + J + K + L .
Show that the order 1 terms of the product vanish.
The only nonzero chord diagram of order 2 on the hump is the cross

(diagram without isolated chords). The coefficient of this diagram is
B +D +G+ J + L−AE +AI + EI. Show that it is equal to

Li2
(

ε
2−ε

)
−Li2

(
−ε
2−ε

)
+Li2

(
1
2

)
−Li2

(
1

2−ε

)
−Li2(ε)

2π2 + ln2 2−ln2(2−ε)
4π2 + 1

24 .

Using the properties of the dilogarithm mentioned in problem 5 prove
that the last expression equals 1

24 . This is also a consequence of the
remarkable Roger five-term relation (see, for example, [Kir])

Li2x+ Li2y − Li2xy = Li2
x(1−y)
1−xy + Li2

y(1−x)
1−xy + ln (1−x)

1−xy ln (1−y)
1−xy

and the Landen connection formula (see, for example, [Roos])

Li2z + Li2
−z
1−z = −1

2 ln2(1− z) .
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(11) Let Si be the operation of reversing the orientation of the ith string of a
tangle T . Denote by the same symbol Si the operation on tangle chord
diagrams which multiplies a chord diagram by (−1) raised to the power
equal to the number of chord endpoints lying on the ith string (see the
formal definition in ??). Prove that

Z(Si(T )) = Si(Z(T ))

We shall use this operation in the next chapter.

(12) Compute the Kontsevich integral
Z(AT tb,w) up to the order 2. Here
ε is a small parameter, and w, t,
b are natural numbers subject to
inequalities w < b and w < t.
Answer. Z(AT tb,w) = +

AT tb,w =

εb

εw

εt

+ 1
2πi ln

(
εw−εt

εb

)
− 1

2πi ln
(
εw−εb

εt

)

− 1
8π2 ln2

(
εw−εt

εb

)
− 1

8π2 ln2
(
εw−εb

εt

)

− 1
4π2

(
ln(εb−w) ln

(
εw−εb

εt

)
+ Li2(1− εb−w)− Li2(ε

t−w)
)

+ 1
4π2

(
ln(1− εt−w) ln

(
εw−εb

εt

)
+ Li2(1− εb−w)− Li2(ε

t−w)
)

.

(13) How will the Kontsevich’s integral change, if in its definition integration
over simplices is replaced by integration over cubes?

(14) Prove that

Φ = lim
ε→0

ε−
w

2πi
·
(

+
)
ε−

t
2πi
· ·Z(AT tb,w)·ε b

2πi
· ·ε w

2πi
·
(

+
)
.

(15) Prove that for the tangle T tm,b,w on the
right picture

lim
ε→0

ε−
b−w
2πi

(
+

)
· ε− t−w

2πi ·
·Z(T tm,b,w)· εb

εw

εm

εt

·εm−w
2πi · ε b−w

2πi

(
+

)
= Φ⊗ id.

(16) Prove that for the tangle T t,mb,w on the

right picture

lim
ε→0

ε−
t−w
2πi

(
+

)
· ε−m−w

2πi ·
·Z(T t,mb,w )· εb

εw

εm

εt

·ε b−w
2πi · ε t−w

2πi

(
+

)
= id⊗ Φ.





Chapter 9

Operations on knots

and the Kontsevich

integral

We saw in Section 8.6.2 that the Kontsevich integral is multiplicative with
respect to the connected sum of knots. Using this we prove a group-like
property of the Kontsevich integral in Section 9.1. Then we consider other
operations on knots and describe their effect on the Kontsevich integral.
The operations in question are:

• σ — mirror reflection (changing the orientation of the ambient space),

• τ — changing the orientation of a knot,

• MT — mutation of a knot with respect to a distinguished tangle T ,

• n — n-th disconnected cabling of a knot,

• n — n-th connected cabling of a knot .

9.1. The group-like property

9.1.1. Theorem. For any Morse knot K the Kontsevich integral Z(K) is

a group-like element of the Hopf algebra Â:

δ(Z(K)) = Z(K)⊗ Z(K) ,

where δ is the comultiplication defined in Section 4.4.4.

Proof. By multiplicativity, it is sufficient to prove this property for the
Kontsevich integral of a tangle. Let T be a tangle without maximum and

251
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minimum points embedded into a slice Cz × [a, b] ⊂ R3. We will prove that

(9.1.1.1) δ(Z(T )) = Z(T )⊗ Z(T ) ,

On the right-hand side of (9.1.1.1), consider the coefficient of the tensor
product of two chord diagrams D1 ⊗D2 with m and n chords respectively.
It comes from a particular choice of the pairing P1 for m chords of D1

on the levels t1, . . . tm, and a pairing P2 for n chords of D2 on the levels
tm+1, . . . , tm+n. Denote by ∆1 the simplex a < tm < · · · < t1 < b, and by
∆2 the simplex a < tm+n < · · · < tm+1 < b. Then the coefficient at D1⊗D2

on the right-hand side of (9.1.1.1) is the product of two integrals

(−1)↓1+↓2

(2πi)m+n



∫

∆1

m∧

j=1

dzj − dz′j
zj − z′j


 ·



∫

∆2

m+n∧

j=m+1

dzj − dz′j
zj − z′j


 ,

which can be written as a single integral over the product of simplices:

(−1)↓1+↓2

(2πi)m+n

∫

∆1×∆2

m+n∧

j=1

dzj − dz′j
zj − z′j

.

Now we split the product ∆1 ×∆2 into the union of mutually disjoint sim-
plices corresponding to all possible shuffles of two linearly ordered words
tm < · · · < t1 and tm+n < · · · < tm+1. A shuffle of two words tm . . . t1 and
tm+n . . . tm+1 is a word consisting of the letters tm+n, . . . , t1 and such that
its subwords consisting of letters tm . . . t1 and tm+n . . . tm+1 preserve their
linear orders. Here is an example (m = 2, n = 1) of such splitting:

∆1

-∆2

∆1 ×∆2

6
t3

-
t1

�
��
t2

=

t3 < t2 < t1

⋃

t2 < t3 < t1

⋃

t2 < t1 < t3

The integral over the product of simplices is equal to the sum of integrals
corresponding to all possible shuffles. But the integral over one particular
simplex is precisely the coefficient in Z(K) of the chord diagram obtained
by merging the chord diagrams D1 and D2 according to the shuffle. This
is equal to one term of the coefficient of D1 ⊗ D2 in the left-hand side of
(9.1.1.1). It is easy to see that the terms in the coefficient of D1 ⊗ D2 in
δ(Z(K)) are in one to one correspondence with all ways to mergeD1 andD2,
that is, with all possible shuffles of the words tm . . . t1 and tm+n . . . tm+1. �
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9.2. Reality of the integral

Choose a countable family of chord diagrams {Di} that constitute a basis in
the vector space A. The Kontsevich integral of a knot K can be written as
an infinite series Z(K) =

∑
ciDi whose coefficients ci depend on the knot

K. A priori these coefficients are complex numbers.

9.2.1. Theorem. All coefficients ci of the Kontsevich integral Z(K) =∑
ciDi are real numbers.

Remark. Of course, this fact is a consequence of the Le–Murakami
theorem 10.4.13 stating that these coefficients are rational. We state the
previous theorem because it has a simple independent proof which is quite
instructive.

Proof. Rotate the knot K around the real axis x by 180◦:

t

t2

t1

0

y

x

Cz

K

t⋆

t⋆2
t⋆1

0
y⋆

x⋆

Cz⋆

K⋆

t⋆2 = −t1
t⋆1 = −t2

and denote the obtained knot by K⋆. To distinguish the objects (space,
coordinates etc.) related to the knot K⋆, we will tag the corresponding
symbols with a star. Coordinates t⋆, z⋆ in the space that contains K⋆ are
related to the coordinates t, z in the ambient space of K as follows: t⋆ = −t,
z⋆ = z.

The rotation can be realized by a smooth isotopy, hence the universal

Vassiliev invariants of K and K⋆ coincide: Z̃(K) = Z̃(K⋆). The two knots
have the same number c of critical points of the height function. Therefore

Z(K) = Z̃(K) · Z(h)c/2 = Z̃(K⋆) · Z(h)c/2 = Z(K⋆),

where h = is the plane unknot with one hump. Therefore, to prove

the reality of Z(K), it is enough to prove that each coefficient of Z(K⋆) is
the complex conjugate to the corresponding coefficient of Z(K).

Fix the number of chords m. Then each pairing P = {(zj , z′j)}, 1 6 j 6

m, for the knot K corresponds to a pairing P ⋆ = {(z⋆j , z⋆j ′)} for the knot
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K⋆, where z⋆j = zm−j+1 and z⋆j
′ = z′m−j+1. Note that the corresponding

chord diagrams are equal: DP = DP ⋆ . Moreover, ↓⋆= 2m−↓ and hence
(−1)↓

⋆
= (−1)↓. The simplex ∆ = tmin < t1 < · · · < tm < tmax for the

variables ti corresponds to the simplex ∆⋆ = −tmax < t⋆m < · · · < t⋆1 < −tmin

for the variables t⋆i . The coefficient of DP ⋆ in Z(K⋆) is

c(DP ⋆) =
(−1)↓

(2πi)m

∫ m∧

j=1

d ln(z⋆j − z⋆j ′) ,

where z⋆j and z⋆j
′ are understood as functions in t⋆1, . . . , t⋆m and the integral

is taken over a connected component in the simplex ∆⋆. In the last integral
we make the change of variables according to the formula t⋆j = −tm−j+1.

The Jacobian of this transformation is equal to (−1)m(m+1)/2. Therefore,

c(DP ⋆) =
(−1)↓

(2πi)m

∫
(−1)m(m+1)/2

m∧

j=1

d ln(zm−j+1 − z′m−j+1)

(integral over the corresponding connected component in the simplex ∆).
Now permute the differentials to arrange the subscripts in the increasing or-
der. The sign of this permutation is (−1)m(m−1)/2. Note that (−1)m(m+1)/2 ·
(−1)m(m−1)/2 = (−1)m. Hence,

c(DP ⋆) =
(−1)↓

(2πi)m
(−1)m

∫ m∧

j=1

d ln(zj − z′j)

=
(−1)↓

(2πi)m

∫ m∧

j=1

d ln(zj − z′j) = c(DP ).

The theorem is proved. �

9.3. Change of orientation

Let τ be the operation on knots which inverts their orientation (see 1.4).
The same letter will also denote the analogous operation on chord diagrams
(inverting the orientation of the outer circle or, which is the same thing,
axial symmetry of the diagram).

9.3.1. Theorem. The Kontsevich integral commutes with the operation τ :

Z(τ(K)) = τ(Z(K)).

Proof. The required identity follows directly from the definition of the
Kontsevich integral in Sec. 8.2. Indeed, the number ↓ for the knot τ(K)
with inverse orientation is equal to the number ↑ for the initial knot K.
Here by ↑ we of course mean the number of points (zj , tj) or (z′j , tj) in a
pairing P where the coordinate t grows along the orientation of K. Since
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the number of points in a pairing is always even, (−1)↓ = (−1)↑. Hence the
corresponding chord diagrams appear in Z(τ(K)) and in τ(Z(K)) with the
same sign. The theorem is proved. �

Corollary. The following two assertions are equivalent:

• Vassiliev invariants do not distinguish the orientation of knots,

• all chord diagrams are symmetric: D = τ(D) modulo one- and
four-term relations.

The calculations of [Kn0] show that up to order 12 all chord diagrams
are symmetric. For bigger orders the problem is still open.

9.3.2. Exercise. Prove the equivalence of the two claims:

• all chord diagrams are symmetric modulo one- and four-term rela-
tions.

• all chord diagrams are symmetric modulo only four-term relations.

9.4. Mirror reflection

Let σ be the operation sending a knot to its mirror image (see 1.4). Define
the corresponding operation σ on chord diagrams as identity on the diagrams
of even order and as multiplication by (−1) on the diagrams of odd order.

9.4.1. Theorem. The Kontsevich integral commutes with the operation σ:

Z(σ(K)) = σ(Z(K)) ,

where by σ(Z(K)) we mean simultaneous application of σ to all the chord
diagrams participating in Z(K).

Proof. Let us realize the operation σ on knots by the reflection of R3 =
Rt × Cz coming from the complex conjugation in Cz: (t, z) 7→ (t, z).

Consider the Kontsevich integral of K:

Z(K) =
∞∑

m=0

1

(2πi)m

∫ ∑

P

(−1)↓DP

m∧

j=1

d ln(zj − z′j) .
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Then the Kontsevich integral for σ(K) will look as

Z(σ(K)) =
∞∑

m=0

1

(2πi)m

∫ ∑

P

(−1)↓DP

m∧

j=1

d ln(zj − z′j)

=
∞∑

m=0

1

(2πi)m

∫ ∑

P

(−1)↓DP

m∧

j=1

d ln(zj − z′j)

=
∞∑

m=0

1

(2πi)m

∫ ∑

P

(−1)↓DP

m∧

j=1

d ln(zj − z′j) .

We see that the terms of Z(σ(K)) with an even number of chords coincide

with those of Z(K) and terms of Z(σ(K)) with an odd number of chords

differ from the corresponding terms of Z(K) by a sign. Since Z(K) is real,
this implies the theorem. �

Remark. Taking into account the fact that the Kontsevich integral is
equivalent to the totality of all finite type invariants, and finite type in-
variants are defined by weight systems, Theorem 9.4.1 can be restated as
follows: Let v be an invariant of finite degree n, let K be a singular knot
with n double points and K = σ(K) its mirror image. Then v(K) = v(K)
for even n and v(K) = −v(K) for odd n. This fact was first noticed by
V. Vassiliev in [Va1].

Recall (see p. 23) that a knot K is called plus-amphicheiral, if it is
equivalent to its mirror image as an oriented knot: K = σ(K), and minus-
amphicheiral if it is equivalent to the inverse of the mirror image: K = τσK.
Here τ is the axial symmetry on chord diagrams, and we call a chord diagram
(or a linear combination of diagrams) symmetric, resp. antisymmetric, if τ
acts on it as identity, resp. as multiplication by −1.

9.4.2. Corollary. The Kontsevich integral Z(K) (and hence the universal
Vassiliev invariant I(K)) of a plus-amphicheiral knot K consist only of even
order terms. For a minus-amphicheiral knot K the Kontsevich integral Z(K)
and the universal Vassiliev invariant I(K) have the following property: their
even-degree part consists only of symmetric chord diagrams, while their odd-
degree part consists only of anti-symmetric diagrams.

Proof. For a plus-amphicheiral knot, the theorem implies that Z(K) =
σ(Z(K)), hence all the odd order terms in the series Z(K) vanish. The

quotient of two even series in the graded completion Â is obviously even,
therefore the same property holds for I(K) = Z(K)/Z(H)c/2, too.
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For a minus-amphicheiral knot K, we have Z(K) = τ(σ(Z(K))), which
implies the second assertion. �

Note that it is an open question whether non-symmetric chord diagrams
exist. If they don’t, then, of course, both assertions of the Theorem, for
plus- and minus-amphicheiral knots, coincide.

9.5. Mutation

The purpose of this subsection is to show that the Kontsevich integral com-
mutes with the operation of mutation (this fact was first noticed by T. Le).
As an application, we will construct a counterexample to the original inter-
section graph conjecture (p. 117) and describe all Vassiliev invariants which
do not distinguish mutants following [ChL].

9.5.1. Mutation of knots.

9.5.2. Definition. Suppose we have a knot K with a distinguished tangle
T which has two strings at the bottom and two strings at the top. Let us
cut out the tangle, rotate it through 180◦ around a vertical axis and insert
it back. This operation MT is called mutation and the knot MT (K) thus
obtained is called a mutant of K.

Here is a widely known pair of mutant knots, 11n34 and 11n42, which
are mirrors of the Conway and Kinoshita–Terasaka knots respectively:

11n34 = C = 11n42 = KT =

9.5.3. Theorem ([MC]). . There exists a Vassiliev invariant v of order
11 such that v(C) 6= v(KT ).

Morton and Cromwell manufactured the invariant v using the Lie algebra
glN with a nonstandard representation (or, in other words, the HOMFLY
polynomial of certain cablings of the knots).

J. Murakami [Mu] showed that any invariant or order at most 10 does
not distinguish mutants. So order 11 is the first place where distinguishing
mutants invariants occur.
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9.5.4. Mutation of the Kontsevich integral. Let K be a knot with a
distinguished tangle T that has two strings at the bottom and two strings
at the top. Let MT (K) be the mutant of K obtained by the rotation of
T . We define the mutation MT (Z(K)) of the Kontsevich integral as the
simultaneous mutation of all chord diagrams participating in Z(K) (see the
definition below). Then the following theorem holds.

9.5.5. Theorem ([Le]). The Kontsevich integral commutes with the muta-
tion operation MT :

Z(MT (K)) = MT (Z(K)).

By lemma ?? Z(K) does not contain any chord diagram with a chord
connecting T with the remaining part of K. This means that all chord
diagrams which appear in Z(K) are products (in the sense of section ??) of
chord diagrams on T and chord diagrams on K \T . A chord diagram on the
tangle, considered as a part of the whole chord diagram for the knot, was
called share in Section 4.8.4.

The choice of a tangle T in a knot K distinguishes the T -shares (which
correspond to the tangle chord diagrams of Z(T )) in all chord diagrams that
appear in Z(K).

9.5.6. Definition. The mutation MT (Z(K)) of Z(K) is the simultaneous
rotation of the T -shares in all diagrams of Z(K).

9.5.7. Proof of the theorem. Let Tr be the tangle obtained from T by
rotation under the mutation MT . Then Z(K) = Z(T ) · Z(K \ T ) and
Z(MT (K)) = Z(Tr) · Z(K \ T ). Hence

MT (Z(K)) = MT (Z(T ) · Z(K \ T )) = MT (Z(T )) · Z(K \ T )

= Z(Tr) · Z(K \ T ) = Z(MT (K)) .

The theorem is proved. �

9.5.8. Counterexample to the Intersection Graph Conjecture. It
is easy to see that the mutation of chord diagrams does not change the
intersection graph. Thus, if the intersection graph conjecture (see 4.8.3)
were true, the Kontsevich integrals of mutant knots would coincide. Hence
all Vassiliev invariants would take the same value on mutant knots. But
this contradicts Theorem 9.5.3. Therefore the intersection graph conjecture
is false.

9.5.9. Now we can prove a theorem announced on page 118.

Theorem ([ChL]). The symbol of a Vassiliev invariant that does not dis-
tinguish mutant knots depends on the intersection graph only.
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Proof. Suppose we have a Vassiliev knot invariant v of order at most n that
does not distinguish mutant knots. Let D1 and D2 be chord diagrams with
n chords whose intersection graphs coincide. We are going to prove that the
values of the weight system of v on D1 and D2 are equal.

According to the theorem from page 118, D2 can be obtained from D1

by a sequence of mutations. It is enough to consider the case when D1 and
D2 differ by a single mutation in a share S. Let K1 be a singular knot with n
double points whose chord diagram is D1. Consider the collection of double
points of K1 corresponding to the chords occurring in the share S. By the
definition of a share, K1 has two arcs containing all these double points and
no others. By sliding the double points along one of these arcs and shrinking
the other arc we may enclose these arcs into a ball whose interior does not
intersect the rest of the knot. In other words, we may isotope the knot K1

to a singular knot so as to collect all the double points corresponding to S in
a tangle TS . Performing an appropriate rotation of TS we obtain a singular
knot K2 with the chord diagram D2. Since v does not distinguish mutants,
its values on K1 and K2 are equal. The theorem is proved. �

To illustrate the proof, consider the chord diagram D1 below. Pick a
singular knot K1 representing D1.

D1 =
4

1
1

6

6

5

5

2 2

33

4

K1 = 61 2 3
4

5

To perform a mutation in the share containing the chords 1,5,6, we must
slide the double point 1 close to the double points 5 and 6, and then shrink
the corresponding arcs:

2
3

4
5 6

1

Sliding the double point 1

1

3
42 5

6

Shrinking the arcs

3
2 4 5

6

1

Forming the tangle TS

TS

Now doing an appropriate rotation of the tangle TS we obtain a singular
knot K2 representing the chord diagram D2.

Combing the last theorem with 9.5.5 we get the following corollary.

9.5.10. Corollary. Let w be a weight system on chord diagrams with n
chords. Consider a Vassiliev invariant v(K) := w ◦ I(K). (In Section 11.2
they are called canonical.) Then v does not distinguish mutants if and only
if the weight system w depends only on the intersection graph.
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9.6. Framed version of the Kontsevich integral

For framed knots and links, the Kontsevich integral was first defined by Le
and Murakami [LM2] who gave a combinatorial construction of it. Later
V. Goryunov defined [Gor1] the Kontsevich integral in an analytic fashion,
his definition is a modification of the original definition from Section 8.2 and
it works equally well for any framing.

The main difference of this theory from the one studied in Chapter 8
is that the framed version of the Kontsevich integral takes values in the

algebra Âfr of chord diagrams modulo 4-term relations only.

9.6.1. The approach of Goryunov. Let Kε be a copy of K shifted a
small distance ε in the direction of the framing. We assume that both K
and Kε are in general position with respect to a height function t as in
Section 8.2. Then we construct the integral Z(K,Kε) defined by the very
same formula

Z(K,Kε) =
∞∑

m=0

1

(2πi)m

∫

tmin<tm<···<t1<tmax

tj are noncritical

∑

P={(zj ,z′j)}
(−1)↓DP

m∧

j=1

dzj − dz′j
zj − z′j

,

where the pairings P = {(zj , z′j)} and the corresponding chord diagrams DP

are understood in a different way. Namely, we consider only those pairings
where zj lies on K while z′j lies on Kε. To obtain the chord diagram DP

we consider K as an oriented circle and connect a point (zj , tj) ∈ K on it
with a neighbor of the point (z′j , tj) ∈ Kε lying on K. Every time when we

choose neighboring points (zj , z
′
j) in a pairing P , we get an isolated chord

of DP . The next picture illustrates these notions.

t

K

Kε

t3
z3

z′3

t2
z′2 z2

t1 z′1
z1

DP

z3
z′3

z′2

z2

z′1

z1

Now the framed Kontsevich integral can be defined as

Zfr(K) = lim
ε→0

Z(K,Kε) .
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In [Gor1] V. Goryunov proved that the limit does exist and is invariant
under the deformations of the framed knot K in the class of framed Morse
knots. He used [Gor2] this construction to study Arnold’s J+-theory of
plane curves (or, equivalently, Legendrian knots in a solid torus).

Having the definition of Zfr(K) we can define the final framed Kontse-
vich integral in a usual way

Ifr(K) =
Zfr(K)

Zfr(H)c/2
,

where H is the hump unknot (see page 229) with the blackboard framing.

The importance of the framed final Kontsevich integral Ifr(K) is that
it establishes the framed version of Theorem 8.8.1 (the Kontsevich part of
the Vassiliev-Kontsevich theorem 4.2.1):

9.6.2. Theorem. Let w be a framed weight system of order n (i. e. vanish-
ing on chord diagrams whose number of chords is different from n). Then
there exists a framed Vassiliev invariant of order 6 n whose symbol is w.

9.6.3. The approach of Le and Murakami. For the integral expression
Zfr(K) = lim

ε→0
Z(K,Kε), one may try to do the combinatorial constructions

similar to those of Sec.??. It is more convenient to use the blackboard fram-
ing. This will lead to the original combinatorial definition of the framed
Kontsevich integral of [LM2]. It turns out that the basic elementary in-
gredients of the construction, the tangle chord diagrams max/min, R, and
Φ remain literally the same as in the unframed case. The whole framed
integral is constructed from them using operations ⊗, Si, ∆i from Sec.??,
and the multiplication of tangle chord diagrams. The only difference in the
framed case is that in the final expression we do not treat the diagrams with

isolated chords as zero elements of the algebra Âfr.

9.6.4. BGRT approach. There is one more way to define the final framed
Kontsevich integral [BGRT]:

Ifr(K) = e
w(K)

2
Θ · I(K) ∈ Âfr,

where K is a framed knot, K is the same knot without framing, w(K) is
the writhe of K (the linking number of K and a copy of K shifted slightly
in the direction of the framing), Θ is the chord diagram with one chord,

and the exponent means the usual power series in the algebra Âfr. Here,

the universal Vassiliev invariant I(K) ∈ Â is understood as an element of

the completed algebra Âfr (without 1-term relations) by virtue of a natural
inclusion p̄ : A → Afr (see page 110) defined as identity on the primitive
subspace of A.
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9.6.5. The case of framed tangles. The above methods produce the
Kontsevich integral not just for framed knots, but, more generally, for
framed tangles. The preliminary integral Zfr(T ) of a tangle T can be con-
structed as in the approaches of Goryunov or Le-Murakami, and the final
integral Ifr(T ) is defined as

Ifr(T ) = Zfr(H)−m1# . . .#Zfr(H)−mk#Zfr(T ),

wheremi is the number of maxima on the ith component of T and Zfr(H)−mi

acts on the ith component of Zfr(T ), see 5.10.4. Here k is the number of
components of T .

9.6.6. Group-like property. The framed Kontsevich integral Zfr(K) is

a group-like element of the Hopf algebra Âfr. This fact is proved in exactly
the same way as the corresponding property of the unframed Kontsevich
integral, see Section 9.1. The same statement holds for tangles.

9.7. Cablings

9.7.1. Cablings of knots. Cablings are defined for framed knots in the
following way. The framing, as a section of the normal bundle of a knot
K, determines a trivialization of the bundle and supplies it with a com-
plex structure, where the framing vector at every point ends at 1 of the
corresponding normal plane considered as the plane of complex numbers.

The n-th connected cabling n(K) is the knot consisting of a bunch of
n strings that follow the knot K in a narrow toroidal neighborhood rotating
with respect to the framing so that after one full turn around K they close
up with a clockwise rotation by 2π/n.

4(K)

K

4-th connected cabling of K

4(K)

K

4-th connected cabling with respect
to the blackboard framing

In formulas this definition can be expressed as follows. Consider K as
the image of a map K : S1 → R3, where S1 is the unit circle in the complex
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plane S1 = {z ∈ C : |z| = 1}. Let f(z) be the framing. Then we set

n(K)(z) := K(zn) + εzf(zn) ,

where ε is a small positive number and operations are understood in terms
of the complex structure on normal planes.

Similarly, the n-th parallel, or n-th disconnected cabling n(K) is a link
consisting of n disjoint parallel copies of the knotK lying on the boundary of
a thin toroidal neighbourhood of K, such that one of the copies is obtained
by shifting points of K along the framing.

In formulas, the j-th component of the link n(K)(z) is given by

K(z) + εe
2πi
n
jf(z) .

O+1

unknot with framing +1 2-d disconnecting cabling of O+1

is a Hopf link, 2(O+1) =

The links n(K) and n(K) inherit the framing of K.

9.7.2. Cablings of knot invariants. Let v be a link invariant. Its n-th
cablings ∗

nv and ∗
nv are defined in a natural way by setting

∗
nv(K) := v( n(K)) , ∗

nv(K) := v( n(K)) .

9.7.3. Proposition. If v is a framed Vassiliev invariant of order 6 m, then
∗
nv and ∗

nv are also framed Vassiliev invariants of order 6 m.

Proof. We prove the proposition only for connected cablings and n = 2; for
disconnected cablings and arbitrary n the proof is similar and we leave it to
the reader.

According to Vassiliev’s skein relation (Equation (3.1.2.1) on page 72),
the extension of ∗

2v to singular links satisfies

∗
2v( ) = ∗

2v( )− ∗
2v( )

= v( )− v( )

= v( ) + v( ) + v( ) + v( ) .

Therefore, vanishing of v on knots with more than m double points implies
vanishing of ∗

2v on knots with more than m double points. �
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9.7.4. Cablings of chord diagrams. In this section we explore how the
symbols of Vassiliev invariants v and ∗

nv (resp. ∗
nv) are related to each

other.

For a chord diagram D define n(D) (resp. n(D)) to be the sum
of chord diagrams obtained by all possible ways of lifting the ends of the
chords to the n-sheeted connected (resp. disconnected) covering of the circle
of D. We extend n (resp. n) to the space spanned by chord diagrams by
linearity.

Examples.

2( ) = + + + + +

+ + + + + +

+ + + +

= 12 + 4 .

2( ) = 8 + 8 .

2( ) = + + + + +

+ + + + + +

+ + + +

= 2 + 8 + 2 + 4 .

2( ) = 2 + 8 + 2 + 4 .

It is easy to see that the mapping n satisfies the 4-term relation (Exer-
cise 4 at the end of the Chapter), so it descends to the graded space A. The
examples above show that it is not an algebra homomorphism. However, it
is a coalgebra automorphism according to Exercise 10 below.
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Theorem. Let v be a Vassiliev invariant. Then

symb( ∗nv)(D) = symb(v)( n(D)) .

The proof follows directly from a careful analysis of the proof of Propo-
sition 9.7.3.

9.7.5. Cablings of Jacobi diagrams. Since the algebra A is isomorphic
both to the algebra of closed diagrams C (Theorem 5.3.1) and to the algebra
of open diagrams B (Section 5.7), the operations n and n transfers to
these spaces, too. Below, we give an explicit description of the resulting
operators.

Proposition. For a closed diagram C, n(C) (resp. n(D)) is equal to the
sum of closed diagrams obtained by all possible ways of lifting the univalent
vertices of C to the n sheeted connected (resp. disconnected) covering of the
Wilson loop of C.

Proof. Induction on the number of internal vertices of C. If there are no
internal vertices, then C is a chord diagram and the claim to be proved
coincides with the initial definition of n (resp. n).

In general we may use STU relation to decrease the number of internal
vertices and then use the induction hypothesis. The only thing one should
check is that n and n are compatible with the STU relation. We show
how it works for n = 2:

2

( )
= 2

( )
− 2

( )

= + + +

− − − −

= − + −

= + .

�

9.7.6. Corollary. [KSA] Every open diagram B with k univalent vertices
(legs) is an eigenvector of the linear operator n with eigenvalue nk.
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Proof. The isomorphism χ : B ∼= C takes an open diagram B ∈ B with
k legs into the average of the k! closed diagrams obtained by all possible
numberings of the legs and attaching the Wilson loop according to the num-
bering. The value of n on each closed diagram is equal to the sum of the nk

diagrams obtained by all possible lifts of its legs to the n-sheeted covering
of the Wilson loop. Therefore, n(B) is 1/k! times the sum of nkk! closed
diagrams arranged in a 2-dimensional array with nk columns and k! rows.
Each column, corresponding to a specific lift to the covering, contains the
diagrams that differ from one another by all possible renumberings of their
legs. The sum over each column divided by k! is thus equal to B. Since the
number of columns is nk, we obtain n(B) = nkB. �

9.7.7. Cablings of the Lie algebra weight systems. Given a semi-
simple Lie algebra g, in Chapter 6.1 we constructed the universal Lie algebra
weight system ϕg : A → U(g). If, additionally, a representation V of g is
specified, then we have a numeric weight system ϕVg : A → C. The cabling
operation n acts on these weight systems as follows:

∗
nϕg(D) := ϕg( n(D)), ∗

nϕ
V
g (D) := ϕVg ( n(D))

for any chord diagram D.

The construction of the universal Lie algebra weight system (Section
6.1.1) rests on the assignment of basic vectors ei ∈ g to the endpoints of
i’th chord, then taking their product along the Wilson loop and summing
up over each index i. For the weight system ∗

nϕg, to each endpoint of a
chord we not only assign a basic vector, but we also indicate the level of
the covering to which that particular point is lifted. To form an element of
the universal enveloping algebra we must read the letters ei along the circle
n times. On the first pass we read only those letters which are related to
the first sheet of the covering, omitting all the others. Then read the circle
for the second time and now collect only the letters from the second sheet,
etc. up to the n-th reading. The products of ei’s thus formed are summed
up over all assignments and over all ways of lifting the endpoints to the
covering.

The weight system ∗
nϕg can be expressed through ϕg by means of a

compact formula. To state it, we need two auxiliary operations in the tensor
algebra of U(g). Let µ : U(g)⊗U(g)→ U(g) and δ : U(g)→ U(g)⊗U(g) be
the multiplication and comultiplication in U(g) (see Section A.1.7). Define
the operations µn : U(g)⊗n → U(g) and δn : U(g)→ U(g)⊗n as compositions

µn := µ ◦
(
id⊗ µ

)
◦ · · · ◦

(
(id)⊗(n−2) ⊗ µ

)
,

δn :=
(
(id)⊗(n−2) ⊗ δ

)
◦ · · · ◦

(
id⊗ δ

)
◦ δ .
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In other words, µn converts tensor products of the elements of U(g) into
ordinary products, while δn sends each element g ∈ g into

δn(g) = g ⊗ 1⊗ . . .⊗ 1 + 1⊗ g ⊗ . . .⊗ 1 + · · ·+ 1⊗ 1⊗ . . .⊗ g .
9.7.8. Proposition. For a chord diagram D we have

∗
nϕg(D) = µn ◦ δn(ϕg(D)) .

We leave the proof of this proposition to the reader as an exercise (no.
14 at the end of the chapter).

The operation µn◦δn expressed in terms of characters of the correspond-
ing compact Lie group is called the Adams operation [FH] (see more details
in [BN1]).

9.7.9. Cablings of the weight system ϕVg . Recall that the weight sys-

tem ϕVg associated with a representation T : g → V is obtained from ϕg as
follows (see Section 6.1.4 for details). Replace each occurence of ei in ϕg(D)
by the corresponding linear operator T (ei) ∈ End(V ) and compute the sum
of products of all such operators according to the arrangement of indices
along the circle. The trace of the obtained operator is ϕVg (D).

Informally speaking, with each end of a chord of D and with an element
ei ∈ g assigned to it we accociate a linear operator V → V vizualised by the
picture

ei

V

V

.

To pass to the n-th cabling of ϕVg we must take the sum of n such operators,
one per each sheet of the covering:

ei

V
V

V
V

+

ei

V
V

V
V

.

Instead of this sum, we may just as well consider a single operator T⊗n :
V ⊗n → V ⊗n:

ei

V ⊗ V

V ⊗ V

acting according to the rule

T⊗2(ei)(v1 ⊗ v2) = T (ei)(v1)⊗ v2 + v1 ⊗ T (ei)(v2)
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used to define the n-th tensor power T⊗n : V ⊗n → V ⊗n of the representation
V (in our example n = 2). We think about the tensor factor number i as
attached to the i-th sheet of the covering. Multiplying all the operators
T⊗n(ei) along the Wilson loop of D we will get an operator (see 6.1.4)

U(T⊗n) ◦ ϕg(D) : V ⊗n → V ⊗n .

This operator may be considered as a tensor in the vector space

(V ⊗n)∗ ⊗ (V ⊗n) ∼= V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
n factors

⊗V ⊗ . . .⊗ V︸ ︷︷ ︸
n factors

.

Taking the trace of this operator corresponds to contraction of the tensor
by pairing the first factor V ∗ with the first factor V , the second V ∗ with the
second V , etc. Such a contraction correspond to the disconnecting cabling of
D. To get a formula for the connected cabling we should modify the weight

system ϕV
⊗n

g by changing the operation of taking trace Tr. Namely we will
contract the (j + 1)-st factor V ∗ with the j-th factor V , and the first V ∗

with the n-th V . The number we obtain at the end is denoted by ϕ̃V
⊗n

g (D).
Thus we get

9.7.10. Proposition.
∗
nϕ

V
g = ϕ̃V

⊗n

g .

9.7.11. The case of framed tangles. The definition of disconnected ca-
blings from page 263 makes sense in the wider context of framed tangles. If
X ∪ y is a framed tangle and y is a closed component, we define the n-th
disconnected cabling of X∪y along y, denoted by n,y(X∪y), by replacing
y with n parallel copies of y as above.

Disconnected cabling induces maps of corresponding chord diagram spaces,
defined as follows. The projection in the normal bundle to y gives a map
y1 ∪ . . . ∪ yn → y. Extending this a map by the identity map on X we
obtain a map from from the skeleton of n,y(X ∪ y) to that of X ∪ y. The
induced map of diagrams

n,y : C(X,y)→ C(X,y1, . . . ,yn)

assigning to a diagram in C(X,y) the sum of all possible ways of lifting it
to a diagram on C(X,y1, . . . ,yn). A diagram which has exactly m ends of
its chords on the component y is mapped by n,y to a sum of nm diagrams.

The notion of a connecting cabling from page 262 also can be generalized
to framed tangles X ∪ y, where y is a closed component. It is denoted
by n,y(X ∪ y) and obtained by replacing y with its n-sheeted connected
covering yn. It also induces a map of diagrams

n,y : C(X,y)→ C(X,yn)
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assigning to a diagram in C(X,y) the sum of all possible ways of lifting it
to a diagram on C(X,yn).

9.8. Cablings of the Kontsevich integral

The Kontsevich integral is very well-behaved with respect to both kinds of
cablings.

Theorem ([LM5]). For a framed tangle K with a closed component y

Ifr( n,y(K)) = n,y(Ifr(K)) ,

where Ifr is the framed versions of the final Kontsevich integrals from 9.6,
and the cabling operation n,y on the right-hand side is applied to every

chord diagram of the series Ifr(K).

Proof. It will be sufficient to prove the theorem with Zfr in the place of
Ifr.

Let us follow Goryunov’s approach to the framed Kontsevich integral
(Section 9.6.1). It will be convenient to assume (this involves no loss of
generality) that the framing vector on y has no vertical component.

In order to calculate the framed Kontsevich integral of n,y(K) we have
to draw a parallel in the direction of the framing to each of the components
yi obtained by splitting y. Let us suppose that each of the yi is obtained
by shifting y by ε and that, in turn, the parallel of yi is obtained by shifting
y by ε2.

Take an arbitrary diagram D that participates in Zfr(K), and let D̃
be a lifting of D from C(X,y) to C(X,y1, . . . ,yn) . Then, as ε tends to 0

the coefficient of D̃ in the integral Zfr( n,y(K)) tends to the coefficient of

D in Zfr(K). Since the Kontsevich integral is an invariant, this gives the
statement of the theorem. �

Theorem ([BLT]). For a framed tangle K with a closed component y

Ifr( n,y(K)) =
[

n,y

(
Ifr(K)#y exp

(
1
2n

))]
#yn exp

(
−1

2

)
.

Proof. The proof is a twist on the proof of the previous theorem.

...

To prove the theorem we first introduced a twisted operation ˜
n,y on

chord diagrams with the property Ifr( n,y(K)) = ˜
n,y(Ifr(K)). Then we

show that ˜n,y(Ifr(K)) is equal to the right-hand side of the theorem.

A connected cable differs from disconnected one by a small tangle A
which represents the pattern how the n strings of the cable close up into a
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single circle yn (see the pictures on page 262). To compute the Kontsevich
integral of it we would like to represent it in a parenthesized form. For

example, for n = 3 We can choose A = . Denote the combinatorial

Kontsevich integral (section ??) of the tangle by a = Zfrcomb(A). According

to the section ?? a := ∆n−2
2 (R)∆n−3

2 (Φ), where R is the chord diagram on
two braided strings introduced in Secs. 8.4.3 and ?? and used throughout
Sec. 10.4,

R = exp

(

2

)
· = +

1

2
+

1

2 · 22
+ . . . ,

Φ is the associator (Sec. ??), and ∆2 is the operation of doubling the second
string on tangle chord diagrams introduced in Sec. ??. Here is an example
with n = 3.

a = +
1

2

(
+

)
+

1

8

(
+ + +

)

− 1

24

(
−

)
+ (terms of higher order).

Note that in the case n = 2 the formula for a is simpler, a = R.

Now we modify the definition of n,y(D) by insertion of the chord dia-
gram series a instead of empty (without chords) portion at the place where
strings go from one sheet of the covering to another one. The result will be

denoted by ˜n,y. The next picture illustrates this notion.

˜
2,y( ) = 12 + 4 +

1

2

(
+ + +

+ + + + + + +

+ + + + +
)

+ . . .

= 12 + 4 + 2 + 4 + 2 + . . . .

Here, inside the parentheses with common coefficient 1/2 in each of the 16
diagrams you can see one and the same fragment with one chord near the
crossing which is precisely the second term in the expansion of R.
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The operator ˜n,y maps an individual chord diagram D not into a finite
combination of chord diagrams of the same degree as n,y does, but rather
into an infinite series of chord diagrams whose lowest part is just n,y(D).

Obviously we have

Ifr( n,y(K)) = ˜
n,y(Ifr(K)) .

Now, to figure out the effect of ˜n,y let us consider the tangle An:

A3 = = = .

It can be considered as a disconnected parenthesized tangle cabling of a
positive kink with additional negative small kinks at the bottom of each
string. According to the remark ?? its combinatorial Kontsevich integral is
given by the formula

(9.8.0.1) an = Ifrcomb(A
n) = n

(
exp

(
1
2

))
· exp

(
−1

2

)⊗n
=: b .

Here the dot means tangle multiplication and exp
(

1
2

)⊗n
means the fram-

ing changing factors given by the small kinks at the bottom of every string.

We are going to take the n-th root of b from the equation (9.8.0.1).
However the problem is that b is a series of chord diagrams on n vertical
strings while a is not; it contains also a cyclic permutation of strings of the
skeleton.

To go around this problem we represent the tangle A as a conjugate of
a tangle (not parenthesized) A′ symmetric under the rotation by the angle
2π
n and whose boundary points are e

2πi
n
j for j = 0, 1, . . . , n− 1 :

A = = =

}
C

}
A′

}
C−1

= C ·A′ · C−1

Set a′ := Ifr(A′) and c := Ifr(C). Note that here we use the ordinary
Kontsevich integral, not combinatorial one, because the tangles A′ and C
are not parenthesized. However, a = c · a′ · c−1.
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We may think about c and c−1 as elements of the algebra A(n) of chord
diagrams on n vertical strings. Meanwhile A′ permutes the end points of the
strings. So if we push down all the chords of a′, we represent a′ as a chord
diagram a′v on n vertical strings supplied by a cyclic permutation of strings
of the skeleton atop of it. In other words a′ = s · a′v, where a′v ∈ A(n) and s
is a tangle chord diagram without any chord but permuting the end points
of the skeleton in cyclic order. Invariance of A′ under the cyclic rotation
implies that its Kontsevich integral a′ is invariants under the rotation. Hence
a′v commutes with s: a′v · s = s · a′v. Therefore we have

an = c · (a′)n · c−1 = c · (s · a′v)n · c−1 = c · (a′v)n · c−1 = (c · a′v · c−1)n = b .

But this is an equation in the algebra A(n), and thus we can take the n-th
root now.

c · a′v · c−1 = b1/n = n

(
exp

(
1
2n

))
· exp

(
− 1

2n

)⊗n
.

As a consequence

a = c · s · c−1 · n

(
exp

(
1
2n

))
· exp

(
− 1

2n

)⊗n
.

To perform the operation ˜
n,y we have to insert the chord diagram

series a into every chord diagram of the disconnected cabling n,y(Ifr(K)).
In other words, we should consider the tangle multiplication

a · n,y(K) = c · s · c−1 · n

(
exp

(
1
2n

))
· exp

(
− 1

2n

)⊗n · n,y−{pt}(I
fr(K))

and close up every chord diagram in it.

The factor exp
(
− 1

2n

)⊗n
belongs to the center of A(n) so it commutes

with everything. The tangle product

n

(
exp

(
1
2n

))
· n,y−{pt}(I

fr(K)) = n,y−{pt}
(
Ifr(K)#y exp

(
1
2n

))
.

By the sliding property (Section 5.10.5), c−1 commutes with n,y−{pt}
(
Ifr(K)#y exp

(
1
2n

))

and with exp
(
− 1

2n

)⊗n
so it can be swept over the component y and can-

celed with c from the other side. Thus we end up with a closure of the
tangle

s · n,y−{pt}
(
Ifr(K)#y exp

(
1
2n

))
· exp

(
− 1

2n

)⊗n
.

The combination of the permutation of strings tangle S and the disconnected

cabling n,y−{pt} leads to the the connected cabling n,y

(
Ifr(K)#y exp

(
1
2n

))

in which we have to insert n diagrams exp
(
− 1

2n

)
. They all can be slid to

one place and combined into exp
(
−1

2

)
. This gives that

˜
n,y(Ifr(K)) =

[
n,y

(
Ifr(K)#y exp

(
1
2n

))]
#yn exp

(
−1

2

)

and finishes the proof of the theorem. �
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Exercises

(1) ∗ Find two chord diagrams with 11 chords which have the same intersec-
tion graph but unequal modulo four- and one-term relations. According
to Section 9.5.1, eleven is the least number of chords for such diagrams.
Their existence is known, but no explicit examples were found yet.

(2) ∗ In the space A generated by chord diagram modulo four- and one-term
relations consider a subspace AM generated by those chord diagrams
whose class modulo four- and one-term relations is determined by their
intersection graphs only. It is naturally to regard the quotient space
A/AM as the space of chord diagram distinguishing mutants. Find the
dimension of An/AMn . It is known that it is zero for n 6 10 and greater
than zero for n = 1. Is it true that dim(A11/AM11) = 1?

(3) Carry out a proof that the framed Kontsevich integral Zfr(K) is a group-

like element of the Hopf algebra Âfr.
(4) (D. Bar-Natan [BN1]). Check that the mappings n and n are com-

patible with the four-term relation.

(5) Compute 3( ) and 3( ).

(6) Compute the eigenvalues and eigenvectors of 3|A2
.

(7) Compute 2( ), 2( ), 2( ), 2( ), and 2( ).

(8) Compute the eigenvalues and eigenvectors of 2|A3
.

(9) Compute 2(Θ
m), where Θm is a chord di-

agram with m isolated chords, e.g., the one
shown on the right.

Θm =

m chords

(10) (D. Bar-Natan [BN1]). Prove that the mapping n commutes with the
comultiplication of chord diagrams, i.e., the identity

δ( n(D)) =
∑

J⊆[D]

n(DJ)⊗ n(DJ)

holds for any chord diagram D.

(11) (D. Bar-Natan [BN1]). Prove that m ◦ n = mn.

(12) Prove the theorem from Section 9.7.4:

symb( ∗nv)(D) = symb(v)( n(D)) .
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(13) Show that the linear mapping n of the space B preserves the product
in B defined in 5.6 as a disjoint union of graphs. Thus n is an auto-
morphism of the algebra B and hence an automorphism of one of the
two Hopf algebra structures on B (see 5.8).

(14) Prove the proposition from Sec.9.7.7:

∗
nϕg(D) = µn ◦ δn(ϕg(D)) .



Chapter 10

The Drinfeld associator

In this chapter we give the details of the combinatorial construction for
the Kontsevich integral. The main ingredient of this construction is the
Kontsevich integral for the associating tangles, which can be expressed with
the help of a very special power series, known as the Drinfeld associator
ΦKZ. Here the subscript “KZ” indicates that the associator comes from the
solutions to the Knizhnik-Zamolodchikov equation.

The associator ΦKZ is an infinite series in two non-commuting variables
whose coefficients are combinations of multiple zeta values. In the con-
struction of the Kontsevich integral only some properties of ΦKZ are used;
adopting them as axioms, we arrive at the general notion of an associator
that appeared in Drinfeld’s papers [Dr1, Dr2] in his study of quasi-Hopf
algebras. These axioms actually describe a large collection of associators be-
longing to the completed algebra of chord diagrams on three strands. Among
the associators, there are some with rational coefficients, which implies the
rationality of the Kontsevich integral.

10.1. The KZ equation and iterated integrals

In this section, we give the original Drinfeld’s definition of the associator in
terms of the solutions of the simplest Knizhnik–Zamolodchikov equation.

The Knizhnik—Zamolodchikov (KZ) equation is a part of the Wess–
Zumino–Witten model of conformal field theory [KnZa]. The theory of KZ
type equations has been developed in the contexts of mathematical physics,
representation theory and topology [EFK, Var, Kas, Koh4, Oht1]. Our
exposition follows the topological approach and is close to that of the last
three books.

275
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10.1.1. General theory. The Knizhnik-Zamolodchikov equation arises in
the following general setting. Let H =

⋃p
j=1Hj be a collection of affine

hyperplanes in Cn. Each hyperplane Hj is defined by a (non-homogeneous)
linear equation Lj = 0. Let A be a graded C-algebra with a unit which is
supposed to be completed (4.5.2), connected (A.2.22), associative (but in
general non-commutative). Fixing a set {cj} of homogeneous elements of A
of degree 1, one for each hyperplane, we can consider a differential 1-form
ω =

∑p
j=1 cjd log(Lj) on the complex variety X = Cn \H with values in A.

Definition. A Kinizhnik–Zamolodchikov, or simply KZ, equation is an
equation of the form

(10.1.1.1) dI = ω · I,

where I : X → A is the unknown function.

If x1, ..., xn are complex coordinates on X and Lk = λk0 +
∑
λkjxj for

each k = 1, ..., n, then the equation (10.1.1.1) takes the form

∂I

∂xk
=

n∑

j=1

λkjcj
Lj

I

which is a system of first order linear partial differential equations on a
vector-valued function I of several complex variables; we are interested in
complex-analytic solutions of this equation. The main difficulty is that the
coefficients cj as well as the values of I belong to a non-commutative domain
A.

Exercise. One may be tempted to solve the KZ equation as follows:
d log(I) = ω, therefore I = exp

∫
ω. Explain why this is wrong.

The form ω must satisfy certain conditions so that the equation (10.1.1.1)
may have non-zero solutions. Indeed, taking the differential of both sides of
(10.1.1.1), we get that 0 = d(ωI). Applying the Leibniz rule, using the fact
that dω = 0 and substituting dI = ωI, we see that a necessary condition for
integrability can be written as

(10.1.1.2) ω ∧ ω = 0

It turns out that this condition is not only necessary, but also sufficient:
if it holds, then the KZ equation has a unique local solution I0 for any initial
value setting I0(x0) = a0 (here x0 ∈ X and a0 ∈ A). This fact is standard
in differential geometry where it is called the integrability of flat connections
(see, for instance, [KN]). A direct ad hoc proof can be found in [Oht1],
Proposition 5.2.
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10.1.2. Monodromy. Assume that the integrability condition (10.1.1.2)
for the KZ equation holds. Given a (local) solution I of the KZ equation and
a ∈ A, the product Ia is also a (local) solution. Therefore, germs of local
solutions for the KZ equation at a point x0 form an A-module. This module
is free of rank 1; it is generated by the germ of a local solution taking value
1 ∈ A at x0.

The reason to consider germs rather that global solutions is that the
global solutions of the KZ equation are generally multivalued. The reason
why the solutions of Equation (10.1.1.1) are multivalued is the analytic
continuation along closed paths in the base space X. Indeed, let I0 be the
(single-valued) local solution defined in a neighborhood of the point x0 ∈ X
and satisfying I0(x0) = a0. Let γ : [0, 1] → X be a closed loop in X, i.e.,
a continuous mapping such that γ(0) = γ(1) = x0. Since our equation is
linear, the solution I0 can be analytically continued along γ without running
into singularities and thus lead to another local solution Iγ , also defined in
a neighborhood of x0.

Let Iγ(x0) = aγ . Suppose a0 is an invertible element of A. The fact that
S(x0) ∼= A implies that these two solutions are proportional to each other:
Iγ = Ia−1

0 aγ . The coefficient a−1
0 aγ does not depend on a particular choice

of the invertible element a0 ∈ A and the loop γ within a fixed homotopy
class. So we get a homomorphism π1(X)→ A∗ from the fundamental group
of X into the multiplicative group of the algebra A, called the monodromy
representation.

10.1.3. Iterated integrals. Both the analytic continuation of the solu-
tions and the monodromy representation can be expressed in terms of the
1-form ω. Choose a path γ, not necessarily closed, and consider the com-
position I ◦ γ. This is a function [0, 1] → A which we denote by the same
letter I; it satisfies the ordinary differential equation

(10.1.3.1)
d

dt
I(t) = ω(γ̇(t)) · I(t), I(0) = 1 .

The function I takes values in the completed graded algebra A, and it can
be expanded in an infinite series according to the grading:

I(t) = I0(t) + I1(t) + I2(t) + . . . ,

where each term Im(t) is the homogeneous degree m part of I(t).

The form ω is homogeneous of degree 1 (recall that ω =
∑
cjωj , where

ωj are C-valued 1-forms and cj ’s are elements of A1). Therefore Equation
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(10.1.3.1) is equivalent to an infinite system of ordinary differential equations

I ′0(t) = 0, I0(0) = 1,
I ′1(t) = ω(t)I0(t), I1(0) = 0,
I ′2(t) = ω(t)I1(t), I2(0) = 0,
. . . . . . . . . . . .

where ω(t) = γ∗ω is the pull-back of the 1-form to the interval [0, 1].

These equations can be solved iteratively, one by one. The first one
gives: I0 = const, so that for a basic solution we can take I0(t) = 1. Then,

I1(t) =

∫ t

0
ω(t1). Here t1 is an auxiliary variable that ranges from 0 to t.

Coming to the next equation, we now get:

I2(t) =

∫ t

0
ω(t2) · I1(t2) =

∫ t

0
ω(t2)

(∫ t2

0
ω(t1)

)
=

∫

0<t1<t2<t

ω(t2) ∧ ω(t1),

Proceeding in the same way, for an arbitrary m we obtain

Im(t) =

∫

0<t1<t2<···<tm<t

ω(tm) ∧ ω(tm−1) ∧ · · · ∧ ω(t1)

Renumbering the variables, we can write the result as follows:

(10.1.3.2) I(t) = 1 +
∞∑

m=1

∫

0<tm<tm−1<···<t1<1

ω(t1) ∧ ω(t2) ∧ · · · ∧ ω(tm)

The value I(1) represents the monodromy of the solution over the loop γ.
Each iterated integral Im(1) is a homotopy invariant (of “order m”) of γ.
Note the resemblance of these expressions to the Kontsevich integral — we’ll
come back to that again later.

10.1.4. The formal KZ equation. The general scheme of the previous
section allows for various specializations. The case of KZ equations related
to Lie algebras and their representations is the most elaborated one (see,
e.g., [KnZa, Oht1, Koh4]). We are especially interested in the following
situation.

Suppose that, in the notation of the previous section, X = Cn \H where
H is the union of the diagonal hyperplanes {zj = zk}, 1 6 j < k 6 n, and

the algebra A is the completed algebra of horizontal chord diagrams Âh(n)
for the tangle T consisting of n vertical strings modulo the horizontal four-
term relation (see Equation 4.1.1.4 in Section 4.1). In the pictures, we will
always suppose that the strings are oriented upwards. The multiplication in
the algebra Ah(n) is defined by the vertical concatenation of tangle chord
diagrams (to obtain the product xy, one puts x on top of y). The unit is the
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diagram without chords. The algebra is graded by the number of chords. It
is generated by the diagrams

ujk =

kj

, 1 6 j, k 6 n,

subject to relations (infinitesimal pure braid relations, first appeared in
[Koh2])

[ujk, ujl + ukl] = 0, if j, k, l are different,

[ujk, ulm] = 0, if j, k, l,m are different,

where by definition ujk = ukj .

Consider an Ah(n)-valued 1-form ω =
1

2πi

∑

16j<k6n

ujk
dzj − dzk
zj − zk

and the

corresponding KZ equation

(10.1.4.1) dI =
1

2πi

( ∑

16j<k6n

ujk
dzj − dzk
zj − zk

)
· I .

This specialization of Equation 10.1.1.1 is referred to as the formal KZ
equation.

The integrability condition (10.1.1.2) for the formal KZ equation is the
following identity for a 2-form on X with values in the algebra Ah(n):

ω ∧ ω =
∑

16j<k6n
16l<m6n

ujkulm
dzj − dzk
zj − zk

∧ dzl − dzm
zl − zm

= 0 .

This identity, in a slightly different notation, was actually proved in Section
?? when we checked the horizontal invariance of the Kontsevich integral.

The space X = Cn \ H is the configuration space of n different (and
distinguishable) points in C. A loop γ in this space may be identified with
a pure braid (that is a braid that does not permute the endpoints of the
strings), and the iterated integral formula (10.1.3.2) yields

I(1) =
∞∑

m=0

1

(2πi)m

∫

0<tm<···<t1<1

∑

P={(zj ,z′j)}
DP

m∧

j=1

dzj − dz′j
zj − z′j

,

where P (a pairing) is a choice of m pairs of points on the braid, with
j-th pair lying on the level t = tj , and DP is the product of m T -chord
diagrams of type ujj′ corresponding to the pairing P . We can see that the
monodromy of the KZ equation over γ coincides with the Kontsevich integral
of the corresponding braid (see ??).
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10.1.5. The case n = 2. There are some simplifications in the treatment
of Equation 10.1.4.1 for small values of n. In the case n = 2 the algebra

Âh(2) is free commutative with one generator and everything is very simple,
as the following exercise shows.

Exercise. Solve explicitly Equation 10.1.4.1 and find the monodromy
representation in the case n = 2.

10.1.6. The case n = 3. The formal KZ equation for n = 3 has the form

dI =
1

2πi

(
u12d log(z2 − z1) + u13d log(z3 − z1) + u23d log(z3 − z2)

)
· I ,

which is a partial differential equation in 3 variables. It turns out that it
can be reduced to an ordinary differential equation.

Indeed, make the substitution

I = (z3 − z1)
u

2πi ·G ,

where u := u12 + u13 + u23 and we understand the multiplier as a power

series in the algebra Âh(3):

(z3 − z1)
u

2πi = exp

(
log(z3 − z1)

2πi
u

)

= 1 +
log(z3 − z1)

2πi
u+

1

2!

log2(z3 − z1)
(2πi)2

u2 +
1

3!

log3(z3 − z1)
(2πi)3

u3 + . . .

The element u and therefore the values of the function (z3− z1)
u

2πi com-

mute with all elements of the algebra Âh(3) because of the following lemma.

Lemma. The element u = u12+u13+u23 belongs to the center of the algebra

Âh(3).

Proof. The algebra Âh(3) is generated by the elements u12, u13, and u23,
therefore it is enough to show that each of these three elements commutes
with their sum. But the four-term relations mean precisely that

[u12, u13 + u23] = 0, [u13, u12 + u23] = 0, [u23, u12 + u13] = 0 .

�

The algebra Âh(3) can thus be considered as a free algebra of mixed
type, with two noncommutative generators u12, u23 and one commutative
generator u.

After the substitution and simplifications the differential equation for G
becomes

dG =
1

2πi

(
u12d log

(z2 − z1
z3 − z1

)
+ u23d log

(
1− z2 − z1

z3 − z1

))
G .
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Denoting z2−z1
z3−z1 simply by z, we see that the function G depends only

on z and as such satisfies the following ordinary differential equation (the
reduced KZ equation)

(10.1.6.1)
dG

dz
=

(
A

z
+

B

z − 1

)
G

where A := u12
2πi , B := u23

2πi . Initially, G was taking values in the algebra

Âh(3) with three generators A, B, u. However, the space of local solutions

of this equation is a free module over Âh(3) of rank 1, so the knowledge of
just one solution is enough. Since the coefficients of Equation 10.1.6.1 do
not involve u, the equation does have a solution with values in the ring of
formal power series C〈〈A,B〉〉 in two non-commuting variables A and B.

10.1.7. The reduced KZ equation. The reduced KZ equation (10.1.6.1)
is a particular case of the general KZ equation (10.1.1.1), defined by the data
n = 1, X = C \ {0, 1}, A = C〈〈A,B〉〉, c1 = A, c2 = B.

Equation (10.1.6.1), although it is a first order ordinary differential
equation, is not easy to solve, because the solutions take values in a non-
commutative infinite-dimensional algebra. Two approaches at solving this
equation immediately come to mind. In the following exercises we invite the
reader to try them.

10.1.8. Exercise. Try to find the general solution of Equation (10.1.6.1)
by representing it as a series G = G0 + G1A + G2B + G11A

2 + G12AB +
G21BA + . . . , where the G’s with subscripts are complex-valued functions
of z.

10.1.9. Exercise. Try to find the general solution of Equation (10.1.6.1) in
the form of a Taylor series G =

∑
kGk(z− 1

2)k, where the Gk’s are elements
of the algebra C〈〈A,B〉〉. (Note that it is not possible to expand the solutions
at z = 0 or z = 1, because they have essential singularities at these points.)

These exercises show that direct approaches do not give much insight
into the nature of solutions of the KZ equation (10.1.6.1). However, one
good thing about this equation is that any solution can be obtained from
one basic solution via multiplication by an element of the algebra C〈〈A,B〉〉.
The Drinfeld associator appears as a coefficient between two remarkable
solutions.

Definition. The (Knizhnik-Zamolodchikov) Drinfeld associator ΦKZ is the
ratio ΦKZ = G−1

1 (z) ·G0(z) of two special solutions G0(z) and G1(z) of this
equation described in the following Lemma.

10.1.10. Lemma. ([Dr1, Dr2]) There exist unique solutions G0(z) and
G1(z) of equation (10.1.6.1), analytic in the domain {z ∈ C | |z| < 1, |z −
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1| < 1} and having the following asymptotic behavior:

G0(z) ∼ zA as z → 0 and G1(z) ∼ (1− z)B as z → 1 ,

which means that

G0(z) = f(z) · zA and G1(z) = g(1− z) · (1− z)B ,

where f(z) and g(z) are analytic functions in a neighborhood of 0 ∈ C
with values in C〈〈A,B〉〉 such that f(0) = g(0) = 1, and the (multival-
ued) exponential functions are understood as formal power series, i.e., zA =
exp(A log z) =

∑
k>0(A log z)k/k!

Remark. It is often said that the element ΦKZ represents the monodromy
of the KZ equation over the horizontal interval from 0 to 1. This phrase has
the following meaning. In general, the monodromy along a path γ connecting
two points p and q, is the value at q of the solution, analytical over γ and
taking value 1 at p. If fp and fq are two solutions analytical over γ with
initial values fp(p) = fq(q) = 1, then the monodromy is the element f−1

q fp.
The reduced KZ equation has no analytic solutions at the points p = 0
and q = 1, and the general definition of the monodromy cannot be applied
directly in this case. What we do is we choose some natural basic solutions
with reasonable asymptotics at these points and define the monodromy as
their ratio in the appropriate order.

Proof. Plugging the expression G0(z) = f(z) · zA into Equation (10.1.6.1)
we get

f ′(z) · zA + f · A
z
· zA =

(
A

z
+

B

z − 1

)
· f · zA ,

hence f(z) satisfies the differential equation

f ′ − 1

z
[A, f ] =

−B
1− z · f .

Let us look for a formal power series solution f = 1 +
∑∞

k=1 fkz
k with

coefficients fk ∈ C〈〈A,B〉〉. We have the following recurrence equation for
the coefficient of zk−1:

kfk − [A, fk] = (k − adA)(fk) = −B(1 + f1 + f2 + · · ·+ fk−1) ,

where adA denotes the operator x 7→ [A, x]. The operator k− adA is invert-
ible:

(k − adA)−1 =
∞∑

s=0

adsA
ks+1

(the sum is well-defined because the operator adA increases the grading), so
the recurrence can be solved

fk =
∞∑

s=0

adsA
ks+1

(
−B(1 + f1 + f2 + · · ·+ fk−1)

)
.
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Therefore the desired solution does exist among formal power series. Since
the point 0 is a regular singular point of our equation (10.1.6.1), it follows
(see, e.g. [Wal]) that this power series converges for |z| < 1. We thus get
an analytic solution f(z).

To prove the existence of the second solution, G1(z), it is best to make
the change of undependent variable z 7→ 1 − z which transforms Equation
(10.1.6.1) into a similar equation with A and B swapped. �

Remark. If the variables A and B were commutative, then the function
explicitly given as the product zA(1− z)B would be a solution of Equation
10.1.6.1 satisfying both asymptotic conditions of Lemma 10.1.10 at once.
Therefore, the image of ΦKZ under the abelianization map C〈〈A,B〉〉 →
C[[A,B]] is equal to 1.

The next lemma gives another expression for the associator in terms of
the solutions of equation (10.1.6.1).

10.1.11. Lemma ([LM2]). Suppose that ε ∈ C, |ε| < 1, |ε − 1| < 1.
Let Gε(z) be the unique solution of equation (10.1.6.1) satisfying the initial
condition Gε(ε) = 1. Then

ΦKZ = lim
ε→0

ε−B ·Gε(1− ε) · εA .

Proof. We rely on, and use the notation of, Lemma 10.1.10. The solution
Gε is proportional to the distinguished solution G0:

Gε(z) = G0(z)G0(ε)
−1 = G0(z) · ε−Af(ε)−1 = G1(z) · ΦKZ · ε−Af(ε)−1

(the function f , as well as g mentioned below, was defined in Lemma
10.1.10). In particular,

Gε(1− ε) = G1(1− ε) · ΦKZ · ε−Af(ε)−1 = g(ε)εB · ΦKZ · ε−Af(ε)−1 .

We must compute the limit

lim
ε→0

ε−Bg(ε)εB · ΦKZ · ε−Af(ε)−1εA ,

which obviously equals ΦKZ because f(0) = g(0) = 1 and f(z) and g(z) are
analytic functions in a neighborhood of zero. The lemma is proved. �

10.1.12. The Drinfeld associator and the Kontsevich integral. Putting

ω(z) = A
dz

z
+B

d(1− z)
1− z ,

we can rewrite equation (10.1.6.1) as dG = ω · G. This is a particular case
of equation (10.1.3.2) in Section 10.1.1, therefore, its solution Gε(t) can be
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written as a series of iterated integrals

Gε(t) = 1 +

∞∑

m=1

∫

ε<tm<···<t2<t1<t

ω(t1) ∧ ω(t2) ∧ · · · ∧ ω(tm) .

The lower limit in the integrals is ε because of the initial conditionGε(ε) = 1.

We are interested in the value of this solution at t = 1− ε:

Gε(1− ε) = 1 +

∞∑

m=1

∫

ε<tm<···<t2<t1<1−ε

ω(t1) ∧ ω(t2) ∧ . . . ω(tm) .

We claim that this series literally coincides with the Kontsevich integral of
the following tangle

Qε =

0

ε

ε 1−ε 1

1−ε
1

t

z

under the identification A = 1
2πi , B = 1

2πi . Indeed, on every level tj
the differential form ω(tj) consists of two summands. The first summand

A
dtj
tj

corresponds to the choice of a pair P = (0, tj) on the first and the

second strings and is related to the chord diagram A = . The second

summand B
d(1−tj)
1−tj corresponds to the choice of a pair P = (tj , 1) on the

second and third strings and is related to the chord diagram B = . The
pairing of the first and the third strings does not contribute to the Kontsevich
integral, because these strings are parallel and the correspoding differential
vanishes. We have thus proved the following proposition.

Proposition. The value of the solution Gε at 1−ε is equal to the Kontsevich
integral Gε(1− ε) = Z(Qε). Consequently, the KZ associator coincides with
the regularization of the Kontsevich integral of the tangle Qε:

ΦKZ = lim
ε→0

ε−B · Z(Qε) · εA,

where A = 1
2πi and B = 1

2πi .

10.2. Combinatorial construction of the Kontsevich integral

In this section we fulfil the promise of Section 8.9 and describe in detail a
combinatorial construction for the Kontsevich integral of knots and links.
The associator ΦKZ is an essential part of this construction. In Section 10.3
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we shall give some formulae for ΦKZ; using these expressions one can perform
explicit calculations, at least in low degrees.

10.2.1. Non-associative monomials. A non-associative monomial in one
variable is simply a choice of an order (that is, a choice of parentheses) of
multiplying n factors; the number n is referred to as the degree of the non-
associative monomials. The only such monomial in x of degree 1 is x itself.
In degree 2 there is also only one monomial, namely xx, in degree 3 there are
two monomials (xx)x and x(xx), in degree 4 we have ((xx)x)x, (x(xx))x,
(xx)(xx), x((xx)x) and x(x(xx)), et cetera.

For each pair u, v of non-associative monomials of the same degree n

one can define Φ(u, v) ∈ Âh(n) as follows. If n < 3 we set Φ(u, v) = 1, the

unit in Âh(n). Assume n > 3. Then Φ(u, v) is determined by the following
properties:

(1) If u = w1(w2w3) and v = (w1w2)w3 where w1, w2, w3 are monomials
of degrees n1, n2 and n3 respectively, then

Φ(u, v) = ∆n1,n2,n3ΦKZ.

(2) If w is monomial of degree m,

Φ(wu,wv) = 1m ⊗ Φ(u, v)

and

Φ(uw, vw) = Φ(u, v)⊗ 1m;

(3) If u, v, w are monomials of the same degree, then

Φ(u, v) = Φ(u,w)Φ(w, v).

These properties are sufficient to determine Φ(u, v) since each non-associative
monomial in one variable can be obtained from any other such monomial
of the same degree by moving the parentheses in triple products. It is not
immediate that Φ(u, v) is well-defined, however. Indeed, according to (3),
we can define Φ(u, v) by choosing a sequence of moves that shift one pair of
parentheses at a time, and have the effect of changing u into v. A potential
problem is that there may be more than one such sequence; however, let us
postpone this matter for the moment and work under the assumption that
Φ(u, v) may be multivalued (which it is not, see Section 10.2.7).

Recall from Section 1.7 the notion of an elementary tangle: basically,
these are maxima, minima, crossings and vertical segments. Take a tensor
product of several elementary tangles and choose the brackets in it, enclos-
ing each elementary tangle other than a vertical segment in its own pair of
parentheses. This choice of parentheses produces two non-associative mono-
mials: one formed by the top boundary points of the tangle, and the other,
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formed by the bottom boundary points. For example, consider the following
tensor product, parenthesized as indicated, of three elementary tangles:

The top part of the boundary gives the monomial x((xx)(xx)) and the bot-
tom part - x(xx).

Note that here it is important that the factors in the product are not
arbitrary, but elementary tangles, since each elementary tangle has at most
two upper and at most two lower boundary points.

10.2.2. The construction. Represent a given knot K as a product of
tangles

K = T1T2 . . . Tn

so that each Ti as a tensor product of elementary tangles:

Ti = Ti,1 ⊗ · · · ⊗ Ti,ki .

For each Ti choose the parentheses in this tensor product and denote by wi

and wi the corresponding non-associative monomials coming from the top
and bottom parts of the boundary of Ti, respectively. Finally, let αi be the
set of boundary points on the top of Ti+1 (or on the bottom of Ti, which is
the same) where the corresponding strands are oriented downwards. Then
the combinatorial Kontsevich integral Zcomb(K) is defined as

Zcomb(K) = Z1 · Sα1(Φ(w1, w
2)) · Z2 · · · · · Zn−1 · Sαn−1(Φ(wn−1, w

n)) · Zn,

where Zi is the tensor product of the Kontsevich integrals of the elementary
tangles Ti,j :

Zi = Z(Ti,1)⊗ · · · ⊗ Z(Ti,ki).

Note that the only elementary tangles for which the Kontsevich integral
is non-trivial are the crossings, and for them

Z (X+) = · exp
(

2

)
, Z (X−) = · exp

(
−

2

)
.

For all other elementary tangles the Kontsevich integral consists of a diagram
with no chords (and with the skeleton corresponding to that of the tangle,
of course).

We also remind that Zi in general does not coincide with Z(Ti).
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10.2.3. Example of computation. Let us see how the combinatorial
Kontsevich integral can be computed, up to order 2, on the example of
the left trefoil 31. Explicit formulae for the associator will be proved in
Section 10.3. In particular, we shall see that

ΦKZ = 1 +
1

24

(
−

)
+ . . . .

Decompose the left trefoil into elementary tangles as shown below and choose
the parentheses in the tensor product as shown in the second column:

−→
max

(id⊗ −→
max )⊗ id∗

(X− ⊗ id∗)⊗ id∗

(X− ⊗ id∗)⊗ id∗

(X− ⊗ id∗)⊗ id∗

(id⊗min←−)⊗ id∗

min←−

The combinatorial Kontsevich integral may then be represented as

Zcomb(31) =

KZ

KZ

2exp(−    )

2exp(−    )

2exp(−    )

S3(Φ
−1)

S3(Φ  )

where S3 is the operation corresponding to the reversal of the 3rd strand, in
particular, S3( ) = and S3( ) = − . The crossings in the above
picture are, of course, irrelevant since it shows chord diagrams and not knot
diagrams.

We have that

S3(Φ
±1
KZ) = 1± 1

24

(
−

)
+ . . .

and

exp
(
±

2

)
= 1±

2
+

2

8
+ . . .
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Plugging these expressions into the diagram above we see that, up to degree
2, the Kontsevich integral of the left trefoil is

Z(31) = 1 +
25

24
+ . . .

The final Kontsevich integral of the trefoil (in the multiplicative normaliza-
tion, see page 242) is thus equal to

I ′(31) = Z(31)/Z(H)

=
(
1 +

25

24
+ . . .

)(
1 +

1

24
+ . . .

)−1
= 1 + + . . .

10.2.4. The main theorem. The main result about the combinatorial
Kontsevich integral is the following theorem:

Theorem ([LM3]). The combinatorial Kontsevich integral of a knot is
equal to the usual Kontsevich integral:

Zcomb(K) = Z(K) .

The rest of this section is dedicated to the proof of this theorem. We
have sketched the idea in Section 8.9 and here we shall make it precise.
The most important part of the proof consists of expressing the Kontsevich
integral of an associating tangle via ΦKZ. First, let us give a more precise
definition of associating tangles.

10.2.5. Boundary configurations and associating tangles. A bound-
ary configuration is a finite set of distinct oriented (that is, marked with a
sign) points in an interval [a, b]. The cardinality of a configuration is the
number of points in it. To each tangle we can associate two boundary con-
figurations, namely, the top and the bottom of the tangle. The points of the
configurations are the boundaries of the strands; the sign of a point is posi-
tive if the corresponding strand is oriented upwards and negative otherwise.

Putting two boundary configurations t1 and t2 next to each other we
obtain the tensor product of configurations t1 ⊗ t2. This operation agrees
with the tensor product of tangles in the sense that the top (bottom) bound-
ary configuration of a tensor product of two tangles is the tensor product
of the corresponding top (bottom) configurations. Note that each boundary
configuration of cardinality n can be written as a tensor product of n config-
urations of cardinality one. This decomposition as a product is not unique
since the widths of the factors may vary without affecting the distances
between the point of the product.
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More generally, we can define the ε-parameterized tensor product of
boundary configurations which agrees with that of tangles. As in the case
of tangles, the ε-parameterized tensor product is non-associative in general.

A parenthesized boundary configuration (t, w) of cardinality n consists of
a boundary configuration t of cardinality n together with a non-associative
monomial w of degree n in one variable.

10.2.6. Lemma. Let (t, w) be a parenthesized boundary configuration of
cardinality n. For each positive ε 6 1 there is a unique configuration twε such
that t = t1⊗ . . .⊗ tn with ti of cardinality one, and twε is the ε-parameterized
tensor product of the ti with the parentheses coinciding with those of w.

In particular, each non-associative word of degree n gives a canonical
deformation of any boundary configuration of cardinality n.

Definition. Let (t, w) and (t, w′) be two parenthesized boundary configura-
tions with the same underlying boundary configuration t. For each positive
ε 6 1 the associating tangle ATε(t;w,w

′) is a tangle such that

• its top configuration is twε and its bottom configuration is tw
′

ε ;

• the boundary of each component of the tangle has one point on the
top and one on the bottom;

• its diagram has no crossings.

Every associating tangle is a product of associating tangles ATε(t;w,w
′)

with one of the monomials w,w′ equal to w1(w2w3) and the other - to
w′ = (w1w2)w3 where w1, w2 and w3 are some non-associative monomials.
It will be sufficient to calculate the Kontsevich integral for the associating
tangles of this form.

The simplest associating tangle is Qε from Section 10.1.12. We have seen
that its Kontsevich integral, apart from the associator, contains some regu-
larizing factors. For more general tangles the situation is similar, although
the regularizing factors become more complicated.

10.2.7. Kontsevich integral for the associating tangles. Let w be
non-associative monomial of degree n. The regularizing factor ρε(w) ∈
Âh(n) is defined as follows.

First, we define for each integer i > 0 and each non-associative monomial

w (in one variable x) the element ci(w) ∈ Âh(n), where n is the degree of
w, by setting

• ci(x) = 0 for all i;

• c0(w1w2) = ∆n1,n2

(
2πi

)
if w1, w2 6= 1, where n1 and n2 are the

degrees of w1 and w2 respectively;
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• ci(w1w2) = ci−1(w1) ⊗ 1n2 + 1n1 ⊗ ci−1(w2) if w1, w2 6= 1 with
degw1 = n1, degw2 = n2 and i > 0.

It is easy to see that for each w all the ci(w) commute with each other and
that only a finite number of the ci is non-zero. Now, we set

ρε(w) =
∞∏

k=1

εkck(w).

This product is, of course, finite since almost all terms in it are equal to the

unit in Âh(n).

Let us introduce, for this chapter only, the following notation. If x and

y are two elements of Âh(n) that depend on a parameter ε, by saying that

x ∼ y as ε→ 0 we shall mean that in some fixed basis of Âh(n) (and, hence,
in any basis of this algebra) the coefficient of each diagram in x − y is of
the same or smaller order of magnitude than ε lnN ε for some non-negative
integer N that may depend on the diagram. Note that for any non-negative
N the limit of ε lnN ε as ε→ 0 is equal to 0.

Proposition. If all points of the configuration t are positive,

(10.2.7.1) (ρε(w))−1 · Z(ATε(t;w,w
′)) · ρε(w′) ∼ Φ(w,w′)

as ε→ 0.

An important corollary of the above formula is that Φ(w,w′) is well-
defined, since the left-hand side is. Note that this formula does not depend
on the configuration t at all. Here, of course, we have assumed that all points
of t are positive only for simplicity. Changing the sign of a point in t results
in applying the operation S to the Kontsevich integral of ATε(t;w,w

′), see
???.

Proof. Let w be a non-associative word and t - a positive boundary con-
figuration. We denote by εt a configuration of the same cardinality and
in the same interval as t but whose distances between points are equal to
the corresponding distances in t, multiplied by ε. (There are many such
configuration, of course, but this is of no importance in what follows.)

Write Nε(w) for a tangle with no crossings which has εtwε and twε as its
top and bottom configurations respectively, and all of whose strands have
one boundary point on the top and one on the bottom:
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As ε tends to 0, the Kontsevich integral of Nε(w) diverges. We have the
following asymptotic formula:

(10.2.7.2) Z(Nε(w)) ∼
∞∏

k=0

εck(w).

If t is a two-point configuration this formula is exact, and amounts to a
straightforward computation (see Exercise 4 to Chapter 8). In general, if
w = w1w2 we can write Nε(w) as a product in the following way:

(           )
w1

(           )
w2

T

T
2

1

As ε tends to 0, we have

Z(T1) ∼ ∆n1,n2ε
/2πi = εc0(w1w2)

and

Z(T2) ∼ Z(Nε(w1))⊗ Z(Nε(w2)).

Using induction and the definition of the ci we arrive to the formula (10.2.7.2).

Now, notice that it is sufficient to prove (10.2.7.1) in the case when
w = w1(w2w3) and w′ = (w1w2)w3. Let us draw ATε(t;w,w

′) as a product
T1 · T2 · T3 as in the picture:

(           )

(           ) (           )
w3ww

1 2

      (     )

(           )       (     )
w1 w

2
w

3

T

T

T

1

2

3

As ε→ 0 we have:

• Z(T1) ∼ Z(Nε(w1))
−1 ⊗ 1n2+n3 ;

• Z(T2) ∼ (1n1 ⊗ c0(w2w3)) ·∆n1,n2,n3ΦKZ · (c0(w1w2)⊗ 1n3)
−1;

• Z(T3) ∼ 1n1+n2 ⊗ Z(Nε(w3)).

Notice that these asymptotic expressions for Z(T1), Z(T2) and Z(T3) all
commute with each other. Now (10.2.7.1) follows from (10.2.7.2) and the
definition of ρε(w). �
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10.2.8. Proof of the main theorem. We have seen in Section 8.9 that
given a knot K written as a product T1 · . . . · Tn where the Ti are tensor
products of elementary tangles, there is a family

Kε = T ε1 ·Qε1 · T ε2 · . . . ·Qεn−1 · T εn,

where the T εi are ε-parameterized tensor products of elementary tangles and
the Qεi are associating tangles.

As ε → 0, the Kontsevich integral of T εi tends to the tensor product of
the corresponding elementary tangles, and the integral of Qεi is given by the
formula (10.2.7.1) with the appropriate w and w′. Comparing this with the
combinatorial Kontsevich integral we see that the only thing to prove is that
the regularizing factors in the expressions for the Qεi can be omitted.

. . .

10.3. Calculation of the KZ Drinfeld associator

In this section, following [LM2], we deduce an explicit formula for the Drin-
feld associator ΦKZ . It turns out that all coefficients in the corresponding
expansion over the monomials in A and B are values of multiple zeta func-
tions (see Section 10.3.11) divided by powers of 2πi.

10.3.1. Put ω0(z) = dz
z and ω1(z) = d(1−z)

1−z . Then the 1-form Ω stud-

ied in 10.1.12 is the linear combination ω(z) = Aω0(z) + Bω1(z), where

A = 2πi and B = 2πi . By definition the terms of the Kontsevich integral
Z(ATε) represent the monomials corresponding to all choices of one of the
two summands of ω(tj) for every level tj . The coefficients of these mono-
mials are integrals over the simplex ε < tm < · · · < t2 < t1 < 1 − ε of all
possible products of the forms ω0 and ω1. The coefficient of the monomial
Bi1Aj1 . . . BilAjl (i1 > 0, j1 > 0, . . . , il > 0, jl > 0) is

∫

ε<tm<···<t2<t1<1−ε

ω1(t1) ∧ · · · ∧ ω1(ti1)︸ ︷︷ ︸
i1

∧ω0(ti1+1) ∧ · · · ∧ ω0(ti1+j1)︸ ︷︷ ︸
j1

∧ . . .

∧ω0(ti1+···+il+1) ∧ · · · ∧ ω0(ti1+···+jl)︸ ︷︷ ︸
jl

,

where m = i1 +j1 + · · ·+ il+jl. For example, the coefficient of AB2A equals
∫

ε<t4<t3<t2<t1<1−ε

ω0(t1) ∧ ω1(t2) ∧ ω1(t3) ∧ ω0(t4) .
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We are going to divide the sum of all monomials into two parts, conver-
gent Zconv and divergent Zdiv, depending on the behavior of the coefficients
as ε→ 0. We will have Z(ATε) = Zconv + Zdiv and

(10.3.1.1) Φ = lim
ε→0

ε−B · Zconv · ε−A + lim
ε→0

ε−B · Zdiv · ε−A .

Then we will prove that the second limit equals zero and find an explicit
expression for the first one in terms of multiple zeta values. We will see that
although the sum Zconv does not contain any divergent monomials, the first
limit in (10.3.1.1) does.

We pass to exact definitions.

10.3.2. Definition. A non-unit monomial in letters A and B with posi-
tive powers is said to be convergent if it starts with an A and ends with a
B. Otherwise the monomial is said to be divergent . We regard the unit
monomial 1 as convergent.

10.3.3. Example. The integral
∫

a<tp<···<t2<t1<b

ω1(t1) ∧ · · · ∧ ω1(tp) =
1

p!
logp

( 1− b
1− a

)

diverges as b→ 1. It is the coefficient of the monomial Bq in Gε(1−ε) when
a = ε, b = 1− ε, and this is the reason to call monomials that start with a
B divergent.

Similarly, the integral
∫

a<tq<···<t2<t1<b

ω0(t1) ∧ · · · ∧ ω0(tq) =
1

q!
logq

( b
a

)

diverges as a→ 0. It is the coefficient of the monomial Ap in Gε(1−ε) when
a = ε, b = 1− ε, and this is the reason to call monomials that end with an
A divergent.

Now consider the general case: integral of a product that contains both
ω0 and ω1. For δj = 0 or 1 and 0 < a < b < 1, introduce the notation

Ia,bδ1...δm =

∫

a<tm<···<t2<t1<b

ωδ1(t1) ∧ · · · ∧ ωδm(tm) .

10.3.4. Lemma.

(i) If δ1 = 0, then the integral Ia,bδ1...δm converges to a non-zero constant

as b→ 1, and it grows as a power of log(1− b) if δ1 = 1.

(ii) If δm = 1, then the integral Ia,bδ1...δm converges to a non-zero constant
as a→ 0, and it grows as a power of log a if δm = 0.



294 10. The Drinfeld associator

Proof. Induction on the number of chords m. If m = 1 then the integral
can be calculated explicitly like in the previous example, and the lemma
follows from the result. Now suppose that the lemma is proved for m − 1
chords. By the Fubini theorem the integral can be represented as

Ia,b1δ2...δm
=

∫

a<t<b

Ia,tδ2...δm ·
dt

t− 1
, Ia,b0δ2...δm

=

∫

a<t<b

Ia,tδ2...δm ·
dt

t
,

for the cases δ1 = 1 and δ1 = 0 respectively. By the induction assumption

0 < c <
∣∣∣Ia,tδ2...δm

∣∣∣ <
∣∣logk(1− t)

∣∣ for some constants c and k. The comparison

test implies that the integral Ia,b0δ2...δm
converges as b → 1 because Ia,tδ2...δm

grows slower than any power of (1 − t). Moreover,
∣∣∣Ia,b0δ2...δm

∣∣∣ > c
∫ 1
a
dt
t =

−c log(a) > 0 because 0 < a < b < 1.

In the case δ1 = 1 we have

c log(1−b) = c
∫ b
0
dt
t−1 <

∣∣∣Ia,b1δ2...δm

∣∣∣ <
∣∣∣
∫ b
0 logk(1− t)d(log(1− t))

∣∣∣ =
∣∣∣ log

k+1(1−b)
k+1

∣∣∣ ,
which proves assertion (i). The proof of assertion (ii) is similar. �

10.3.5. Here is a plan of our subsequent actions.

Let Âconv (resp. Âdiv) be the subspace of Â = C〈〈A,B〉〉 spanned by all
convergent (resp. divergent) monomials. We are going to define a special

linear map f : Â → Â which kills divergent monomials and preserves the
associator Φ. Applying f to both parts of equation (10.3.1.1) we will have

(10.3.5.1) Φ = f(Φ) = f
(
lim
ε→0

ε−B · Zconv · εA
)

= f
(
lim
ε→0

Zconv
)
.

The last equality here follows from the fact that only the unit terms of ε−B

and εA are convergent and therefore survive under the action of f .

The convergent improper integral

(10.3.5.2) lim
ε→0

Zconv = 1 +
∞∑

m=2

∑

δ2,...,δm−1=0,1

I0,1
0δ2...δm−11 ·ACδ2 . . . Cδm−1B

can be computed explicitly (here Cj = A if δj = 0 and Cj = B if δj = 1).
Combining equations (10.3.5.1) and (10.3.5.2) we get

(10.3.5.3) Φ = 1 +
∞∑

m=2

∑

δ2,...,δm−1=0,1

I0,1
1δ2...δm−10 · f(ACδ2 . . . Cδm−1B)

The knowledge of how f acts on the monomials from Â leads to the desired
formula for the associator.
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10.3.6. Definition of the linear map f : Â → Â. Consider the algebra

Â[α, β] of polynomials in two commuting variables α and β with coeffi-

cients in Â. Every monomial in Â[α, β] can be written uniquely as βpMαq,

where M is a monomial in Â. Define a C-linear map j : Â[α, β] → Â by

j(βpMαq) = BpMAq. Now for any element Γ(A,B) ∈ Â let

f(Γ(A,B)) = j(Γ(A− α,B − β)) .

10.3.7. Lemma. If M is a divergent monomial in Â, then f(M) = 0.

Proof. Consider the case where M starts with B, say M = BC2 . . . Cm,
where each Cj is either A or B. Then

f(M) = j((B − β)M2) = j(BM2)− j(βM2) ,

where M2 = (C2−γ2) . . . (Cm−γm) with γj = α or γj = β depending on Cj .
But j(BM2) equals j(βM2) by the definition of j above. The case where M
ends with an A can be done similarly. �

10.3.8. One may notice that for any monomial M ∈ Â we have f(M) =
M +(sum of divergent monomials). Therefore, by the lemma, f is an idem-

potent map, f2 = f , i.e. f is a projection along Âdiv (but not onto Âconv).
10.3.9. Proposition. f(Φ) = Φ.

Proof. We use the definition of the associator Φ as the KZ Drinfeld associ-
ator from Sec. 10.1.7 (see Proposition in Section 10.1.12).

It is the ratio Φ(A,B) = G−1
1 · G0 of two solutions of the differential

equation (10.1.6.1) from Sec. 10.1.7

G′ =

(
A

z
+

B

z − 1

)
·G

with the asymptotics

G0(z) ∼ zA as z → 0 and G1(z) ∼ (1− z)B as z → 1 .

Consider the differential equation

H ′ =

(
A− α
z

+
B − β
z − 1

)
·H .

A direct substitution shows that the functions

H0(z) = z−α(1− z)−β ·G0(z) and H1(z) = z−α(1− z)−β ·G1(z)

are its solutions with the asymptotics

H0(z) ∼ zA−α as z → 0 and H1(z) ∼ (1− z)B−β as z → 1 .

Hence we have

Φ(A− α,B − β) = H−1
1 ·H0 = G−1

1 ·G0 = Φ(A,B) .
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Therefore

f(Φ(A,B)) = j(Φ(A− α,B − β)) = j(Φ(A,B)) = Φ(A,B)

because j acts as the identity map on the subspace Â ⊂ Â[α, β]. The
proposition is proved. �

10.3.10. To compute Φ according to formula (10.3.5.3) we must find the

integrals I0,1
0δ2...δm−11 and the action of f on the monomials. Let us compute

f(ACδ2 . . . Cδm−1B) first.

Represent the monomial M = ACδ2 . . . Cδm−1B in the form

M = Ap1Bq1 . . . AplBql

for some positive integers p1, q1, . . . , pl, ql. Then

f(M) = j((A− α)p1(B − β)q1 . . . (A− α)pl(B − β)ql) .

We are going to expand the product, collect all β’s on the left and all α’s on
the right, and then replace β by B and α by A. To this end let us introduce
the following multi-index notations:

r = (r1, . . . , rl); i = (i1, . . . , il); s = (s1, . . . , sl); j = (j1, . . . , jl);

p = r + i = (r1 + i1, . . . , rl + il); q = s + j = (s1 + j1, . . . , sl + jl);

|r| = r1 + · · ·+ rl; |s| = s1 + · · ·+ sl;

(
p

r

)
=

(
p1

r1

)(
p2

r2

)
. . .

(
pl
rl

)
;

(
q

s

)
=

(
q1
s1

)(
q2
s2

)
. . .

(
ql
sl

)
;

(A,B)(i,j) = Ai1 ·Bj1 · · · · ·Ail ·Bjl

We have

(A− α)p1(B − β)q1 . . . (A− α)pl(B − β)ql =

∑

06r6p
06s6q

(−1)|r|+|s|
(
p

r

)(
q

s

)
· β|s|(A,B)(i,j)α|r| ,

where the inequalities 0 6 r 6 p and 0 6 s 6 q mean 0 6 r1 6 p1, . . . ,
0 6 rl 6 pl, and 0 6 s1 6 q1,. . . , 0 6 sl 6 ql. Therefore

(10.3.10.1) f(M) =
∑

06r6p
06s6q

(−1)|r|+|s|
(
p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r| .
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10.3.11. To complete the formula for the associator we need to compute
the coefficient I0,1

1δ2...δm−10 of f(M). It turns out that, up to a sign, they are

equal to some values of the multivariate ζ-function

ζ(a1, . . . , an) =
∑

0<k1<k2<···<kn

k−a1
1 . . . k−an

n

where a1, ..., an are positive integers (see [LM1]). Namely, the coefficients
in question are equal, up to a sign, to the values of ζ at integer points
(a1, . . . , an) ∈ Zn, which are called (multiple zeta values, or MZV for short).
Multiple zeta values for n = 2 were first studied by L. Euler in 1775. His
paper [Eu] contains several dozens interesting relations between MZVs and
values of the univariate Riemann’s zeta function. Later, this subject was
almost forgotten for more than 200 years until D. Zagier and M. Hoffman
revived a general interest to MZVs by their papers [Zag3], [Hoff].

Exercise. The sum converges if and only if an > 2.

10.3.12. Remark. Different conventions about the order of arguments in
ζ: schools of Hoffman and Zagier!!

10.3.13. Proposition. For p > 0 and q > 0 let
(10.3.13.1)
η(p,q) := ζ(1, . . . , 1︸ ︷︷ ︸

ql−1

, pl + 1, 1, . . . , 1︸ ︷︷ ︸
ql−1−1

, pl−1 + 1, . . . 1, . . . , 1︸ ︷︷ ︸
q1−1

, p1 + 1) .

Then

(10.3.13.2) I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)|q|η(p,q) .

The calculations needed to prove the proposition, are best organised in
terms of the (univariate) polylogarithm1 function defined by the series

(10.3.13.3) Lia1,...,an(z) =
∑

0<k1<k2<···<kn

zkn

ka1
1 . . . kan

n
,

which obviously converges for |z| < 1.

1It is a generalization of Euler’s dilogarithm Li2(z) we used on p.247, and a specialization of
the multivariate polylogarithm

Lia1,...,an
(z1, . . . , zn) =

X
0<k1<k2<···<kn

zk1

1 . . . zkn

n

ka1

1 . . . kan

n

introduced by A. Goncharov in [Gon].
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10.3.14. Lemma. For |z| < 1

Lia1,...,an(z) =





∫ z

0
Lia1,...,an−1(t)

dt

t
, if an > 1

−
∫ z

0
Lia1,...,an−1(t)

d(1− t)
1− t , if an = 1 .

Proof. The lemma follows from the identities below, whose proofs we leave
to the reader as an exercise.

d
dzLia1,...,an(z) =

{ 1
z · Lia1,...,an−1(z) , if an > 1

1
1−z · Lia1,...,an−1(z) , if an = 1 ;

d
dzLi1(z) = 1

1−z .

�

10.3.15. Proof of proposition 10.3.13. From the previous lemma we
have

Li1,1,...,1︸ ︷︷ ︸
ql−1

, pl+1, 1,1,...,1︸ ︷︷ ︸
ql−1−1

, pl−1+1, ..., 1,1,...,1︸ ︷︷ ︸
q1−1

, p1+1(z) =

= (−1)q1+···+ql
∫

0<tm<···<t2<t1<z

ω0(t1) ∧ · · · ∧ ω0(tp1)︸ ︷︷ ︸
p1

∧

∧ω1(tp1+1) ∧ · · · ∧ ω1(tp1+q1)︸ ︷︷ ︸
q1

∧ · · · ∧ ω1(tp1+···+pl+1) ∧ · · · ∧ ω1(tp1+···+ql)︸ ︷︷ ︸
ql

=

= (−1)|q|I0,z
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

.

Note that the multiple polylogarithm series (10.3.13.3) converges for z = 1
in the case an > 1. This implies that if pl > 1 (which holds for a convergent
monomial), then we have

η(p,q) = ζ(1, . . . , 1︸ ︷︷ ︸
ql−1

, pl + 1, 1, . . . , 1︸ ︷︷ ︸
ql−1−1

, pl−1 + 1, . . . 1, . . . , 1︸ ︷︷ ︸
q1−1

, p1 + 1)

= Li1,1,...,1︸ ︷︷ ︸
ql−1

, pl+1, 1,1,...,1︸ ︷︷ ︸
ql−1−1

, pl−1+1, ..., 1,1,...,1︸ ︷︷ ︸
q1−1

, p1+1(1)

= (−1)|q|I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

.

The Proposition is proved.
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10.3.16. Explicit formula for the associator. Combining equations
(10.3.5.3), (10.3.10.1), and (10.3.13.2) we get the following formula for the
associator.

Φ = 1+
∞∑

m=2

∑

0<p,0<q
|p|+|q|=m

η(p,q) ·
∑

06r6p
06s6q

(−1)|r|+|j|
(
p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r|

where i and j are multi-indices of the same length, p = r + i, q = s + j, and
η(p,q) is the multiple zeta value given by (10.3.13.1).

This formula was obtained by Le and Murakami in [LM1, LM2, LM4].

10.3.17. Example. Degree 2 terms of the associator. There is only
one possibility to represent m = 2 as the sum of two positive integers:
2 = 1 + 1. So we have only one possibility for p and q: p = (1), q = (1). In
this case η(p,q) = ζ(2) = π2/6 according to (10.3.13.1). The multi-indices
r and s have length 1 and thus consist of a single number r = (r1) and
s = (s1). There are two possibilities for each of them: r1 = 0 or r1 = 1, and

s1 = 0 or s1 = 1. In all these cases the binomial coefficients

(
p

r

)
and

(
q

s

)

are equal to 1. We arrange all the possibilities in the following table.

r1 s1 i1 j1 (−1)|r|+|j| ·B|s|(A,B)(i,j)A|r|

0 0 1 1 −A B

0 1 1 0 B A

1 0 0 1 B A

1 1 0 0 −B A

Hence, for the degree 2 terms of the associator we get the formula:

−ζ(2)[A,B] = − ζ(2)

(2πi)2
[a, b] =

1

24
[a, b] ,

where a = (2πi)A = , and b = (2πi)B = .

10.3.18. Example. Degree 3 terms of the associator. There are two
ways to represent m = 3 as the sum of two positive integers: 3 = 2 + 1 and
3 = 1 + 2. In each case either p = (1) or q = (1). Hence l = 1 and both
multi-indices consist of just one number p = (p1), q = (q1). Therefore all
other multi-indices r, s, i, j also consist of one number.
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Here is the corresponding table.

p1 q1 η(p,q) r1 s1 i1 j1 (−1)|r|+|j|
(
p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r|

0 0 2 1 −A A B

0 1 2 0 B A A

1 0 1 1 2A B A
2 1 ζ(3)

1 1 1 0 −2B A A

2 0 0 1 −B A A

2 1 0 0 B A A

0 0 1 2 A B B

1 0 0 2 −B B A

0 1 1 1 −2B A B
1 2 ζ(1, 2)

1 1 0 1 2B B A

0 2 1 0 B B A

1 2 0 0 −B B A

Using the Euler identity ζ(1, 2) = ζ(3) (see section 10.3.20) we can sum up
the degree 3 part of Φ into the formula

ζ(3)
(
−A A B + 2A B A−B A A+A B B − 2B A B +B B A

)

= ζ(3)
(
−
[
A,
[
A,B

]]
−
[
B,
[
A,B

]])
= − ζ(3)

(2πi)3
[
a+ b, [a, b]

]
.

10.3.19. Example. Degree 4 terms of the associator. Proceeding in
the same way and using the the identities from Sec.10.3.20:

ζ(1, 1, 2) = ζ(4) = π4/90, ζ(1, 3) = π4/360, ζ(2, 2) = π4/120 ,

we can write out the associator Φ up to degree 4:

ΦKZ = 1 +
1

24
[a, b] − ζ(3)

(2πi)3
[
a+ b, [a, b]

]
− 1

1440

[
a,
[
a, [a, b]

]]

− 1

5760

[
a,
[
b, [a, b]

]]
− 1

1440

[
b,
[
b, [a, b]

]]
+

1

1152
[a, b]2

+ (terms of order > 4) .

10.3.20. Multiple zeta values. There is a lot of relations between MZV’s

and powersof π. Some of them, like ζ(2) = π2

6 or ζ(1, 2) = ζ(3), were
already known to Euler. The last one can be obtained in the following way.
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According to (10.3.13.1) and (10.3.13.2) we have

ζ(1, 2) = η((1), (2)) = I0,1
011 =

∫

0<t3<t2<t1<1

ω0(t1) ∧ ω1(t2) ∧ ω1(t3)

=

∫

0<t3<t2<t1<1

dt1
t1
∧ d(1− t2)

1− t2
∧ d(1− t3)

1− t3
.

The change of variables (t1, t2, t3) 7→ (1 − t3, 1 − t2, 1 − t1) transforms the
last integral to

∫

0<t3<t2<t1<1

d(1− t3)
1− t3

∧ dt2
t2
∧ dt1
t1

= −
∫

0<t3<t2<t1<1

ω0(t1) ∧ ω0(t2) ∧ ω1(t3) = −I0,1
001 = η((2), (1)) = ζ(3) .

In the general case a similar change of variables

(t1, t2, . . . , tm) 7→ (1− tm, . . . , 1− t2, 1− t1)
gives the identity

I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)mI0,1
0...0︸︷︷︸

ql

1...1︸︷︷︸
pl

...... 0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

.

By (10.3.13.2), we have

I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)|q|η(p,q),

I0,1
0...0︸︷︷︸

ql

1...1︸︷︷︸
pl

...... 0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

= (−1)|p|η(q,p),

where the bar denotes the inversion of a sequence: p = (pl, pl−1, . . . , p1),
q = (ql, ql−1, . . . , q1).

Since |p|+ |q| = m, we deduce that

η(p,q) = η(q,p),

This relation is called the duality relation between MZV’s. After the con-
version from η to ζ according to equation (10.3.13.1), the duality relations
become picturesque and unexpected.

—!! write about the rotation of the picture by 180◦ and its relation to
duality—

As an example, we give a table of all nontrivial duality relations of weight
m 6 5:
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2B AB ABA2

Figure 10.3.20.1. Rotation of a tangle through 180◦

p q q̄ p̄ relation

(1) (2) (2) (1) ζ(1, 2) = ζ(3)

(1) (3) (3) (1) ζ(1, 1, 2) = ζ(4)

(1) (4) (4) (1) ζ(1, 1, 1, 2) = ζ(5)

(2) (3) (3) (2) ζ(1, 1, 3) = ζ(1, 4)

(1, 1) (1, 2) (2, 1) (1, 1) ζ(1, 2, 2) = ζ(2, 3)

(1, 1) (2, 1) (1, 2) (1, 1) ζ(2, 1, 2) = ζ(3, 2)

The reader may want to check this table by way of exercise.

There are other relations between the multiple zeta values that do not
follow from the duality law. Let us quote just a few.

1. Euler’s relations:

ζ(1, n− 1) + ζ(2, n− 2) + · · ·+ ζ(n− 2, 2) = ζ(n),(10.3.20.1)

ζ(m) · ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n) .(10.3.20.2)

2. Relations obtained by Le and Murakami [LM1] computing the Kont-
sevich integral of the unknot by the combinatorial procedure explained below
in Section 10.2 (the first one was earlier proved by M. Hoffman [Hoff]):

ζ(2, 2, . . . , 2︸ ︷︷ ︸
m

) =
π2m

(2m+ 1)!
(10.3.20.3)

( 1

22n−2
− 1
)
ζ(2n)− ζ(1, 2n− 1) + ζ(1, 1, 2n− 1)− . . .(10.3.20.4)

+ζ(1, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2) = 0 .
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These relations are sufficient to express all multiple zeta values with the
sum of arguments equal to 4, through powers of π. Indeed, we have:

ζ(1, 3) + ζ(2, 2) = ζ(4),

ζ(2)2 = 2ζ(2, 2) + ζ(4),

ζ(2, 2) =
π4

120
,

−3

4
ζ(4)− ζ(1, 3) + ζ(1, 1, 2) = 0.

Solving these equations one by one and using the identity ζ(2) = π2/6, we
find the values of all MZVs of weight 4: ζ(2, 2) = π4/120, ζ(1, 3) = π4/360,
ζ(1, 1, 2) = ζ(4) = π4/90.

There exists an extensive literature about the relations between MZV’s,
e.g. [BBBL, Car2, Hoff, HoOh, OU], and the interested reader is invited
to consult it.

An attempt to overview the whole variety of relations between MZV’s
was undertaken by D. Zagier [Zag3]. Call the weight of a multiple zeta
value ζ(n1, . . . , nk) the sum of all its arguments w = n1 + · · ·+ nk. Let Zw
be the vector subspace of the reals R over the rationals Q spanned by all
MZV’s of a fixed weight w. For completeness we put Z0 = Q and Z1 = 0.
Denote the formal direct sum of all Zw by Z• :=

⊕
w>0
Zw.

Proposition. The vector space Z• forms a graded algebra over Q, i.e. Zu ·
Zv ⊆ Zu+v.

Euler’s product formula (10.3.20.2) illustrates this statement. A proof
can be found in [Gon]. D. Zagier made a conjecture about the Poincaré
series of this algebra.

Conjecture ([Zag3]).

∞∑

w=0

dimQ(Zw) · tw =
1

1− t2 − t3 .

This series turns out to be related to the dimensions of various subspaces
in the primitive space of the chord diagram algebra A (see [Br, Kre]).

10.3.21. Logarithm of the KZ associator modulo the second com-
mutant. The associator ΦKZ is group-like (see exercise 3 at the end of the
chapter). Therefore its logarithm can be expressed as a Lie series in vari-
ables A and B. Let L be the completion of a free Lie algebra generated
by A and B and let L′′ := [[L,L], [L,L]] be its second commutant. We can
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consider L as a subspace of C〈〈A,B〉〉. V. Drinfeld [Dr2] found the following
formula

lnΦKZ =
∑

k,l>0

ckl adlB adkA [A,B] (mod L′′) ,

where the coefficients ckl are defined by the generating function

1 +
∑

k,l>0

cklu
k+1vl+1 = exp

( ∞∑

n=2

ζ(n)

(2πi)nn

(
un + vn − (u+ v)n

)
)

expressed in terms of the univariate zeta function ζ(n) :=
∑∞

k=1 k
−n. In

particular, ckl = clk and ck0 = c0k = − ζ(k+2)
(2πi)k+2 .

10.4. General associators

Let A(n) be the algebra of tangled chord diagrams on n strings (we will
always depict them as vertical and oriented upwards). (In distinction with
the previously considered algebra Ah(n), the chords need not be horizontal.)
The spaceA(n) is graded by the number of chords in the diagram. We denote

the graded completion of this graded space by Â(n).

10.4.1. Definition. An associator Φ is an element of the algebra Â(3)
satisfying the following axioms:

• (strong invertibility) ε1(Φ) = ε2(Φ) = ε3(Φ) = 1 (operations εi
are defined on page ??; in particular, this property means that the
series Φ starts with 1 and thus represents an invertible element of

the algebra Â(3)).

• (skew symmetry) Φ−1 = Φ321, where Φ321 is obtained from Φ by
changing the first and the third strings (i.e. by adding a permuta-
tion (321) both to the top and the bottom of each diagram appear-
ing in the series Φ).

• (pentagon relation) (id⊗ Φ) · (∆2Φ) · (Φ⊗ id) = (∆3Φ) · (∆1Φ).
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Diagrammatically this relation can be depicted as follows.

=

a b

c d

((ab)c)d

(a(bc))d

a((bc)d) a(b(cd))

(ab)(cd)

Φ⊗ id

∆2Φ

id⊗ Φ

∆1Φ

∆3Φ

• (hexagon relation) Φ · (∆2R) · Φ = (id⊗R) · Φ · (R⊗ id).

=

a c
b

(ab)c

a(bc)

(bc)a

b(ca)

b(ac))

(ba)c

Φ

∆2R

Φ

R⊗ id

Φ

id⊗R

This relation also contains the element R defined as follows

R = · exp
(

2

)
.

A version of the last two relations appears in abstract category the-
ory where they make part of the definition of a monoidal category
(see [ML, Sec.XI.1]).

10.4.2. Theorem. The Knizhnik–Zamolodchikov Drinfeld associator ΦKZ

satisfies the axioms above.

Proof. The main observation is that the pentagon and the hexagon relations
hold because ΦKZ can be expressed through the Kontsevich integral and
therefore possesses the property of horizontal invariance. The details of the
proof are as follows.

Property 1 immediately follows from the explicit formula 10.3.16 for the
associator ΦKZ, which shows that the series starts with 1 and every term
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appearing with non-zero coefficient has endpoints of chords on each of the
three strings.

Property 2 We must prove that

10.4.3. Lemma.

Φ = Φ−1 .

Indeed, the inverse associator Φ−1 is equal to the combinatorial Kont-
sevich integral of the following parenthesized tangle which can be deformed
to the picture on the right.

=

R−1 ⊗ id

∆2(R
−1)

Φ

R⊗ id

∆2(R)

Therefore, Φ−1 = (R−1 ⊗ id) ·∆2(R
−1) · Φ · (R⊗ id) ·∆2(R).

Now we have

(R⊗ id) ·∆2(R) =

exp

(
+

2

)

exp

(
2

)

=
exp

(
+

2

)

exp

(
2

)
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=

exp

(
+ +

2

)

=

exp

(
+ +

2

)

Similarly we can get

∆2(R
−1) · (R−1 ⊗ id) =

exp

(
− + +

2

) .

Since the element + + belongs to the center of the algebra
of horizontal chord diagrams it commutes with any other element of this
algebra. In particular, the exponent of this elements commutes with Φ.

Property 3. Now let us prove the pentagon relation. We will follow a
procedure similar to that in Example ??. Assume that the distances between
the strings of the tangles are as indicated in Figure 10.4.3.1.

LHSt,mb,w =

εb
εw

εt

εm

εm

εm

RHSt,mb,w =

εb
εw

εt

εm

εm

Figure 10.4.3.1. The two sides of the pentagon relation

Since the tangles are isotopic, we have Z(LHSt,mb,w ) = Z(RHSt,mb,w ). Hence

ε−
t−w
2πi
·∆3( ) · ε−m−w

2πi
· · Z(LHSt,mb,w ) · εm−w

2πi
· · ε b−w

2πi
·∆1( )

= ε−
t−w
2πi
·∆3( ) · ε−m−w

2πi
· · Z(RHSt,mb,w )ε

m−w
2πi
· · ε b−w

2πi
·∆1( ) .

Now, following ??, we are going to insert the commuting and mutually
canceling factors into the left and right hand sides and then pass to the
limit as ε→ 0. A possible choice of insertions for the left hand side is shown
in Figure 10.4.3.2 and for the right hand side, in Figure 10.4.3.3. Values of
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the limits at the right columns are justified in problems 15 and 16 at the
end of Chapter 8.

ε
b−w
2πi
·( + )

ε
m−w
2πi
·

Z
(
Tmm,b,w

)
ε−

m−w
2πi
·

ε−
b−w
2πi
·( + )

−−−−−→
ε→0 Φ⊗ id

ε
b−w
2πi
·( + )

ε
m−w
2πi
·

Z
(
T2m,tb,w

)
ε−

m−w
2πi
·

ε−
t−w
2πi
·( + )

−−−−−→
ε→0 ∆2(Φ)

ε
t−w
2πi
·( + )

ε
m−w
2πi
·

Z
(
T t,mm,w

)
ε−

m−w
2πi
·

ε−
t−w
2πi
·( + )

−−−−−→
ε→0 id⊗ Φ

Figure 10.4.3.2. Inserted factors for the LHS of the pentagon relation

Property 4, the hexagon relation, can be proven in the same spirit as the
pentagon relation. We leave details to the reader as an exercise (problem 8
at the end of this chapter). �

10.4.4. Rational associators. Drinfeld proved that there exists an asso-
ciator with rational coefficients. In [BN2] D. Bar-Natan, following [Dr2],
gives a construction of an associator by induction on the degree. He im-
plemented the inductive procedure in Mathematica ([BN5]) and computed

the logarithm of the associator up to degree 7. With the notation a = ,
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ε
b−w
2πi
·( + )

ε
m−w
2πi
·

Z
(
T1m,mb,w

)
ε−

m−w
2πi
·

ε−
m−w
2πi
·

−−−−−→
ε→0 ∆1(Φ)

ε
m−w
2πi
·

ε
m−w
2πi
·

Z
(
T3t,mm,w

)
ε−

m−w
2πi
·

ε−
t−w
2πi
·( + )

−−−−−→
ε→0 ∆3(Φ)

Figure 10.4.3.3. Inserted factors for the RHS of the pentagon relation

b = his answer looks as follows.

lnΦ = 1
48 [ab]− 1

1440 [a[a[ab]]]− 1
11520 [a[b[ab]]]

+ 1
60480 [a[a[a[a[ab]]]]] + 1

1451520 [a[a[a[b[ab]]]]]

+ 13
1161216 [a[a[b[b[ab]]]]] + 17

1451520 [a[b[a[a[ab]]]]]

+ 1
1451520 [a[b[a[b[ab]]]]]

−(the similar terms with interchanged a and b) + . . .

10.4.5. Remark. This expression is obtained from ΦKZ expanded to degree
7, by substitutions ζ(3)→ 0, ζ(5)→ 0, ζ(7)→ 0.

10.4.6. Remark. V. Kurlin [Kur] described all group-like associators mod-
ulo the second commutant. The Drinfeld associator ΦKZ is one of them (see
Sec. 10.3.21).

10.4.7. The axioms do not define the associator uniquely. The following
theorem describes the totality of all associators.

Theorem. ([Dr1, LM2]). Let Φ and Φ̃ be two associators. Then there is

a symmetric invertible element F ∈ Â(2) such that

Φ̃ = (id⊗ F−1) ·∆2(F
−1) · Φ ·∆1(F ) · (F ⊗ id) .
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Conversely, for any associator Φ and an invertible element F ∈ Â(2) this
equation produces an associator.

The operation Φ 7→ Φ̃ is called twisting by F . Diagrammatically, it looks
as follows:

Φ̃ =

F−1

∆2(F
−1)

Φ

∆1(F )

F

10.4.8. Exercise. Prove that the twist by an element F = exp(α ) is
identical on any associator.

10.4.9. Exercise. Prove that the elements f ⊗ id and ∆1(F ) commute.

10.4.10. Example. Take Φ = ΦBN (the associator of the previous remark)

and Φ̃ = ΦKZ. It is remarkable that these associators are both horizontal,
i.e. belong to the subalgebra Ah(3) of horizontal diagrams, but one can be
converted into another only by a non-horizontal twist. For example, twisting
ΦBN by the element

F = 1 + c

with an appropriate constant c ensures the coincidence with ΦKZ up to
degree 4.

— the coresponding beautiful calculation will be added by
S.D.!! —

10.4.11. Exercise. Prove that

(a) twisting by 1 + adds 2([A,B +AC −BC) to the degree 2 term

of an associator.

(b) twisting by 1 + does not change the degree 3 term of an associ-

ator.

Twisting and the previous theorem were discovered by V. Drinfeld [Dr1]
in the context of quasi-triangular quasi-Hopf algebras. Then it was adapted
for algebras of tangled chord diagrams in [LM2]
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Proof. ......Sketch of the proof to be written by S.D........... �

10.4.12. We can use an arbitrary associator Φ to define a combinatorial
Kontsevich integral ZΦ(K) corresponding to Φ replacing ΦKZ by Φ in the
constructions of section ??.

Theorem ([LM2]). For any two associators Φ and Φ̃ the corresponding
combinatorial integrals are equal: ZΦ(K) = ZeΦ(K).

The proof is based on the fact that for any parenthesized tangle T the
integrals ZΦ(T ) and ZeΦ(T ) are conjugate in the sense that ZeΦ(T ) = Fb ·
ZΦ(T ) · F−1

t , where the elements Fb and Ft depend only on the parenthesis
structures on the bottom and top of the tangle T respectively. Since for a
knot K, considered as a tangle, the bottom and top are empty, the integrals
are equal.

10.4.13. Corollary ([LM2]). For any knot K the coefficients of the Kont-
sevich integral Z(K), expanded over an arbitrary basis consisting of chord
diagrams, are rational.

Indeed, V. Drinfeld [Dr2] (see also [BN6]) showed that there exists an
associator ΦQ with rational coefficients. According to Theorems 10.2.4 and
10.4.12 Z(K) = Zcomb(K) = ZΦQ

(K). The last combinatorial integral has
rational coefficients.

Exercises

(1) Find the monodromy of the reduced KZ equation (p. 281) around the
points 0, 1 and ∞.

(2) Using the action of the permutation group Sn on the configuration space
X = Cn \ H determine the algebra of values and the KZ equation on
the quotient space X/Sn in such a way that the monodromy gives the
Kontsevich integral of braids (not necessarily pure). Compute the result
for n = 2 and compare it with Exercise 8.4.3.

(3) Prove that the associator ΦKZ is group-like.

(4) Find Zcomb(31) up to degree 4 using the paranthesized presentation of
the trefoil knot given in Figure ?? (page ??).

(5) Draw a diagrammatic expression for the combinatorial Kontsevich in-
tegral of the knot 41 corresponding to the parenthesized presentation
from ??. Prove Theorem 10.2.4 for the parenthesized presentation of
the knot 41 like it was done for the trefoil knot in Example ??.

(6) Compute the Kontsevich integral of the knot 41 up to degree 4.
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(7) Prove that the condition ε2(Φ) = 1 and the pentagon relation imply the
other two equalities for strong invertibility: ε1(Φ) = 1 and ε3(Φ) = 1.

(8) Prove that ΦKZ satisfies the hexagon relation.

(9) Prove the second hexagon relation

Φ−1 · (∆1R) · Φ−1 = (R⊗ id) · Φ−1 · (id⊗R) .

for an arbitrary associator Φ.

(10) Any associator Φ in the algebra of horizontal diagrams Ah(3) can be

written as a power series in non commuting variables a = , b = ,

c = : Φ = Φ(a, b, c).
a). Check that Lemma 10.4.3 is equivalent to the identity Φ−1(a, b, c) =

Φ(b, a, c). In particular, for an associator Φ(A,B) with values in
C〈〈A,B〉〉 (like ΦBN, or ΦKZ), we have Φ−1(A,B) = Φ(B,A).

b). Prove that the hexagon relation from page 305 can be written in
the form Φ(a, b, c) exp

(
b+c
2

)
Φ(c, a, b) = exp

(
b
2

)
Φ(c, b, a) exp

(
c
2

)
.

c). (V. Kurlin [Kur]) Prove that for a horizontal associator the hexagon
relation is equivalent to the relation

Φ(a, b, c)e
−a
2 Φ(c, a, b)e

−c
2 Φ(b, c, a)e

−b
2 = e

−a−b−c
2 .

d). Show that for a horizontal associator Φ,

Φ∆2(R) · Φ∆2(R) · Φ∆2(R) = exp(a+ b+ c) .

(11) Express Z(H) through ΦKZ. Is it true that the resulting power series
contains only even degree terms?
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Chapter 11

The Kontsevich

integral: advanced

features

11.1. Relation with quantum invariants

The quantum knot invariant corresponding to the Lie algebra g and its finite-
dimensional representation ρ can be obtained from the Kontsevich integral
as follows. Let W V

g (K) be this invariant evaluated on a knot K. It is a

function of the parameter q. Let ϕVg be the weight system defined by the

pair (g, V ) as in 6.1.4. Take the value of ϕVg on the n-th homogeneous term
of the Kontsevich invariant I(K), multiply by hn and sum for n from 0 to
∞. The resulting function coincides with W V

g (K), where q is replaced by

eh. In other words the quantum invariant W V
g (K) is the canonical invariant

in the sense of the next section.

11.2. Canonical Vassiliev invariants

The Fundamental Theorem 4.2.1 (more precisely, Theorem 8.8.1) and its
framed version 9.6.2 provide a means to recover a Vassiliev invariant of
order 6 n from its symbol up to invariants of smaller order. It is natural to
consider those remarkable Vassiliev invariants whose recovery gives precisely
the original invariant.

11.2.1. Definition. ([BNG]) A (framed) Vassiliev invariant v of order
6 n is called canonical if for every (framed) knot K,

v(K) = symb(v)(I(K)) .

315
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In the case of framed invariants one should write Ifr(K) instead of I(K).
(Recall that I denotes the final Kontsevich integral).

Suppose we have a Vassilev invariant fn of order 6 n for every n. Then

we can construct a formal power series invariant f =
∞∑

n=0

fnh
n in a formal

parameter h. Let wn = symb(fn) be their symbols. Then the series w =
∞∑

n=0

wn ∈ W (see page 111) can be understood as the symbol of the whole

series symb(f).

A series f is called canonical if

f(K) =
∞∑

n=0

(
wn(I(K))

)
hn ,

for every knot K. And again in the framed case one should use Ifr(K).

Canonical invariants define a grading in the filtered space of Vassiliev
invariants which is consistent with the filtration.

Example. The trivial invariant of order 0 which is identically equal to 1
on all knots is a canonical invariant. Its weight system is equal to I0 in the
notation of Section 4.5.

Example. The Casson invariant c2 is canonical. This follows from the
explicit formula 3.6.7 that defines it in terms of the knot diagram.

11.2.2. Exercise. Prove that the invariant j3 (see 3.6.1) is canonical.

Surprisingly many of the classical knot invariants discussed in Chapters
2 and 3 turn out to be canonical.

The notion of a canonical invariant allows one to reduce various relations
between Vassiliev knot invariants to some combinatorial relations between
their symbols, which gives a powerful tool to investigate knot invariants.
This approach will be used in section 14.1 to prove the Melvin–Morton
conjecture. Now we will give examples of canonical invariants following
[BNG].

11.2.3. Quantum invariants. Building on the work of Drinfeld [Dr1,
Dr2] and Kohno [Koh2], T. Le and J. Murakami [LM3, Th 10], and C. Kas-
sel [Kas, Th XX.8.3] (see also [Oht1, Th 6.14]) proved that the quantum
knot invariants θfr(K) and θ(K) introduced in Section 2.6 become canonical
series after substitution q = eh and expansion into a power series in h.
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The initial data for these invariants is a semi-simple Lie algebra g and
its finite dimensional irreducible representation Vλ, where λ is its high-

est weight. To emphasize this data, we shall write θVλ
g (K) for θ(K) and

θfr,Vλ
g (K) for θfr(K) .

The quadratic Casimir element c (see Section 6.1) acts on Vλ as mul-
tiplication by a constant, call it cλ. The relation between the framed and
unframed quantum invariants is

θfr,Vλ
g (K) = q

cλ·w(K)

2 θVλ
g (K) ,

where w(K) is the writhe of K.

Set q = eh. Write θfr,Vλ
g and θVλ

g as power series in h:

θfr,Vλ
g =

∞∑

n=0

θfr,λg,n h
n θVλ

g =
∞∑

n=0

θλg,nh
n.

According to the Birman–Lin theorem (3.6.6), the coefficients θfr,λg,n and

θλg,n are Vassiliev invariants of order n. The Le–Murakami—Kassel Theorem
states that they both are canonical series.

It is important that the symbol of θfr,Vλ
g is precisely the weight system

ϕVλ
g described in Chapter 6. The symbol of θVλ

g equals ϕ′Vλ
g . In other words,

it is obtained from the previous symbol ϕVλ
g by the standard deframing

procedure of Sec. 4.5.6. Hence the knowledge the Kontsevich integral and

these weight systems allows us to restore the quantum invariants θfr,Vλ
g and

θVλ
g without the quantum procedure of Sec. 2.6.

11.2.4. Colored Jones polynomial. The colored Jones polynomials Jk :=

θVλ
sl2

and Jfr,k := θfr,Vλ
sl2

are particular cases of quantum invariants for g = sl2.
For this Lie algebra, the highest weight is an integer λ = k−1, where k is the
dimension of the representation, so in our notation we may use k instead of

λ. The quadratic Casimir number in this case is cλ = k2−1
2 , and the relation

between the framed and unframed colored Jones polynomials is

Jfr,k(K) = q
k2−1

4
·w(K)Jk(K) .

The ordinary Jones polynomial of Section 2.4 corresponds to the case k = 2,
i.e., to the standard 2-dimensional representation of the Lie algebra sl2.

Set q = eh. Write Jfr,k and Jk as power series in h:

Jfr,k =
∞∑

n=0

Jfr,kn hn Jk =
∞∑

n=0

Jknh
n.

Both series are canonical with the symbols

symb(Jfr,k) = ϕVk
sl2
, symb(Jk) = ϕ′Vk

sl2
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defined in Sections 6.1.3 and 6.2.3.

11.2.5. Alexander–Conway polynomial. Consider the unframed quan-
tum invariant θStslN

as a function of the parameter N . Let us think about N
not as a discrete parameter but rather as a continuous variable, where for
non integer N the invariant θStslN

is defined by the skein and initial relations

above. Its symbol ϕ′StslN
= ϕ′StglN

(see problem (14) of the Chapter 6) also

makes sense for all real values of N , because for every chord diagram D,
ϕ′StglN

(D) is a polynomial of N . Even more, since this polynomial is divisible

by N , we may consider the limit

lim
N→0

ϕ′StslN

N
.

Exercise. Prove that the weight system defined by this limit coincides

with the symbol of the Conway polynomial, symb(C) =

∞∑

n=0

symb(cn).

Hint. Use exercise (16) from Chapter 3.

Make the substitution θStslN

∣∣
q=eh . The skein and initial relations for θStslN

allow us to show (see exercise (3)) that the limit

A := lim
N→0

θStslN

∣∣
q=eh

N

does exist and satisfies the relations

(11.2.5.1) A( ) − A( ) = (eh/2 − e−h/2)A( ) ;

(11.2.5.2) A( ) =
h

eh/2 − e−h/2 .

A comparison of these relations with the defining relation for the Conway
polynomial 2.3.1 shows that

A =
h

eh/2 − e−h/2C
∣∣
t=eh/2−e−h/2 .

Despite of the fact that the Conway polynomial C itself is not a canonical
series it becomes canonical after the substitution t = eh/2 − e−h/2 and mul-
tiplication by h

eh/2−e−h/2 . The weight system of this canonical series is the

same as for the Conway polynomial. Or, in other words,

h

eh/2 − e−h/2C
∣∣
t=eh/2−e−h/2(K) =

∞∑

n=0

(
symb(cn) ◦ I(K)

)
hn .
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Warning. We cannot do the same for framed invariants because none of
the limits

lim
N→0

θfr,StslN

∣∣
q=eh

N
, lim

N→0

ϕStslN

N
exists.

11.3. Wheeling

We mentioned in Section 5.8 of Chapter 5 that the relation between the
algebras B and C is similar to the relation between the invariants in the
symmetric algebra of a Lie algebra and the centre of its universal enveloping
algebra. One may then expect that there exists an algebra isomorphism
between B and C similar to the Duflo-Kirillov isomorphism for Lie algebras
(see ???).

This isomorphism indeed exists. It is called wheeling and we describe
it in this section. It will be used in the next section to deduce an explicit
wheels formula for the Kontsevich integral of the unknot.

11.3.1. The Wheeling map. The wheel wn in the algebra B is the dia-
gram

wn =

n spokes

The wheels wn with n odd are equal to zero; this follows directly from
Lemma 5.6.3.

Define the wheels element Ω as the formal power series

Ω = exp
∞∑

n=1

b2nw2n

where b2n are the modified Bernoulli numbers, and the products are under-
stood to be in the algebra B.

The modified Bernoulli numbers b2n are the coefficients at x2n in the
Taylor expansion of the function

1

2
ln

sinhx/2

x/2
.

We have b2 = 1/48, b4 = −1/5760 and b6 = 1/362880. In general,

b2n =
B2n

4n · (2n)!
,

where B2n are the usual Bernoulli numbers.
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For an open diagram C with n legs, let us now define the diagrammatic
differential operator

∂C : B → B.
Take an open diagram D. If D has at most n legs, set ∂CD = 0. If D
has more than n legs, we define ∂C(D) ∈ B as the sum of all those ways of
glueing all the legs of C to some legs of D that produce diagrams having at
least one leg on each connected component. For example,

∂w2(w4) = 8 + 4 = 10 .

Also,

∂w2( ) = 8 ,

since the other four ways of glueing w2 into produce diagrams one
of whose components has no legs (see page 325).

Extending the definition by linearity, we can replace the diagram C in
the definition of ∂C by any linear combination of diagrams.

The operators ∂C can be expressed via the disconnected cabling opera-
tion and the bilinear pairing introduced in 5.10.2. If D ∈ B(y), the labels
y1,y2 are obtained by doubling y and the diagram C is considered as an
element of B(y1), we have

∂C(D) = 〈C,∆(2)(D)〉y1
.

Given a diagram D ∈ B, the element ∂w2nD, if non-zero, has the same
degree as D. Since for any D there is only a finite number of operators
∂w2nD that do not annihilate D, the operator

∂Ω = exp
∞∑

n=1

b2n∂w2n

gives a well-defined linear map B → B, called the wheeling map. The wheel-
ing map is, clearly, an isomorphism since ∂Ω−1 is an inverse for it.

11.3.2. Theorem (Wheeling Theorem). The map χ ◦ ∂Ω : B → C is an
algebra isomorphism.

The map χ ◦ ∂Ω plays the role of the Duflo-Kirillov isomorphism for
the algebras of diagrams. In particular, for any metrized Lie algebra g the
diagram

B ψg−−−−→ S(g)

∂Ω

y
y∂j

1
2

B ψg−−−−→ S(g)
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commutes. We shall see this after calculating the Kontsevich integral of the
unknot in the next section.

There are several approaches to the proof of the above theorem. It has
been noted by Kontsevich [Kon3] that the Duflo-Kirillov isomorphism holds
for a Lie algebra in any rigid tensor category; Hinich and Vaintrob showed in
[HV] that the wheeling map can be interpreted as a particular case of such
a situation. Here, we shall follow the proof of Bar-Natan, Le and Thurston
[BLT]. In the next two sections we shall often write # for the product in C
and ∪ for the product in B.

11.3.3. Example. At the beginning of section 5.8 (page 151) we saw that
χ is not compatible with the multiplication. Let us check the multiplicativity
of χ ◦ ∂Ω on the same example:

χ ◦ ∂Ω( ) = χ ◦ (1 + b2∂w2)( )

= χ
(

+ 1
48 · 8 ·

)
= χ

(
+ 1

6

)

= 1
3 + 2

3 + 1
6 = ,

which is the square of the element χ ◦ ∂Ω( ) = in the algebra C.

11.3.4. The Hopf link and the map Φ0. Consider the framed Hopf link
with one interval component labelled x, one closed component labelled y,

zero framing, and orientations as indicated:

y

x

The framed Kontsevich integral Ifr( ) lives in C(x,y) or, via the isomor-
phism

χ−1
y : C(x,y)→ C(x |y),

in C(x |y).

Let us write Z( ) for χ−1
y Ifr( ). For a diagram D ∈ B(y), the pairing

〈Z( ), D〉y lives in C(x). Identifying B(y) with B and C(x) with C, we have
a map

Φ : B → C
defined by

D → 〈Z( ), D〉y.
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Lemma. The map Φ : B → C is a homomorphism of algebras.

Proof. Taking the disconnected cabling of the Hopf link along the com-
ponent y, we obtain a link with one interval component labelled x and
two closed parallel components labelled y1 and y2:

y1

y2

x

In the same spirit as Φ, we define the map

Φ2 : B ⊗ B → C
using the link instead of . Namely, given two diagrams, D1 ∈ B(y1) and
D2 ∈ B(y2) we have D1 ⊗D2 ∈ B(y1,y2). The Kontsevich integral Ifr( )
via the map χ−1

y1,y2
can be pulled to C(x |y1,y2); we shall write Z( ) for

χ−1
y1,y2

(Ifr( )). Identify B(y1,y2) with B ⊗ B and C(x) with C, and define

Φ2 : B ⊗ B → C
as

D1 ⊗D2 → 〈Z( ), D1 ⊗D2〉y1,y2
.

The map Φ2 glues the legs of the diagram D1 to the y1 legs of Z( ), and
the legs of D2 — to the y2 legs of Z( ).

There are two ways of expressing Φ2(D1⊗D2) in terms of Φ(Di). First,
we can use the fact that is a product (as tangles) of two copies of the
Hopf link . Since the legs of D1 and D2 are glued independently to the
legs corresponding to y1 and y2, it follows that

Φ2(D1 ⊗D2) = Φ(D1)#Φ(D2).

On the other hand, we can apply the formula (???) that relates the
disjoint union multiplication with disconnected cabling. We have

Φ2(D1 ⊗D2) = 〈∆(2)
y (Z( )), D1 ⊗D2〉y1,y2

= 〈Z( ), D1 ∪D2〉y
= Φ(D1 ∪D2),

and, therefore,

Φ(D1)#Φ(D2) = Φ(D1 ∪D2).

�
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Given a diagram D ∈ C(x |y), the map B → C given by sending C ∈
B(y) to 〈D,C〉y ∈ C(x) shifts the degree of C by the amount equal to
the degree of D minus the number of y legs of D. If D appears in Z( )
with a non-zero coefficient, this difference is non-negative. Indeed, in Z( )
there are no intervals both of whose ends are labelled with y, since the y

component comes with zero framing. Also, if two y legs are attached to
the same internal vertex, the diagram is zero, because of the antisymmetry
relation, and therefore, the number of inner vertices of D is at least as big
as the number of y legs.

It follows that the Kontsevich integral Z( ) can be written as Z0( ) +
Z1( ) + . . ., where Zi( ) is the part consisting of diagrams whose degree
exceeds the number of y legs by i. We shall be interested in the term Z0( )
of this sum.

Each diagram that appears in this term is a union of a “comb” with
some wheels:

Indeed, each vertex of such diagram is either a y leg, or is adjacent to
exactly one y leg.

Denote a “comb” with n teeth by un. Strictly speaking, un is not really
a product of n copies of u since C(x |y) is not an algebra. However, we can
introduce a Hopf algebra structure in the space of all diagrams in C(x |y)
that consist of combs and wheels. The product of two diagrams is the
disjoint union of all components followed by the concatenation of the combs;
in particular ukum = uk+m. The coproduct is the same as in C(x |y). This
Hopf algebra is nothing else but the free commutative Hopf algebra on a
countable number of generators.

The Kontsevich integral is group-like, and this implies that

δ(Z0( )) = Z0( )⊗Z0( ).

Group-like elements in the completion of the free commutative Hopf algebra
are the exponentials of linear combinations of generators and, therefore

Z0( ) = exp(cu ∪
∑

n

a2nw2n),

where c and a2n are some constants.
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In fact, the constant c is precisely the linking number of the components
x and y, and, hence is equal to 1. We can write

Z0( ) =
∑

n

un

n!
∪ Ω′,

where Ω′ the part of Z0( ) containing wheels:

Ω′ = exp
∑

n

a2nw2n.

Define the map Φ0 : B → C by taking the pairing of a diagram in B(y)
with Z0( ):

D → 〈Z0( ), D〉y.
The map Φ0 can be thought of as the part of Φ that shifts the degree by
zero. The map Φ0, like Φ, is multiplicative. In fact, we shall see later that
Φ0 = Φ.

11.3.5. Lemma. Φ0 = χ ◦ ∂Ω′ .

Proof. Let us notice first that if C ∈ C(x |y) and D ∈ B(y), we have

〈C ∪ w2n, D〉y = 〈C, ∂w2n(D)〉y.
Also, for any D ∈ B the expression

〈
∑

n

un

n!
, D〉y

is precisely the average of all possible ways of attaching the legs of D to the
line x.

Therefore, for D ∈ B(y)

Φ0(D) = 〈
∑

n

un

n!
∪ Ω′, D 〉y = 〈

∑

n

un

n!
, ∂Ω′D 〉y = χ ◦ ∂Ω′D.

�

11.3.6. The algebra B◦. For the calculations that follow it will be conve-
nient to enlarge the algebra B.

A diagram in the enlarged algebra B◦ is a union of a unitrivalent graph
with a finite number of circles with no vertices on them; a cyclic order of
half-edges at every trivalent vertex is given. The algebra B◦ is spanned by all
such diagrams modulo IHX and antisymmetry relations. The multiplication
in B◦ is the disjoint union. The algebra B is the subalgebra of B◦ spanned
by graphs which have at least one univalent vertex in each connected com-
ponent. Killing all diagrams which have components with no legs, we get a
homomorphism B◦ → B, which restricts to the identity map on B ⊂ B◦.
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The algebra of 3-graphs Γ from Chapter 7 is also a subspace of B◦.
In fact, the algebra B◦ is the tensor product of B, the symmetric algebra
Sym(Γ) of the vector space Γ and the polynomial algebra in one variable
(which counts the circles with no vertices on them).

The advantage of considering B◦ instead of B is the existence of a bilinear
symmetric pairing B◦ ⊗ B◦ → B◦. For two diagrams C,D ∈ B◦ with the
same number of legs we define B◦ to be the sum of all ways of glueing all
legs of C to those of D. If the numbers of legs of C and D do not coincide
we set 〈C,D〉 = 0.

This definition is very similar to the definition of the pairing

C(x |y)⊗ B(y)→ C(x).

The essential difference between the two lies in the fact that diagrams in B◦
can have components with no legs; in fact, the whole image of the pairing
on B◦ lies in the subspace spanned by legless diagrams.

For an open diagram C the diagrammatic differential operator

∂◦C : B◦ → B◦

is defined as follows. If D ∈ B◦ has less legs than C, we set ∂◦C(D) = 0. If
D has at least as many legs as C, we define ∂◦C(D) as the sum of all ways
of glueing the legs of C to those of D. For example,

∂◦w2
( ) = 8 + 4 .

This definition of diagrammatic operators is consistent with the defini-
tion of ∂w2n : B → B. Namely, we have a commutative diagram:

B ∂w2n−→ B
↑ ↑
B◦

∂◦w2n−→ B◦

11.3.7. The coefficients of the wheels in Φ0. First, let us make the
following observation:

Lemma. Let y be a circle and denote by y1 and y2 the components of the
disconnected cabling ∆(2)(y). Identify B with B(y). Then

∆
(2)
y Ω′ = Ω′ ⊗ Ω′ ∈ B ⊗ B = B(y1,y2).

Proof. We again use the fact that the sum of the Hopf link with itself
coincides with its two-fold disconnected cabling along the closed component
y. Since the Kontsevich integral is multiplicative, we see that

∆
(2)
y Z0( ) = Z0( )⊗Z0( ),
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where the right-hand side lives in the tensor product of graded completions
of C(x |y1) and C(x |y2) respectively. Now, if we factor out on both sides
the diagrams that have at least one vertex on the x component, we obtain
the statement of the lemma. �

Lemma. For any D ∈ B
∂◦D(Ω′) = 〈D,Ω′〉Ω′.

Proof. By identifying B with B(yi) we obtain formal power series Ωyi
and

diagrams Dyi
for i = 1, 2. It is then clear from the definitions and from the

preceding lemma that

∂◦D(Ω′) = 〈Dy1
,∆

(2)
y Ω′〉 = 〈Dy1

,Ω′y1
Ω′y2
〉 = 〈D,Ω′〉Ω′.

�

Lemma. The following holds in B◦:

〈Ω′, ( )n 〉 =
( 1

24

)n
.

Proof. According to the problem 14 at the end of this chapter (page 337),
the Kontsevich integral of the Hopf link up to degree two is equal to

Z0( ) = + +
1

2
+

1

48
.

It follows that the coefficient a2 in Ω′ is equal to 1/48 and that

〈Ω′, 〉 =
1

24
.

This establishes the lemma for n = 1. Now, use induction:

〈Ω′, ( )n 〉 = 〈∂◦ Ω′, ( )n−1 〉

=
1

24
〈Ω′, ( )n−1〉

=
( 1

24

)n
.

The first equality follows from the obvious identity valid for arbitrary
A,B,C ∈ B◦:

〈C,A ∪B〉 = 〈∂◦B(C), A〉.
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The second and the third equalities follow from the lemmas above. �

In order to establish that Ω′ = Ω we have to show that the coefficients
a2n in the expression Ω′ = exp

∑
n a2nw2n are equal to the modified Bernoulli

numbers b2n. In other words, we have to prove that
(11.3.7.1)

∑

n

a2nx
2n =

1

2
ln

sinhx/2

x/2
, or exp

(
2
∑

n

a2nx
2n
)

=
sinhx/2

x/2
.

To do this we compute the value of the sl2-weight system ηsl2(·) from

section 7.6 (p.212) on the 3-graph 〈Ω′, ( )n〉 ∈ Γ in two ways.

Using the last lemma and Theorem 6.2.3 on page 181 we have

ηsl2

(
〈Ω′, ( )n〉

)
= ηsl2

(( 1

24

)n
)

=
1

2n
.

From the other hand, according to the exercise 25 from Chapter 6, page
193, the sl2 tensor corresponding to a wheel w2n is equal to 2n+1 ( )n.

Therefore,

ηsl2

(
〈Ω′, ( )n〉

)
= ηsl2

(
〈exp

∑

m

a2m2m+1 ( )m, ( )n〉
)
.

Denote by fn the coefficient at zn of the power series expansion of the
function exp

(
2
∑

n a2nz
n
)

=
∑

n fnz
n. We get

ηsl2

(
〈Ω′, ( )n〉

)
= 2nfn ηsl2

(
〈( )n, ( )n〉

)

Now using the exercise 17 on page 337 and the fact that the value ηsl2( ) of

the sl2-weight system ηsl2(·) on a circle without vertices is equal to 3 (page
212) we obtain

ηsl2

(
〈( )n, ( )n〉

)
= (2n+ 1)(2n) ηsl2

(
〈( )n−1, ( )n=1〉

)
= . . .

= (2n+ 1)! .

Comparing these two calculations we find that fn = 1
4n(2n+1)! , which is the

coefficient at zn of the power series expansion of sinh
√
z/2√

z/2
. Hence

exp
(
2
∑

n

a2nz
n
)

=
sinh
√
z/2√

z/2
.

Substituting z = x2 we get the equality (11.3.7.1) which establishes that
Ω′ = Ω and completes the proof of the Wheeling Theorem 11.3.2.
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11.3.8. Wheeling for tangle diagrams. A version of the Wheeling the-
orem exists for more general spaces of tangle diagrams. For our purposes
it is sufficient to consider the spaces of diagrams for links with two closed
components x and y.

For D ∈ B define the operator

(∂D)x : B(x,y)→ B(x,y)

as the sum of all possible ways of glueing all the legs of D to some of the
x-legs of a diagram in B(x,y) that do not produce components without legs.

Exercise. Show that (∂D)x respects the link relations, and, therefore,
is well-defined.

Define the wheeling map Φx as χx◦(∂Ω)x. (Strictly speaking, we should
have called it (Φ0)x since we have not yet proved that Φ = Φ0.) The
Wheeling theorem can now be generalized as follows:

Theorem. The map

Φx : B(x,y)→ C(x |y)

identifies the B(x)-module B(x,y) with the C(x)-module C(x |y).

The proof is, essentially, the same as the proof of the Wheeling theorem,
and we leave it to the reader.

11.4. The Kontsevich integral of the unknot and of the Hopf

link

The arguments similar to those used in the proof of the wheeling theorem
allow us to write down an explicit expression for the framed Kontsevich
integral of the zero-framed unknot O. Let us denote by Z(O) the image
χ−1Ifr(O) of the Konstevich integral of O in the graded completion of B.
(Note that we use the notation Z( ) in a similar, but not exactly the same
context.)

11.4.1. Theorem.

(11.4.1.1) Z(O) = Ω = exp
∞∑

n=1

b2nw2n.

A very similar formula holds for the Kontsevich integral of the Hopf link
:

11.4.2. Theorem.

Z( ) =
∑

n

un

n!
∪ Ω.
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This formula implies that the maps Φ and Φ0 of the previous section, in
fact, coincide.

We start the proof with a lemma.

11.4.3. Lemma. If C1, . . . , Cn are non-trivial elements of C, then
χ−1(C1# . . .#Cn) is a combination of diagrams in B with at least n legs.

Proof. Let us first introduce some notation. If D ∈ B is a diagram, we
denote by Dy the result of decorating all the legs of D with the label y. In
other words, if B is identified with B(y), D is identified with Dy.

Now recall from the proof of the wheeling theorem that Φ0 = χ◦∂Ω. Let
Di = Φ−1

0 (Ci) ∈ B.

We have that

∂Ω(D1 ∪ . . . ∪Dn) = 〈Ωy1
,∆

(2)
y (D1 ∪ . . . ∪Dn)〉.

Decompose ∆
(2)
y (Di) as a sum A′i+A

′′
i where A′i consists of diagrams without

legs labelled by y1 and A′′i contains only diagrams with at least one leg
labelled by y1.

Recall that in the completion of the algebra B◦ we have ∂◦D(Ω) = 〈D,Ω〉Ω.
By projecting this equality to B we see that ∂D(Ω) vanishes unless D is
empty. Hence,

〈Ωy1
, (D′1)y1

∆
(2)
y (D2 ∪ . . . ∪Dn)〉 = 〈(∂D1Ω)y1

,∆
(2)
y (D2 ∪ . . . ∪Dn)〉 = 0.

As a result we have

∂Ω(D1 ∪ . . . ∪Dn) = 〈Ωy1
, A′1∆

(2)
y (D2 ∪ . . . ∪Dn)〉

+〈Ωy1
, A′′1∆

(2)
y (D2 ∪ . . . ∪Dn)〉

= 〈Ωy1
, A′′1∆

(2)
y (D2 ∪ . . . ∪Dn)〉

= 〈Ωy1
, A′′1 . . . A

′′
n〉.

Each of the A′′i has at least one leg labelled y2, and these legs are preserved
by taking the pairing with respect to the label y1. �

11.4.4. The Kontsevich integral of the unknot. The calculation of
the Kontsevich integral for the unknot is based on the following geometric
fact: the nth (connected) cabling of the unknot is again an unknot.

The cabling formula (9.8) in this case reads

(11.4.4.1) ψ(n)
(
(Ifr(O)# exp

(
1
2n

))
= Ifr(O)# exp

(
n
2

)
.
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In each degree, the right-hand side of this formula depends on n poly-
nomially. The term of degree 0 in n is precisely the Kontsevich integral of
the unknot Ifr(O).

As a consequence, the left-hand side also contains only non-negative
powers of n. We shall be specifically interested in the terms that are of
degree 0 in n.

The operator ψ(n) has a particularly simple form in the algebra B (see
Corollary 9.7.6 on page 265): it multiplies a diagram with k legs by nk. Let

us expand the argument of ψ(n) into a power series and convert it to B term
by term.

It follows from Lemma 11.4.3 that if a diagram D is contained in

χ−1
(
Ifr(O)#

(
1
2n

)k)
,

then it has at least k′ > k legs. Applying ψ(n), we multiply D by nk
′
, hence

the coefficient of D depends on n as nk
′−k. We see that if the coefficient of

D is of degree 0 in n, then the number of legs of D must be equal to the
degree of D.

Thus we have proved that Z(O) contains only diagrams whose number
of legs is equal to their degree. We have seen in 11.3.4 that the part of
the Kontsevich integral of the Hopf link that consists of such diagrams has
the form

∑ un

n! ∪ Ω. Deleting from this expression the diagrams with legs
attached to the interval component, we obtain Ω. On the other hand, this
is the Kontsevich integral of the unknot Z(O).

11.4.5. The Kontsevich integral of the Hopf link. The Kontsevich
integral of the Hopf link both of whose components are closed with zero
framing is computed in [BLT]. Such Hopf link can be obtained from the
zero-framed unknot in three steps: first, change the framing of the unknot
from 0 to +1, then take the disconnected twofold cabling, and, finally, change
the framings of the resulting components from +1 to 0. We know how the
Kontsevich integral behaves under all these operations and this gives us the
following theorem (see 11.3.8 for notation):

Theorem. Let be the Hopf link both of whose components are closed
with zero framing and oriented counterclockwise. Then

Ifr( ) = (Φx ◦ Φy)(exp |xy),

where |xy ∈ B(x,y) is an interval with one x leg and one y leg.

We shall obtain Theorem 11.4.2 from the above statement.
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Proof. Let O+1 be the unknot with +1 framing. Its Kontsevich integral is
related to that of the zero-framed unknot by (???):

Ifr(O+1) = Ifr(O)# exp
(

1
2

)
.

Using the Wheeling theorem and the expression for Ifr(O) we can re-write
this expression as

Z(O+1) = ∂Ω

(
∂−1

Ω (Ω) ∪ exp ∂−1
Ω ( )

)
,

since ∂−1
Ω ( ) = .

Recall that in the proof of Lemma 11.4.3 we have seen that ∂D(Ω) = 0
unless D is empty. In particular, ∂−1

Ω (Ω) = Ω. We see that

(11.4.5.1) Z(O+1) = ∂Ω

(
Ω · exp

(
1
2

))
.

Our next goal is the following formula:

(11.4.5.2) ∂−2
Ω (Z(O+1)) = exp

(
1
2

)
.

Applying ∂Ω to both sides of this equation and using (11.4.5.1), we obtain
an equivalent form of (11.4.5.2):

∂Ω

(
exp
(

1
2

))
= Ω · exp

(
1
2

)
.

To prove it, we observe that

∂Ω

(
exp
(

1
2

))
= 〈Ωy1

,∆
(2)
y exp

(
1
2

)
〉y1

= 〈Ωy1
, exp

(
1
2

∣∣y1

y1

)
exp
(∣∣y2

y1

)
exp
(

1
2

∣∣y2

y2

)
〉y1

.

The pairing B(y1,y2)⊗ B(y1)→ B(y2) satisfies

〈C,A ∪B〉y1
= 〈∂B(C), A〉y1

.

for all A,B ∈ B(y1), C ∈ B(y1,y2). Therefore, the last expression can be
re-written as

〈∂exp ( 1
2
|y1
y1

)Ωy1
, exp(

∣∣y2

y1
)〉y1
· exp

(
1
2

∣∣y2

y2

)
.

Taking into the account the fact that ∂D(Ω) = 0 unless D is empty, we see
that this is the same thing as

〈Ωy1
, exp(

∣∣y2

y1
)〉y1
· exp

(
1
2

∣∣y2

y2

)
= Ω · exp

(
1
2

)
,

and this proves (11.4.5.2).

To proceed, we need the following simple observation:
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Lemma.

∆
(2)
y ∂C(D) = (∂C)y1

(∆
(2)
y (D)) = (∂C)y2

(∆
(2)
y (D)).

Now, let +1 be the Hopf link both of whose components are closed
with +1 framing. The above lemma together with the disconnected cabling
formula (???) implies that

∆(2)∂−2
Ω (Z(O+1)) = (∂Ω)−1

y1
(∂Ω)−1

y2

(
χ−1

y1,y2
Ifr( +1)

)
.

On the other hand, this, by (11.4.5.2) is equal to

∆(2) exp
(

1
2

)
= exp(

∣∣y2

y1
) · exp

(
1
2

∣∣y1

y1

)
· exp

(
1
2

∣∣y2

y2

)
.

Applying Φy1
◦ Φy2

to the first expression, we get exactly Ifr( +1). On
the second expression, this evaluates to

Φy1
(Φy2

(exp(
∣∣y2

y1
))# exp#

(
1
2 y1

)
# exp#

(
1
2 y2

)
.

Changing the framing, we see that

Ifr( ) = (Φy1
◦ Φy2

)(exp
∣∣y1

y2
).

The statement of the theorem follows by a simple change of notation. �

Proof of Theorem 11.4.2. First, let us observe that for any diagram D ∈
B we have

(∂D)x exp
∣∣y
x

= Dy ∪ exp
∣∣y
x
.

Now, we have

Ifr( )#χx(Ωx) = Ifr( )

= Φx(Φy(exp
∣∣y
x
))

= Φx(exp
∣∣y
x
∪ Ωx) by the observation above.

Since ∂Ω = Ω, it follows that Φ0(Ω) = χ(Ω) and

Ifr( ) = Φx(Ω−1
x )#Φx(exp

∣∣y
x
∪ Ωx)

= Φx(exp
∣∣y
x
∪ Ωx ∪ Ω−1

x ) by the Wheeling theorem of 11.3.8

= Φx(exp
∣∣y
x
)

= χx(Ω ∪ exp
∣∣y
x
).

�

11.4.6. The wheeling map and the Duflo-Kirillov isomorphism TBW .
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11.5. Rozansky’s rationality conjecture

This section concerns a generalization of the wheels formula for the Kontse-
vich integral of the unknot to arbitrary knots. The generalization is, how-
ever, not complete – the Rozansky–Kricker theorem does not give an explicit
formula, it only suggests that Ifr(K) can be written in a certain form.

It turns out that the terms of the Kontsevich integral Ifr(K) with values
in B can be rearranged into lines corresponding to the number of loops in
open diagrams from B. Namely, for any term of Ifr(K), shaving off all legs
of the corresponding diagram G ∈ B, we get a 3-graph γ ∈ Γ. Infinitly many
terms of Ifr(K) have the same γ. It turns out that these terms behave in a
regular fashion, so that it is possible to recover all of them from γ and some
finite information.

To make this statement precise we introduce marked open diagrams
which are represented by a 3-graph whose edges are marked by power series
(it does matter on which side of the edge the mark is located, and we will
indicate the side in question by a small leg near the mark). We use such
marked open diagrams to represent infinite series of open diagrams which
differ by the number of legs. More specifically, an edge marked by a power
series f(x) = c0 + c1x+ c2x

2 + c3x
3 + . . . means the following series of open

diagrams:

f(x) := c0 + c1 + c2 + c3 + . . .

In this notation the wheels formula (Theorem 11.4.1) can be written as

ln Ifr(O) =

1
2

ln ex/2−e−x/2

x

Now we can state the

Rozansky’s rationality conjecture. [Roz2]

ln Ifr(K) =

1
2

ln ex/2−e−x/2

x
− 1

2
lnAK(ex)

+

finite∑

i

pi,1(ex)/AK(ex)

pi,2(ex)/AK(ex)

pi,3(ex)/AK(ex)

+ (terms with > 3 loops) ,

where AK(t) is the Alexander polynomial of K normalized so that AK(t) =
AK(t−1) and AK(1) = 1, pi,j(t) are polynomials, and the higher loop terms
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mean the sum over marked 3-graphs (with finitely many copies of each graph)
whose edges are marked by a polynomial in ex divided by AK(t).

The word ‘rationality’ refers to the fact that the labels on all 3-graphs
of degree > 1 are rational functions of ex. The conjecture was proved by
A. Kricker in [Kri2]. Due to AS and IHX relations the specified presenta-
tion of the Kontsevich integral is not unique. Hence the polynomials pi,j(t)
themselves cannot be knot invariants. However, there are certain combina-
tions of these polynomials that are genuine knot invariants. For example,
consider the polynomial

Θ′K(t1, t2, t3) =
∑

i

pi,1(t1)pi,2(t2)pi,3(t3) .

Its symmetrization,

ΘK(t1, t2, t3) =
∑

ε=±1
{i,j,k}={1,2,3}

Θ′K(tεi , t
ε
j , t

ε
k) ∈ Q[t±1

1 , t±1
2 , t±1

3 ]/(t1t2t3 = 1) ,

over the order 12 group of symmetries of the theta graph, is a knot invariant.
It is called the 2-loop polynomial ofK. Its values on knots with few crossings
are tabulated in [Roz2]. T. Ohtsuki [Oht2] found a cabling formula for the
2-loop polynomial and its values on torus knots T (p, q).

Exercises

(1) Find a basis in the space of canonical invariants of degree 4.
Answer: j4, c4 + c2/6, c2

2.

(2) Show that the self-linking number defined in Section 2.2.3 is a canonical
framed Vassiliev invariant of order 1.

(3) Show the existence of the limit from Sec.11.2.5

A = lim
N→0

θslN ,V

∣∣
q=eh

N
.

Hint. Choose a complexity function on link diagrams in such a way
that two of the diagrams participating in the skein relation for θslN ,V are
strictly simpler then the third one. Then use induction on complexity.

(4) Let f(h) =
∞∑

n=0

fnh
n and g(h) =

∞∑

n=0

gnh
n be two power series Vassiliev

invariants, i.e., for every n both fn and gn are Vassiliev invariants of
order 6 n.
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a). Prove that their product f(h) · g(h) as formal power series in h is
a Vassiliev power series invariant, and

symb(f · g) = symb(f) · symb(g) .

b). Suppose that f and g are related to each other via substitution and
multiplication:

f(h) = β(h) · g
(
α(h)

)
,

where α(h) and β(h) are formal power series in h, and

α(h) = ah+ (terms of degree > 2) , β(h) = 1 + (terms of degree > 1) .

Prove that symb(fn) = ansymb(gn).

(5) Prove that a canonical Vassiliev invariant is primitive if its symbol is
primitive.

(6) Prove that the product of any two canonical Vassiliev power series is a
canonical Vassiliev power series.

(7) If v is a canonical Vassiliev invariant of odd order andK an amphicheiral
knot, then v(K) = 0.

(8) Let κ ∈ Wn be a weight system of degree n. Construct another weight
system (ψ∗jκ)

′ ∈ W ′n, where ψ∗j is the j-th cabling operator from Section

9.7, and (·)′ is the deframing operator from Section 4.5.6. Thus we have
a function fκ : j 7→ (ψ∗jκ)

′ with values in W ′n. Prove that

a). fκ(j) is a polynomial in j of degree 6 n if n is even, and of degree
6 n− 1 if n is odd.

b). The n-th degree term of the polynomial fκ(j)

is equal to −κ(wn)
2

symb(cn)j
n , where wn is

wn =

n spokes

the wheel with n spokes, and cn is the n-th coefficient of the Conway
polynomial.

(9) Find the framed Kontsevich integrals Zfr
( )

and Ifr
( )

up to

order 4 for the indicated unknot with blackboard framing.
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Answer.

Zfr
( )

= 1− 1
24 + 1

24 + 7
5760 − 17

5760

+ 7
2880 − 1

720 + 1
1920 + 1

5760 .

Ifr
( )

= 1
/
Zfr

( )
.

(10) Using problem 4 from Chapter 5 (page 162) show that up to degree 4

Zfr
( )

= 1− 1
48 + 1

4608 + 1
46080 + 1

5760 ,

Ifr
( )

= 1 + 1
48 + 1

4608 − 1
46080 − 1

5760 .

(11) Using the previous problem and problem 23 from Chapter 5 (page 166)
prove that up to degree 4

Z(O) = χ−1Ifr(O) = 1 +
1

48
+

1

4608
− 1

5760
.

This result confirms Theorem 11.4.1 from page 328 up to degree 4.

(12) Compute the framed Kontsevich integral
Zfr( ) up to degree 4 for the Hopf link with
one vertical interval component x and one
closed component y represented by a parame-
trized tangle on the picture. Write the result
as an element of C(x,y).

=

x

y

Answer.

Zfr( ) = + + 1
2 + 1

6 − 1
24 + 1

24 − 1
48 .

(13) Compute the final framed Kontsevich integral Ifr( ) up to degree 4:

Ifr( ) = + + 1
2 + 1

48 + 1
6 − 1

24 + 1
48

+ 1
24 − 1

48 + 1
4608 − 1

46080 − 1
5760 + 1

96 .
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(14) Using the previous problem and problem 23 from Chapter 5 (page 162)
prove that up to degree 4

Z( ) = χ−1
y Ifr( ) = + + 1

2 + 1
6 + 1

24 + 1
48 + 1

48

+ 1
96 − 1

5760 + 1
4608 + 1

384 .

Indicate the parts of this expression forming Z0( ), Z1( ), Z2( ) up
to degree 4. This result confirms Theorem 11.4.2 from page 328 up to
degree 4.

(15) Prove that χ ◦ ∂Ω : B → C is a bialgebra isomorphism.
Hint. In view of Theorem 11.3.2 it remains to check that χ ◦ ∂Ω

is compatible with the comultiplication. The last follows from the fact
that χ ◦ ∂Ω transforms primitive elements of B into primitive elements
of C.

(16) Compute χ ◦ ∂Ω( ), χ ◦ ∂Ω( ), χ ◦ ∂Ω(w6).

(17) Show that the pairing 〈( )n, ( )n〉 satisfies the recursive relation

〈( )n, ( )n〉 = 2n ·
(

+ 2n− 2
)
· 〈( )n−1, ( )n−1〉 ,

where is a 3-graph in Γ0 ⊂ Γ ⊂ B◦ of degree 0 represented by a circle

without vertices and multiplication is understood in algebra B◦ (disjoint
union).

(18) Prove that, after being carried over from B to A, the right hand part of
Equation 11.4.1.1 (page 328) belongs in fact to the subalgebra A′ ⊂ A.
Find an explicit expression of the series through some basis of A′ up to
degree 4.

Answer. The first terms of the infinite series giving the Kontsevich
integral of the unknot, are:

I(O) = 1− 1

24
− 1

5760
+

1

1152
+

1

2880
+ . . .

Note that this agrees well with the answer to Exercise 9.





Chapter 12

Braids and string links

Essentially, the theory of Vassiliev invariants of braids is a particular case of
the Vassiliev theory for tangles, and the main constructions are very similar
to the case of knots. There is, however, one big difference: many of the
questions that are still open for knots, are rather easy to answer in the case
of braids. This, in part, can be explained by the fact that braids form a
group, and it turns out that the whole Vassiliev theory for braids can be
described in group-theoretic terms. In this chapter we shall see that the
Vassiliev filtration on the pure braid groups coincides with the filtrations
coming from the nilpotency theory of groups.

The group-theoretic techniques of this chapter can be used to study
knots and links. One such application is the theorem of Goussarov that
n-equivalence classes of string links on m strands form a group. Another
application of the same methods is a proof that Vassiliev invariants of pure
braids extend to invariants of string links of the same order. In order to make
these connections we shall describe a certian braid closure that produces
string links out of pure braids.

The theory of the finite type invariants for braids was first developed
by T. Kohno [Koh1, Koh2] several years before Vassiliev knot invariants
were introduced. The connection between the theory of commutators in
braid groups and the Vassiliev knot invariants was first made by T. Stanford
[Sta4].

12.1. Vassiliev invariants for free groups

We shall start by treating what may seem to be a very particular case: braids
on m+1 strands whose all strands, apart from the last (the rightmost) one,

339
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are straight. Such a braid can be thought of as a graph of a path of a particle
in a plane with m punctures. (The punctures correspond to the vertical
strands.) The set of equivalence classes of such braids can be identified with
the fundamental group of the punctured plane, that is, with the free group
Fm on m generators xi, where 1 6 i 6 m.

i− 1 i i+ 1

Figure 12.1.0.1. The generator xi of Fm as a braid and as a path in
a plane with m punctures.

A singular path in the m-punctured plane is represented by a braid with
double points, whose first m strands are vertical. Resolving the double
points of a singular path with the help of the Vassiliev skein relation we
obtain an element of the space ZFm of linear combinations of elements of
Fn. Singular paths with k double points span the kth term of a descending
filtration on ZFn which is analogous to the singular knot filtration on ZK,
defined in Section 3.2.1. A Vassiliev invariant of order k for the free group
Fm is, of course, just a linear map from ZFm to some abelian group that
vanishes on singular paths with k double points.

The radical difference between the singular knots and singular paths
(and, in fact, arbitrary singular braids) lies in the following

12.1.1. Lemma. A singular path in the m-punctured plane with k double
points is a product of k singular paths with one double point each.

Indeed, this is clear from the picture:

~

Lemma 12.1.1 allows to describe the singular path filtration in purely alge-
braic terms. Recall that ZFm is a ring whose product is the linear extension
of the product in Fm. Singular paths then span an ideal JFm in this ring
and singular paths with k double points span the kth power of this ideal.

This exact situation has been studied in great detail in the nilpotency
theory of groups. Let us recall some generalities.
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12.1.2. The dimension series. Let G be an arbitrary group and R be a
commutative unital ring. The group algebra RG of the group G consists of
finite linear combinations

∑
aigi with ai ∈ R and gi ∈ G. The product in

RG is the linear extension of the product in G.

Let JG ⊂ RG be the augmentation ideal, that is, the kernel of the
homomorphism RG → G that sends each g ∈ G to 1 ∈ R. Elements of
JG are the linear combinations

∑
aigi with

∑
ai = 0. The powers JnG of

the augmentation ideal form a descending filtration on RG. We denote by
AR(G), or simply by A(G), the graded algebra associated to this filtration:

A(G) = ⊕Ak(G),

where Ak(G) = JkG/Jk+1G.

Let DkG (or DRk G) be the subset of G consisting of all g ∈ G such that

g − 1 ∈ JkG. DkG is called the kth dimension subgroup of G (over R).

Exercise. Show that DkG is a normal subgroup of G.

In what follows we shall usually assume that R = Z, otherwise R will
be stated explicitly.

When G = Fm, the augmentation ideal is spanned by singular paths.
Indeed, each singular path is an alternating sum of non-singular paths, and,
hence, it defines an element of the augmentation ideal of Fm. On the other
hand, the augmentation ideal of Fm is spanned by differences of the form
g − 1 where g is some path. By successive crossing changes on its braid
diagram, the path g can be made trivial. Let g1 , . . . , gs be the sequence of
paths obtained in the process of changing the crossings from g to 1. Then

g − 1 = (g − g1) + (g1 − g2) + ...+ (gs − 1),

where the difference enclosed by each pair of brackets is a singular path with
one double point.

We see that the Vassiliev invariants are those that vanish on some power
of the augmentation ideal of Fm. The dimension subgroups of Fm are the
counterpart of the Goussarov filtration: DkFm consists of elements that
cannot be distinguished from the unit by Vassiliev invariants of order less
than k. We shall refer to these as to being k − 1-trivial.

The algebra A(Fm) is nothing else but the algebra of chord diagrams for
paths: indeed, Ak(Fm) is the space of paths with k double points modulo
those with k + 1 double points. Graphically, elements of Ak(Fm) are rep-
resented by diagrams with m + 1 vertical strands and k horizontal chords
joining the first m strands to the last strand. For example, the class of the
element xi − 1, where xi is the ith generator of Fm, is represented by the
diagram
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1 i m+ 1

12.1.3. Commutators and the lower central series. For many groups,
the dimension subgroups can be described in terms of group commutators.
The commutator of two elements x, y ∈ G can be1 defined as

[x, y] = x−1y−1xy.

For H,K normal subgroups of G, denote by [H,K] the subgroup of G gen-
erated by all the commutators of the form [h, k] with h ∈ H and k ∈ K.
The lower central series subgroups γkG of a group G are defined inductively
by setting γ1G = G and γkG = [γk−1G,G].

Exercise. Show that γkG is a normal subgroup of G.

It is not hard to show by induction that γkG is always contained in DkG.
If γkG is actually the same thing as the kth dimension subgroup of G over
the integers, it is said that G has the dimension subgroup property.

Theorem. The free group Fm has the dimension subgroup property.

A proof can be found, for example, in Section 5.7 of [MKS].

It was thought for some time that all groups have the dimension sub-
group property, until E. Rips found a counterexample in 1972, [Rips]. In
general, if x ∈ DkG, there exists q such that xq ∈ γkG, and the group

x ∈ DQ
k G consists of all x with this property, [Jen].

Exercise. Show that γ2G = D2G.

A group G is called nilpotent if γnG = {1} for some n. The maximal n
such that γnG 6= {1} is called the nilpotency class of G.

12.1.4. The Taylor formula for the free group. Let x1, . . . , xm be a
set of free generators of the free group Fm and set Xi = xi−1 ∈ ZFm. Then,
for k > 0 each element w ∈ Fm can be uniquely expressed inside ZFm as

w = 1 +
∑

16i6m

aiXi + . . .+
∑

16i1,...,ik6m

ai1,...,ikXi1 . . . Xik + r(w),

where ai1,...,ij are integers and r(w) ∈ Jk+1Fm. To show that such formula
exists, it is enough to have it for the generators of Fm and their inverses:

xi = 1 +Xi

and
x−1
i = 1−Xi +X2

i − . . .+ (−1)kXk
i + (−1)k+1Xk+1

i x−1
i .

1there are other, equally good, options, such as [x, y] = xyx−1y−1.
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The uniqueness will be clear from the construction of the next paragraph. In
fact, the coefficients ai1,...,ij can be interpreted as some kind of derivatives,
see [Fox].

12.1.5. The Magnus expansion. Having defined the Taylor formula we
can go further and define something like the Taylor series.

Let Z[[X1, . . . , Xm]] be the algebra of formal power series in m non-
commuting variables Xi. Consider the homomorphism of Fm into the group
of units of this algebra

M : Fm → Z[[X1, . . . , Xm]],

which sends the ith generator xi of Fm to 1 +Xi. In particular,

M(x−1
i ) = 1−Xi +X2

i −X3
i + . . .

This homomorphism is called the Magnus expansion. It is injective: the
Magnus expansion of a reduced word xε1α1

. . . xεk
αk

contains the monomial
Xα1 . . . Xαk

with the coefficient ε1 . . . εk.

The Magnus expansion is very useful since it allows to describe the
dimension filtration on the free group in very concrete terms.

Lemma. For w ∈ Fm the power seriesM(w)−1 starts with terms of degree
k if and only if w ∈ DkFm.

Proof. Extend the Magnus expansion by linearity to the group algebra
ZFm. The augmentation ideal is sent by M to the set of power series
with no constant term and, hence, the Magnus expansion of anything in
Jk+1Fm starts with terms of degree at least k+ 1. It follows that the first k
terms of the Magnus expansion coincide with the first k terms of the Taylor
formula. Notice that this implies the uniqueness of the coefficients in the
Taylor formula. Now, the term of lowest non-zero degree on right-hand side
of the Taylor formula has degree k if and only if w − 1 ∈ JkFm. �

In fact, the Magnus expansion identifies the algebra Z[[X1, . . . , Xm]] with

the completion A(Fm) of the algebra of the chord diagrams A(Fm). The
following statement is now obvious:

Theorem. The Magnus expansion is a universal Vassiliev invariant.

Since the Magnus expansion is injective, we have

Corollary. The Vassiliev invariants distinguish elements of the free group.

To put it differently, the dimension subgroups of the free group intersect
in the identity.
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The Magnus expansion is not the only universal Vassiliev invariant. (See
Exercise 2 in the end of the Chapter.) Another important universal invari-
ant is, of course, the Kontsevich integral. In contrast to the Kontsevich
integral, the Magnus expansion has integer coefficients. We shall see that it
also gives rise to a universal Vassiliev invariant of pure braids with integer
coefficients; however, unlike the Kontsevich integral, this invariant fails to
be multiplicative.

12.1.6. Observation. If a word w ∈ Fm contains only positive powers of
the generators xi, the Magnus expansion of w has a transparent combina-
torial meaning: M(w) is simply the sum of all subwords of w, with the
letters capitalized. This is also the logic behind the construction of the uni-
versal invariant for virtual knots discussed in Chapter 13: it associates to a
diagram the sum of all its subdiagrams.

12.2. Vassiliev invariants of pure braids

Here we shall treat the case of the pure braids, that is, the braids whose
associated permutation is trivial. The descriptions of invariants for braids
with arbitrary permutations will follow from the results of this section.

12.2.1. Pure braids as tangles. Pure braids are a particular case of
tangles and thus we have a general recipe for constructing their Vassiliev
invariants. The only special feature of braids is the requirement that the
tangent vector to a strand is nowhere horizontal. This leads to the fact
that the chord diagrams for braids have only horizontal chords on a skeleton
consisting of vertical lines; the relations they satisfy are the horizontal 4T-
relations.

The Kontsevich integral provides the universal Q-valued Vassiliev invari-
ant for pure braids. Therefore, the study of finite-type invariants for braids
reduces to studying the algebra Ah(m) of horizontal chord diagrams (see
page 160). While the multiplicative structure of Ah(m) is rather complex,
an explicit additive basis for this algebra can be easily described. This is
due to the very particular structure of the pure braid groups.

12.2.2. Pure braids and free groups. Pure braid groups are, in some
sense, very close to being direct products of free groups.

Erasing one (say, the rightmost) strand of a pure braid on m strands
produces a pure braid on m − 1 strands. This procedure respects braid
multiplication, so, in fact, it gives a homomorphism Pm → Pm−1. Note that
this homomorphism has a section Pm−1 → Pm defined by adding a vertical
non-interacting strand on the right.
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Figure 12.2.2.1. An example of a combed braid.

The kernel of erasing the rightmost strand consists of braids onm strands
whose first m− 1 strands are vertical. Such braids are graphs of paths in a
plane with m − 1 punctures, and they form a group isomorphic to the free
group on m− 1 letters Fm−1.

All the above can be re-stated as follows: there is a split extension

1→ Fm−1 → Pm ⇆ Pm−1 → 1.

It follows that Pm is a semi-direct product Fm−1 ⋉ Pm−1, and, proceeding
inductively, we see that

Pm ∼= Fm−1 ⋉ . . . F2 ⋉ F1.

Here Fk−1 can be identified with the free subgroup of Pm formed by pure
braids which can be made to be totally straight apart from the kth strand
which is allowed to braid around the strands to the left. As a consequence,
every braid in Pn can be written uniquely as a product βm−1βm−2 . . . β1,
where βk ∈ Fk. This decomposition is called the combing of a pure braid.

One can show that the above semi-direct products are not direct (see
Exercise 3 at the end of the chapter). However, they are close to direct
products in the following sense. Having a semi-direct product A⋉B is the
same as having an action of B on A by automorphisms. An action of B on
A gives rise to an action of B on the abelianization (that is, the maximal
abelian quotient) of A; we say that a semi-direct product A ⋉ B is almost
direct if this latter action is trivial.

Lemma. The semi-direct product Pm = Fm−1 ⋉ Pm−1 is almost direct.

Proof. The abelianization F abm−1 of Fm−1 is a direct sum of m − 1 copies

of Z. Given a path x ∈ Fm−1, its image in F abm−1 is given by the m − 1
linking numbers with each puncture. Do we know the definition of a

linking number of a curve and a point in the plane?

The action of a braid b ∈ Pm−1 on a generator xi ∈ Fm−1 consists in
“pushing” the xi through the braid:
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It is clear the linking numbers of the path b−1xb with the punctures in
the plane are the same as those of xi, therefore the action of Pm−1 on F abm−1

is trivial. �

12.2.3. Vassiliev invariants and the Magnus expansion. The Vas-
siliev filtration on the group algebra ZPm can be described in the same
algebraic terms as in the Section 12.1. Indeed, singular braids can be iden-
tified with the augmentation ideal JPm ⊂ ZPm. It is still true that each
singular braid with k double points can be written as a product of k singu-
lar braids with one double point each; therefore, such singular braids span
the kth power of JPm. The (linear combinations of) chord diagrams with
k chords are identified with JkPm/J

k+1Pm = Ak(Pm) and the Goussarov
filtration on Pm is given by the dimension subgroups DkPm.

Now, the augmentation ideals, the dimension series and the associated
graded object behave in a predictable way under taking direct products of
groups. When G = G1 ×G2 we have

JkG =
∑

i+j=k

J iG1 ⊗ J jG2,

and this implies that

Ak(G) =
⊕

i+j=k

AiG1 ⊗AjG2,

and

DkG = DkG1 ×DkG2.

When G is a semi-direct product of G1 and G2 these isomorphisms break
down. However, if the semi-direct product is almost direct, the first two
of the isomorphisms above still hold additively and the third remains valid
with the direct product replaced by the semi-direct product; see [Pap], or
[MW] for the particular case of pure braid groups.

Remark. For an almost direct product G = G1 ⋉G2 both DkG = DkG1 ⋉
DkG2 and γkG = γkG1 ⋉ γkG2. Since for the free groups the dimension
subgroups coincide with the lower central series, we see that the same is
true for the pure braid groups.
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The above algebraic facts can be re-stated in the language of Vassiliev
invariants as follows.

Firstly, each singular braid with k double points is a linear combination
of combed singular braids with the same number of double points. A combed
singular braid with k double points is a product bm−1bm−2 . . . b1 where bi is
a singular path in ZFi with ki double points, and km−1 + . . .+ k1 = k.

Secondly, combed diagrams form a basis in the space of all horizontal
chord diagrams. A combed diagram D is a product Dm−1Dm−2 . . . D1 where
Di is a diagram whose all chords have their rightmost end on the ith strand.

Thirdly, a pure braid is n-trivial if and only if, when combed, it becomes
a product of n-trivial elements of free groups. In particular, the only braid
that is n-trivial for all n is the trivial braid.

Let β ∈ Pm be a combed braid: β = βm−1βm−2 . . . β1, where βk ∈ Fk.
The Magnus expansions of the elements βi can be “glued together”. Let
ik : A(Fk) →֒ Ah(m) be the map that adds m− k− 1 vertical strands, with
no chords on them, to the right:

m1 ... k+1 1 ... k+1 ...

The maps ik extend to the completions of the algebrasA(Fk) andAh(m).
Define the Magnus expansion

M : Pm → Âh(m)

as the map sending β to im−1M(βm−1) . . . i1M(β1). For example:

M
( )

=

(
1 +

)(
1− + − + . . .

)

= 1 + − − + + − + . . . .

Theorem. The Magnus expansion is a universal Vassiliev invariant of pure
braids.

As in the case of free groups, the Magnus expansion is injective, and,
therefore, Vassiliev invariants distinguish pure braids.
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12.3. String links as closures of pure braids

The above description of the Vassiliev invariants for pure braids can be used
to prove some facts about the invariants of knots, and, more generally, string
links.

12.3.1. The short-circuit closure. String links can be obtained from
pure braids by a procedure called short-circuit closure. Essentially, it is
a modification of the plat closure construction described in [Bir3]. Short-
circuit closure produces a string link on m strands out of a pure braid on
(2k + 1)m strands in the following way.

Let us draw a braid in such a way that its top and bottom consist of the
integer points of the rectangle [1,m]× [0, 2k] in the plane. A string link on
m strands can be obtained from such a braid by joining the points (i, 2j−1)
and (i, 2j) (with 0 < j 6 k) in the top plane and (i, 2j) and (i, 2j+1) (with
0 6 j < k) in the bottom plane by little arcs, and extending the strands at
the points (i, 0) in the top plane and (i, 2k) in the bottom plane. Here is an
example with m = 2 and k = 1:

The short-circuit closure can be thought of as a map Sk from the pure
braid group P(2k+1)m to the monoid Lm of string links on m strands. This
map is compatible with the stabilization, which consists of adding 2m un-
braided strands to the braid on the right, as in Figure 12.3.1.1.

Figure 12.3.1.1. The stabilization map.



12.3. String links as closures of pure braids 349

Therefore, if P∞ denotes the union of the groups P(2k+1)m with respect
to the inclusions P(2k+1)m → P(2k+3)m, there is a map

S : P∞ → Lm.
The map S is onto, while Sk, for any finite k, is not2.

One can say when two braids in P∞ give the same string link after the
short-circuit closure:

12.3.2. Theorem. There exist two subgroups HT and HB of P∞ such that
the map Sn is constant on the double cosets of the form HTxHB. The
preimage of every string link is a coset of this form.

In other words, Lm = HT \P∞/HB.

Theorem 12.3.2 generalizes a similar statement for knots (the case m =
1), which was proved for the first time by J. Birman in [Bir3] in the setting of
the plat closure. Below we sketch a proof which closely follows the argument
given for knots in [MSt].

First, notice that the short-circuit closure of a braid in P(2k+1)m is not
just a string link, but a Morse string link: the height in the 3-space is a
function on the link with a finite number of isolated critical points, none
of which is on the boundary. We shall say that two Morse string links are
Morse equivalent if one of them can be deformed into the other through
Morse string links.

Lemma. Assume that the short-circuit closures of b1, b2 ∈ P(2k+1)m are
isotopic. There exist k′ > k such that the short-circuit closures of the images
of b1 and b2 in P(2k′+1)m under the (iterated) stabilization map are Morse
equivalent.

The proof of this Lemma is not difficult; it is identical to the proof of
Lemma 4 in [MSt] and we omit it.

Let us now describe the groups HT and HB. The group HT is gen-
erated by elements of two kinds. For each pair of strands joined on top
by the short-circuit map take (a) the full twist of this pair of strands (b)
the braid obtained by taking this pair of strands around some strand, as in
Figure 12.3.2.1:

The group HB is defined similarly, but instead of pairs of strands joined
on top we consider those joined at the bottom. Clearly, multiplying a braid
x on the left by an element of HT and on the right by an element of HB

does not change the string link S(x).

2To show this one has to use the bridge number (see page 64) of knots.
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Figure 12.3.2.1. A generator of HT .

Now, given a Morse string link with the same numbers of maxima of
the height function on each component (say, k), we can reconstruct a braid
whose short-circuit closure it is, as follows.

Suppose that the string link is situated between the top and the bottom
planes of the braid. Without loss of generality we can also assume that the
top point of ith strand is the point (i, 0) in the top plane and the bottom
point of the same strand is (i, 2k) in the bottom plane. For the jth maximum
on the ith strand, choose an ascending curve that joins it with the point
(i, 2j− 1/2) in the top plane, and for the jth minimum choose a descending
curve joining it to the point (i, 2k − 3/2) in the bottom plane. We choose
the curves in such a way that they are all disjoint from each other and only
have common points with the string link at the corresponding maxima and
minima. On each of these curves choose a framing that is tangent to the
knot at one end and is equal to (1, 0, 0) at the other end. Then, doubling
each of this curves in the direction of its framing, we obtain a braid as in
Figure 12.3.2.2.

Each braid representing a given string link can be obtained in this way.
Given two Morse equivalent string links decorated with systems of framed
curves, there exists a deformation of one string link into the other through
Morse links. It extends to a deformation of the systems of framed curves
if we allow a finite number of transversal intersections of curves with each
other or with the string link, all at distinct values of the parameter of the
deformation, and changes of framing. When a system of framed curves
passes such a singularity, the braid that it represents changes. A change of
framing on a curve ascending from a maximum produces the multiplication
on the left by some power of the twist on the pair of strands corresponding to
the curve. An intersection of the curve ascending from a maximum with the
link or with another curve gives the multiplication on the left by a braid in
HT obtained by taking the pair of strands corresponding to the curve around
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Figure 12.3.2.2. Obtaining a braid from a string link.

some other strands. Similarly, singularities involving a curve descending
from a minimum produce multiplications on the right by elements of HB.

12.3.3. Remark. The subgroups HT and HB can be described in the fol-
lowing terms. The short-circuit map S can be thought of as consisting of
two independent steps: joining the top ends of the strands and joining the
bottom ends. A braid belongs to HT if and only if the tangle obtained from
it after joining the top strands only is “trivial”, that is, equivalent to the
tangle obtained in this way from the trivial braid. The subgroup HB is
described in the same way.

12.4. Goussarov groups of string links

Definition. Two string links L1 and L2 are n-equivalent if there are x1, x2 ∈
P∞ such that Li = S(xi) and x1x

−1
2 ∈ γn+1P∞.

The product of string links descends to their n-equivalence classes.

12.4.1. Theorem. [G1, Ha2] For each m and n, the n-equivalence classes
of string links on n strands form a group under the string link product.

The groups of string links modulo n-equivalence are known as Goussarov
groups. We shall denote these groups by Lm(n), or by L(n), dropping the
reference to the number of strands. Let L(n)k be the subgroup of L(n)
consisting of the classes of k-trivial links. Note that L(n)k = 1 for k > n.

12.4.2. Theorem. [G1, Ha2] For all p, q we have

[L(n)p,L(n)q] ⊂ L(n)p+q,
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where by [L(n)p,L(n)q] we mean the subgroup of L(n) generated by the com-
mutators of elements of L(n)p with those of L(n)q. In particular, L(n) is
nilpotent of nilpotency class at most n.

Finally,

12.4.3. Theorem. Two string links cannot be distinguished by Q-valued
Vassiliev invariants of degree n and smaller if and only if the elements they
define in L(n) differ by an element of finite order.

In the case of knots we can say a little bit more.

Theorem. Two knots cannot be distinguished by Vassiliev invariants of de-
gree n and smaller with values in any abelian group if and only if the elements
they define in the group of n-equivalence classes coincide.

In particular, the notion of n-equivalence for knots coincides with the
definition of Section 3.2.1:

L1(n) = ΓnK.

12.4.4. The shifting endomorphisms. For k > 0, define τk to be the
endomorphism of P∞ which triples the kth row of strands. In other words,
τk replaces each strand with ends at the points (i, k − 1) in the top and
bottom planes, with 1 6 i 6 n, by three parallel copies of itself as in
Figure 12.4.4.1:

Figure 12.4.4.1

Denote by τ0 the endomorphism of P∞ which adds 2m non-interacting
strands, arranged in 2 rows, to the left of the braid (this is in contrast to the
stabilization map, which adds 2m strands to the right and is defined only
for P(2k+1)m with finite k).

Strand-tripling preserves both HT and HB. Also, since τk is an endo-
morphism, it respects the lower central series of P∞.

Lemma. [CMSt] For any n and any x ∈ γnP(2N−1)m there exist t ∈ HT ∩
γnP(2N+1)m and b ∈ HB ∩ γnP(2N+1)m such that τ0(x) = txb.
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Proof. Let t2k−1 = τ2k−1(x)(τ2k(x))
−1, and let b2k = (τ2k+1(x))

−1τ2k(x).
Notice that t2k−1, b2k ∈ γnP∞. Moreover, t2k−1 looks as in Figure 12.4.4.2
and, by the Remark 12.3.3, lies in HT . Similarly, b2k ∈ HB. We have

τ2k−1(x) = t2k−1τ2k(x),

τ2k(x) = τ2k+1(x)b2k.

There exists N such that τ2N+1(x) = x. Thus the following equality holds:

τ0(x) = t1 · · · t2N−1xb2N · · · b0,
and this completes the proof. �

Figure 12.4.4.2. Braids x and t2k−1.

12.4.5. Existence of inverses. Theorem 12.4.1 is a consequence of the
following, stronger, statement:

Proposition. For any x ∈ γkP(2N−1)m and any n there exists y ∈ γkP∞
such that:

• y is contained in the image of τN0 ;

• xy = thb with h ∈ γnP∞ and t, b ∈ γkP∞.

The first condition implies that S(xy) = S(x) · S(y). It follows from the
second condition that the class of S(y) is the inverse for S(x). The fact that
t and b lie in γkP∞ is not needed for the proof of Theorem 12.4.1, but will
be useful for Theorem 12.4.2.

Proof. Fix n. For k > n there is nothing to prove.

Assume there exist braids for which the statement of the proposition
fails; among such braids choose x with the maximal possible value of k. By
Lemma 12.4.4 we have τN0 (x−1) = t1x

−1b1 with t1 ∈ HT ∩ γkP4N−1 and
b1 ∈ HB ∩ γkP4N−1. Then

xτN0 (x−1) = xt1x
−1b1 = t1 · t−1

1 xt1x
−1 · b1.
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Since t−1
1 xt1x

−1 ∈ γk+1P4N−1, there exists y′ ∈ γk+1P∞ ∩ Imτ2N
0 such that

t−1
1 xt1x

−1 · y′ = t2hb2 where h ∈ γnP∞, t2 ∈ HT ∩ γk+1P∞ and b2 ∈
HB ∩ γk+1P∞. Note that y′ commutes with b1, and, hence,

x · τN0 (x−1)y′ = t1t2 · h · b2b1.
Setting y = τN0 (x−1)y′, t = t1t2 and b = b2b1 we see that for x the statement
of the proposition is satisfied. We get a contradiction, and the proposition
is proved. �

12.4.6. The nilpotency of L(n). Let x ∈ γpP∞ and x′ ∈ γqP∞. Choose
the braids y and y′ representing the inverses in L(n) of x and x′, respectively,
such that the conditions of Proposition 12.4.5 are satisfied, with n replaced
by n + 1: xy = t1h1b1 and x′y′ = t2h2b2 with hi ∈ γn+1P∞, t1, b1 ∈ γpP∞
and t2, b2 ∈ γqP∞. Replacing the braids by their iterated shifts to the right,
if necessary, we can achieve that the braids x, x′, y and y′ all involve different
blocks of strands, and, therefore, commute with each other. Then

S(x) · S(x′) · S(y) · S(y′) = S(xx′yy′) = S(xyx′y′)

= S(t1h1b1t2h2b2) = S(h1b1t2h2).

The latter link is n-equivalent to S(t−1
2 b1t2b

−1
1 ) which lives in L(n)p+q.

It follows that each n-fold (that is, involving n + 1 terms) commutator
in L(n) is trivial, which means that L(n) is nilpotent of nilpotency class at
most n. Theorem 12.4.2 is proved.

12.4.7. Vassiliev invariants and n-equivalence of string links. Let
{Gi} be a series of subgroups

G = G1 ⊇ G2 ⊇ . . .
of a group G with the property that [Gp, Gq] ⊆ Gp+q. For x ∈ G denote by
µ(x) the maximal k such that x ∈ Gk. Recall that R denotes a commutative
unital ring. Let EnG be the ideal of the group algebra RG spanned by the
products of the form (x1 − 1) · . . . · (xs − 1) with

∑s
i=1 µ(xi) > n. We have

the filtration of RG:

RG ⊃ JRG = E1G ⊇ E2G ⊇ . . . .
This filtration is referred to as the canonical filtration induced by the series
{Gn}.

Recall that a string link invariant is called a Vassiliev invariant of order n
if it vanishes on links with more than n double points. In terms of the short-
circuit closure, this means that a Vassiliev invariant of order n is required
to vanish on S(Jn+1P∞), where JP∞ is the augmentation ideal of P∞ with
integer coefficients. The value of any order n Vassiliev invariant on a string
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link depends only on the n-equivalence class of the link. Indeed, γn+1P∞−1
is contained in Jn+1P∞.

The following proposition is the key to determining when two different
n-equivalence classes of string links cannot be distinguished by Vassiliev
invariants of order n:

12.4.8. Proposition. The filtration by the powers of the augmentation ideal
JP∞ is carried by short-circuit map to the canonical filtration {EiL(n)} of
the group ring ZL(n), induced by {L(n)i}.

Proof. We use induction on the power k of JP∞. For k = 1 there is nothing
to prove.

Any product of the form

(∗) (x1 − 1)(x2 − 1) . . . (xs − 1)y

with y ∈ P∞, xi ∈ γdiP∞ and
∑
di = d belongs to JdP∞ since for any di we

have γdiP∞ − 1 ⊂ JdiP∞. We shall refer to s as the length of such product,
and to d as its degree. The maximal d such that a product of the form (∗)
is of degree d, will be referred to as the exact degree of the product.

The short-circuit closure of a product of length 1 and degree k is in
EkL(n). Assume there exists a product of the form (∗) of degree k whose
image R is not in EkL(n); among such products choose one of minimal
length, say r, and, given the length, of maximal exact degree.

There exists N such that

R′ := S((τN0 (x1)−1)(x2−1) . . . (xr−1)y) = S((x2−1) . . . (xr−1)y)·S(x1−1).

The length of both factors on the right-hand side is smaller that k, so, by
the induction assumption, R′ ∈ EkL(n). If τN0 (x1) = tx1b we have

R′ −R = S((tx1b− x1)(x2 − 1) . . . (xm+1 − 1)y)
= S(x1(b− 1)(x2 − 1) . . . (xm+1 − 1)y)

Notice now that (b−1) can be exchanged with (xi−1) and y modulo closures
of products having shorter length or higher degree. Indeed,

(b− 1)y = y(b− 1) + ([b, y]− 1)yb

and

(b− 1)(xi − 1) = (xi − 1)(b− 1) + ([b, xi]− 1)(xib− 1) + ([b, xi]− 1).

Thus, modulo elements of EkL(n)

S(x1(b−1)(x2−1) . . . (xm+1−1)y) = S(x1(x2−1) . . . (xm+1−1)y(b−1)) = 0.

�

Let us now recall some results from the theory of nilpotent groups.
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12.4.9. Theorem. Let

G = G1 ⊇ G2 ⊇ . . . ⊇ GN = {1}
be a finite series of subgroups of a group G with the property that [Gp, Gq] ⊆
Gp+q, and such that Gi/Gi+1 is torsion-free for all 1 6 i < N . Then for all
i > 1

Gi = G ∩ (1 + EiG),

where {EiG} is the canonical filtration of QG induced by {Gi}.

The most important case of this theorem, namely, the case when Gn is
the dimension series of G, has been proved by Jennings [Jen], see also [H].
As stated above, this theorem can be found in [PIB, Pas].

We cannot apply Theorem 12.4.9 directly to the filtration of L(n) by the
L(n)i, since we do not know whether the successive quotients L(n)i/L(n)i+1

are torsion-free. This can be dealt with in the following manner.

For a subset H of a group G let
√
H be the set of all x ∈ G such that

xp ∈ H for some p > 0. If H is a normal subgroup, and G/H is nilpotent,

then
√
H is again a normal subgroup of G. The set

√
{1} is precisely the

set of all periodic (torsion) elements of G, it is a subgroup if G is nilpotent.

12.4.10. Lemma. Let

G = G1 ⊇ G2 ⊇ . . . ⊇ GN = {1}
be a finite series of subgroups of a group G with the property that [Gp, Gq] ⊆
Gp+q. Then [

√
Gp,

√
Gq] ⊆

√
Gp+q and the canonical filtration of QG in-

duced by {
√
Gi} coincides with the filtration induced by {Gi}.

For the proof see the proofs of Lemmas 1.3 and 1.4 in Chapter IV of
[PIB].

Now we can prove Theorem 12.4.3.

Write L(n) for L(n)/
√
{1}, L(n)i for L(n)i/

√
{1}, and let {EkL(n)} be

the canonical filtration on QL(n) induced by {L(n)i}. By Theorem 12.4.9

L(n) ∩ (1 + En+1L(n)) = {1},
so it follows that

L(n) ∩ (1 + En+1L(n)) ⊆
√
{1}

inside L(n). In fact, this inclusion is an equality since any element of finite
order lives in 1 +EkL(n) for all k. Indeed,

xp − 1 = (x− 1)p + p(x− 1)p−1 + . . .+

(
p

2

)
(x− 1)2 + p(x− 1),

so xp = 1 implies that x− 1 lives in each EkL(n).
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By Proposition 12.4.8 the elements of L(n) that cannot be distinguished
from the trivial link by the Vassiliev invariants of degree n form the subgroup
L(n)∩ (1 +En+1L(n)) and we just saw that these are the elements of finite
order in L(n). Finally, if the classes of two links L1 and L2 cannot be
distinguished by invariants of order n, then L1 − L2 ∈ En+1L(n), and,
hence, L1L

−1
2 − 1 ∈ En+1L(n) and L1L

−1
2 is of finite order in L(n).

12.4.11. The case of knots. The situation simplifies considerably in the
case of knots since the connected sum of knots is abelian and there is no
need to appeal to Theorem 12.4.9. All we need to show is that the map

K → L1(n)

that sends a knot into its n-equivalence class is an invariant of degree n.
But L1(n) is the quotient of ZL1(n) by the additive subgroup spanned by
(1) elements of the form x − 1 where x is n-trivial; (2) elements of the
form x1#x2 − x1 − x2. This subgroup, however, is contained in the ideal
Jn+1L1(n) since any non-trivial product of elements of Jn+1L1(n) is a linear
combination of expressions of the form (2). Proposition 12.4.8 now gives the
desired result.

12.4.12. Some comments.

Remark. Rational-valued Vassiliev invariants separate pure braids, and
the Goussarov group of n-equivalence classes of pure braids on k strands
is nothing but Pk/γnPk, which is nilpotent of class n for k > 2. Since this
group is a subgroup of L(n), we see that L(n) is nilpotent of class n for links
on at least 3 strands. String links on 1 strand are knots, in this case L(n)
is abelian. The nilpotency class of L(n) for links on 2 strands is unknown.
Note that it follows from the results of [DK] that L(n) for links on 2 strands
is, in general, non-abelian.

Remark. The relation of the Goussarov groups of string links on more than
one strand to integer-valued invariants seems to be a much more difficult
problem. While Proposition 12.4.8 gives information about the integer-
valued invariants, Theorem 12.4.9 fails over Z.

Remark. Proposition 12.4.8 shows that the map

Lm → L(n)→ ZL(n)/En+1L(n)

is the universal degree n Vassiliev invariant in the following sense: each
Vassiliev invariant of links in Lm of degree n can be extended uniquely to a
linear function on ZL(n)/En+1L(n).
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12.5. Braid invariants as string link invariants

A pure braid is a string link so every finite-type string link invariant is also
a braid invariant of the same order (at least). It turns out that the converse
is true:

12.5.1. Theorem. A finite-type integer-valued pure braid invariant extends
to a string link invariant of the same order.

Corollary. The natural map Ah(m) → A(m), where Ah(m) is the algebra
of the horizontal chord diagrams and A(m) is the algebra of all string link
chord diagrams, is injective.

This was first proved in [BN8] by Bar-Natan. He considered quantum
invariants of pure braids, which all extend to string link invariants, and
showed that they span the space of all Vassiliev braid invariants.

Our approach will be somewhat different. We shall define a map

Lm(n)→ Pm/γn+1Pm

from the Goussarov group of n-equivalence classes of string links to the
group of n-equivalence classes of pure braids on m strands, together with a
section Pm/γn+1Pm → Lm(n). A Vassiliev invariant v of order n for pure
braids is just a function on Pm/γn+1Pm, its pullback to Lm(n) gives the
extension of v to string links.

Remark. Erasing one strand of a string link gives a homomorphism Lm →
Lm−1, which has a section. If Lm were a group, this would imply that string
links can be combed, that is, that Lm splits as a semi-direct product of
Lm−1 with the kernel of the strand-erasing map. Of course, Lm is only a
monoid, but it has many quotients that are groups, and these all split as
iterated semi-direct products. For instance, string links form groups modulo
concordance or link homotopy [HL]; here we are interested in the Goussarov
groups.

Denote by FLm−1(n) the kernel of the homomorphism Lm(n)→ Lm−1(n)
induced by erasing the last strand. We have semi-direct product decompo-
sitions

Lm(n) ∼= FLm−1(n) ⋉ . . .FL2(n) ⋉ FL1(n).

We shall see that any element of FLk(n) can be represented by a string
link on k+1 strands whose first k strands are vertical. Moreover, taking the
homotopy class of the last strand in the complement to the first k strands
gives a well-defined map

πk : FLk(n)→ Fk/γn+1Fk.
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Modulo the n + 1st term of the lower central series, the pure braid group
has a semi-direct product decomposition

P∞/γn+1P∞ ∼= Fm−1/γn+1Fm−1 ⋉ . . .⋉ F1/γn+1F1.

The homomorphisms πi with i < m can now be assembled into one surjective
map

Lm(n)→ Pm/γn+1Pm.

Considering a braid as a string link gives a section of this map; this will
establish the theorem stated above as soon as we justify the our claims
about the groups FLk(n).

12.5.2. String links with one non-trivial component. The fundamen-
tal group of the complement of a string link certainly depends on the link.
However, it turns out that all this dependence is hidden in the intersection
of all the lower central series subgroups.

Let X be a string link on m strands and X̃ be its complement. The
inclusions of the top and bottom planes of X, punctured at the endpoints,

into X̃ give two homomorphisms it and ib of Fm into π1X̃.

Lemma. [HL] For any n the homomorphisms

Fm/γnFm → π1X̃/γnπ1X̃

induced by it and ib, are isomorphisms.

A corollary of this lemma is that for any n there is a well-defined map

Lm(n)→ Fm−1/γn+1Fm−1

given by taking the homotopy class of the last strand of a string link in the
complement to the first m − 1 strands. We must prove that if two string
links represent the same element of FLm−1(n), their images under this map
coincide.

In terms of braid closures, erasing the last strand of a string link cor-
responds to erasing all strands of P∞ with ends at the points (m, i) for all
i > 0. Erasing these strands, we obtain the group which we denote by Pm−1

∞ ;
write Φ for the kernel of the erasing map. We have a semi-direct product
decomposition

P∞ = Φ ⋉ Pm−1
∞ ,

and the product is almost direct. In particular, this means that γkP∞ =
γkΦ ⋉ γkP

m−1
∞ for all k.

Lemma. Let x ∈ Φ, and h ∈ γn+1Φ. The string links S(x) and S(xh)
define the same element of Fm−1/γn+1Fm−1.
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Proof. Each braid in Φ can be combed: Φ is an almost direct product of the
free groups Gi which consist of braids whose all strands, apart from the one
with the endpoints at (m, i), are straight, and whose strands with endpoints
at (m, j) with j < i do not interact. Each element a of Gi gives a path in
the complement to the first m− 1 strands of the string link, and, hence, an
element [a] of Fm−1. Notice that this correspondence is a homomorphism
of Gi to Fm−1. (Strictly speaking, these copies of Fm−1 for different i are
only isomorphic, since these are fundamental groups of the same space with
different basepoints. To identify these groups we need a choice of paths
connecting the base points. Here we shall choose intervals of straight lines.)

Given x ∈ Φ we can write it as x1x2 . . . xr with xi ∈ Gi. Then the
homotopy class of the last strand of Sn(x) produces the element

[x1][x2]
−1 . . . [xr]

(−1)r−1 ∈ Fm−1.

Let x′ = xh with h ∈ γn+1Φ. Then the fact that Φ is an almost direct
product of the Gi implies that if x′ = x′1x

′
2 . . . x

′
r with xi ∈ Gi, then xi ≡ x′i

mod γn+1Gi. It follows that the elements of Fm−1 defined by S(x) and
Sn(x′) differ by multiplication by an element of γn+1Fm−1. �

Lemma. Let x ∈ Φ, and y ∈ γn+1P
m−1
∞ . The string links S(x) and S(xy)

define the same element of Fm−1/γn+1Fm−1.

Proof. Denote by X̃ the complement of S(y). We shall write a presentation

for the fundamental group of X̃. It will be clear from this presentation that
the element of

Fm−1/γn+1Fm−1 = π1X̃/γn+1π1X̃

given by the homotopy class of the last strand of S(xy) does not depend on
y.

Let us assume that both x and y lie in the braid group Pm(2N+1). Let
H be the horizontal plane coinciding with the top plane of the braid y.

The plane H cuts the space X̃ into the upper part H+ and the lower part
H−. The fundamental groups of H+, H− and H+ ∩ H− are free. Let us
denote by {αi,j}, {βi,j} y {γi,k} the corresponding free sets of generators
(here 1 6 i < m, 1 6 j 6 N + 1 and 1 6 k 6 2N + 1) as in Figure 12.5.2.1.

By the Van Kampen Theorem, π1X̃ has a presentation

〈αi,j , βi,j , γi,k | θ−1
y (γi,2q−1) = βi,q, θ−1

y (γi,2q) = β−1
i,q

γi,2q−1 = αi,q, γi,2q = α−1
i,q+1 〉,

where 1 6 q 6 N + 1 and θy is the automorphism of F(m−1)(2N+1) given by
the braid y. Since y ∈ γn+1P(m−1)(2N+1), it is easy to see that

θ−1
y (γi,j) ≡ γi,j mod γm+1π1X̃.
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α  =γ         γ        α  =γ         γ         α  =γ
 1,1       1,1                1,2                1,2       1,3                1,4                  1,3       1,5                    

2,1       2,1                2,2                2,2       2,3                2,4                  2,3       2,5                    

β                      β                        β

β                      β                        β1,1                                           1,2                                               1,3               

α  =γ         γ        α  =γ         γ         α  =γ 

2,1                                           2,2                                               2,3               

Figure 12.5.2.1

Replacing θ−1
y (γi,j) by γi,j in the presentation of π1X̃ we obtain a presenta-

tion of the free group Fm−1. �

Now, a string link that gives rise to an element of FLm−1(n) can be
written as S(xy) where x ∈ Φ and y ∈ γn+1P

m−1
∞ . Any link n-equivalent to

it is of the form S(txyb · h) where t ∈ HT , b ∈ HB and h ∈ γn+1P∞. We
have

S(txyb · h) = S(xy · bhb−1) = S(xh′yh′′),

where h′ ∈ γn+1Φ and h′′ ∈ γn+1P
m−1
∞ . It follows from the two foregoing

lemmas that S(xh′yh′′) and S(xy) define the same element of Fm−1/γn+1Fm−1.

Exercises

(1) Show that reducing the coefficients of the Magnus expansion of an el-
ement of Fn modulo m, we obtain the universal Zm-valued Vassiliev
invariant for Fn. Therefore, all mod m Vassiliev invariants for Fn are
mod m reductions of integer-valued invariants.

(2) LetM′ : Fn → Z[[X1, . . . , Xn]] be any multiplicative map such that for
all xi we haveM′(xi) = 1 + αiXi + . . . with αi 6= 0. Show thatM′ is a
universal Vassiliev invariant for Fn.

(3) (a) Show that the semi-direct product in the decomposition P3 = F2 ⋉Z
given by combing is not direct.
(b) Find an isomorphism between P3 and F2 × Z.

(4) Show that if a semi-direct product A⋉B is almost direct, then γkA⋉B
coincides with γkA⋉ γkB inside A⋉B for all k.





Chapter 13

Gauss diagrams

In this chapter we shall show how the finite-type invariants of a knot can
be read off its Gauss diagram. It is not surprising that this is possible in
principle, since the Gauss diagram encodes the knot completely. However,
the particular method we describe, invented by Polyak and Viro and whose
efficiency was proved by Goussarov, turns out to be conceptually very simple.
For a given Gauss diagram, it involves only counting its subdiagrams of some
particular types.

We shall prove that each finite-type invariant arises in this way and
describe several examples of such formulas.

13.1. The Goussarov theorem

Recall that in Chapter 12 we have constructed a universal Vassiliev invariant
for the free group by sending a word to the sum of all of its subwords. A
similar construction can be performed for knots if we think of a knot as
being “generated by its crossings”.

Let GD be the set of all Gauss diagrams (we shall take them to be based,
or long, even though for the moment it is of little importance). There is a
subset GDre ⊂ GD that consists of all realizable Gauss diagrams, that is the
diagrams of (long) classical knots. Denote by ZGD the set of all finite linear
combinations of the elements of GD. We define the map I : ZGD→ ZGD
by simply sending a diagram to the sum of all its subdiagrams:

I(D) =:
∑

D′⊆D
D′

and continuing this definition to the whole of ZGD by linearity. In other
terms, the effect of this map can be described as

363
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I : −→ +

For example, we have

I
( )

= +

+ + + +2 +

Here all signs on the arrows are assumed to be, say, positive.

The map I is an isomorphism, the inverse being

I−1(D) =
∑

D′⊆D
(−1)|D−D

′|D′,

where |D −D′| is the number of arrows of D not contained in D′.

Let us write the map I : ZGD→ ZGD as

I(D) =
∑

A∈GD

〈A,D〉A.

This equality provides a definition of the pairing 〈A,D〉. In principle, the
integers 〈A,D〉 change if a Reidemeister move is performed on D. However,
one can find invariant linear combinations of these integers. For example,
in Section 3.6.7 we have proved that the Casson invariant c2 of a knot can
be expressed as
〈+ + , D

〉
−
〈− + , D

〉
−
〈+ − , D

〉
+
〈− − , D

〉
.

We shall see more examples of such invariants in Section 13.3. Here, we
shall prove that for each Vassiliev invariant of classical knots there exists a
formula of this type.

Each linear combination with integer coefficients of the form
∑

A∈GD

cA〈A,D〉

as a function of D is just the composition c ◦ I, where c : ZGD→ Z is the
linear map with c(A) = cA.

Recall that by K we denote the set of (isotopy classes of) classical knots.
A Gauss diagram uniquely determines the corresponding knot, therefore, a
function v : K → Z (the range may be arbitrary) defines a map ZGD→ Z,
which we denote by the same letter v.

Theorem (Goussarov). For each integer-valued Vassiliev invariant v of
classical knots of order n there exists a linear map c : ZGD → Z such
that v = c ◦ I |ZGDre and such that c is zero on each Gauss diagram with
more than n arrows.
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The proof of the Goussarov Theorem is the main goal of this section.

13.1.1. Gauss diagrams with chords. One can, of course, also consider
Gauss diagrams for singular knots with double points. These, apart from
arrows, have solid undirected chords on them, each chord labeled with a
sign. The sign of a chord is positive if in the positive resolution of the
double point the overcrossing is passed first. (Recall that we are dealing
with long Gauss diagrams, and that the points on a long knot are ordered.)

Gauss diagrams with at most n chords span the space ZGDn, which is
mapped to ZGD by a version of the Vassiliev skein relation:
(13.1.1.1) ε

= ε

ε

− ε

−ε
.

Using this relation, any knot invariant, or, indeed, any function on Gauss
diagrams can be extended to diagrams with chords. Note that the map
ZGDn → ZGD is not injective; in particular, changing the sign of a chord
in a diagram from GDn multiplies its image in ZGD by −1. We have a
commutative diagram

ZGDn → ZGD
↓ I ↓ I

ZGDn → ZGD

where I : ZGDn → ZGDn is the isomorphism that sends a diagram to the
sum of all its subdiagrams that contain the same chords.

13.1.2. Descending diagrams and “canonical actuality tables”. In
Section 3.7 we have described a procedure of calculating a Vassiliev invariant
using the actuality table. This procedure involves some choices. Firstly, in
order to build the table, we have to choose for each chord diagram a singular
knot representing it. Secondly, when calculating the knot invariant we have
to choose repeatedly sequences of crossing changes that will express our knot
as a linear combination of singular knots from the table.

It turns out that for long knots these choices can be eliminated. We
shall now define something that can be described as a canonical actuality
table and describe a calculation procedure for Vassiliev invariants that only
depends on the initial Gauss diagram representing a knot. Strictly speaking,
our “canonical actuality tables” are not actuality tables, since they contain
one singular knot for each long chord diagram with signed chords.

We shall draw the diagrams of the long knots in the plane (x, y), assum-
ing that the knot coincides with the x-axis outside some ball.

A diagram of a (classical) long knot is descending if for each crossing the
overcrossing comes first. A knot whose diagram is descending is necessarily
trivial. The Gauss diagram corresponding to a descending knot diagram has
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all its arrows pointed in the direction of the increase of the coordinate x (i.e.
to the right).

The notion of a descending diagram can be generalized to diagrams of
knots with double points. A Gauss diagram of a long knot with double
points is called descending if

(1) all the arrows are directed to the right, and

(2) no endpoint of an arrow can be followed by the left endpoint of a
chord.

In other words, the following situations are forbidden:

For these two conditions to make sense the Gauss diagram with dou-
ble points need not be realizable; we shall speak of descending diagrams
irrespective of whether they can be realized by classical knots with double
points.

Descending diagrams are useful because of the following fact.

13.1.3. Lemma. Each long chord diagram with signed chords underlies
a unique (up to isotopy) singular long knot that has a descending Gauss
diagram.

Proof. The endpoints of the chords divide the line of the parameter into
intervals, two of which are semi-infinite. Let us say that such an interval is
prohibited if it is bounded from the right by a left end of a chord. Clearly, of
the two semi-infinite intervals the left one is prohibited while the right one is
not. If a chord diagram D underlies a descending Gauss diagram GD, then
GD has no arrow endpoints on the prohibited intervals. We shall refer to
the union of all prohibited intervals with some small neighbourhoods of the
chord endpoints (which do not contain endpoints of other chords or arrows)
as the prohibited set.

f

c

d
g

a

ebChord diagram

prohibited set

Prohibited set

a b d e gf

Immersion of the

c
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Descending singular knot
Its Gauss diagram

b e

a
g

f

d

c

The prohibited set can be immersed into the plane with double points
corresponding to the chords respecting the signs of the chords, the chords
themselves being contracted to points. The image of the prohibited set will
be an embedded tree T . Such an immersion is uniquely defined up to isotopy.

The leaves of T are numbered in the order given by the parameter along
the knot. Note that given T , the rest of the plane diagram can be recon-
structed as follows: the leaves of T are joined, in order, by arcs lying outside
of T ; these arcs only touch T at their endpoints and each arc lies below
all the preceding arcs; the last arc extends to infinity. Such reconstruction
is unique since the complement of T is homeomorphic to a 2-disk, so all
possible choices of arcs are homotopic. �

13.1.4. Now, a canonical actuality table for an invariant of order n is the
set of its values on all singular long knots with descending diagrams and at
most n double points. For example, here is the canonical actuality table for
the second coefficient c2 of the Conway polynomial.

+ − + + − + + − − −

0 0 0 0 0 0 0

+
+

−
+

+
−

−
−

+ + − + + − − −

0 0 0 0 1 1 1 1

13.1.5. Algorithm of calculating. Now we remove the second ambiguity
in the procedure of calculating a Vassiliev invariant mentioned in 13.1.2. For
given n we give an algorithm how to express a (not necessarily descending)
Gauss diagram with chords as a linear combination of descending diagrams,
modulo diagrams with more than n chords. The algorithm consists in the
repetition of a certain map P of Gauss diagrams which makes a diagram in
a sense “more descending”. The map P works as follows.
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Take a diagram D. Replace all the arrows of D that point to the left
by the arrows that point to the right (possibly creating new chords in the
process), using relation (13.1.1.1).

Denote by
∑
aiD

′
i the resulting linear combination. Now, each of the

D′i may contain “prohibited pairs”: these are arrow endpoints which are
followed by a left endpoint of a chord. Using the Reidemeister moves a
prohibited pair can be transformed as follows:

On a Gauss diagram this transformation can take one of the forms shown
in Figure 13.1.5.1 where the arrows corresponding to the new crossings are
thinner.

−εε −εε ε −ε

εε εε−ε ε

−ε ε −ε ε −εε

ε ε ε ε ε−ε

ε −ε ε −ε ε−ε

εε ε ε−εε

Figure 13.1.5.1

For each D′i consider the leftmost prohibited pair, and replace it with
the corresponding configuration of arrows and chords as in Figure 13.1.5.1;
denote the resulting diagram by D′′i . Set P (D) :=

∑
aiD

′′
i and extend P

linearly to the whole ZGD∞ =
⋃
n ZGDn.

If D is descending, then P (D) = D. We claim that applying P repeat-
edly to any diagram we shall eventually arrive to a linear combination of
descending diagrams, modulo the diagrams with more than n chords.
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Let us order the chords in a diagram by their left endpoints. We say that
a diagram is descending up to the k-th chord if the closed interval from −∞
up to the left end of the kth chord contains neither endpoints of leftwards-
pointing arrows, nor prohibited pairs.

If D is descending up to the kth chord, each diagram in P (D) also is.
Moreover, applying P either decreases the number of arrow heads to the left
of the left end of the k + 1-st chord, or preserves it. In the latter case, it
decreases the number of arrow tails in the same interval. It follows that for
some finite m each diagram in Pm(D) will be decreasing up to the k + 1st
chord. Therefore, repeating the process, we obtain after a finite number of
steps a combination of diagrams descending up to the n+ 1st chord. Those
of them that have at most n chords are descending, and the rest can be
disregarded.

Remark. By construction, P respects the realizability of the diagrams. In
particular, the above algorithm expresses a long classical knot as a linear
combination of singular classical knots with descending diagrams.

13.1.6. Constructing the map c. Let v be a Vassiliev knot invariant of
order 6 n, that is, a linear function v : ZGDre → Z. We are going to
define a map c : ZGD→ Z such that on the subgroup ZGDre the equality
c ◦ I = v holds. The definition is obvious:

(13.1.6.1) c = v ◦ I−1 .

However, for this equation to make sense we need to extend v from ZGDre

to the whole of ZGD.

If D is a descending Gauss diagram with signed chords, there exists
precisely one singular classical knot K which has a descending diagram with
the same signed chords. We set v(D) := v(K). Now, if D is an arbitrary
diagram, then we apply the algorithm of the previous subsection to obtain a
linear combination

∑
aiDi of descending diagrams. Set v(D) :=

∑
aiv(Di).

It is indeed an extension of v because if D is a realizable Gauss diagram
then the value v(D) can be calculated from the canonical actuality table for
v. This calculation is exactly expressed in the formula v(D) =

∑
aiv(Di)

given above.

To prove the Goussarov Theorem we now need to show that c vanishes
on Gauss diagrams with more than n arrows.

13.1.7. Proof of the Goussarov Theorem. Let us evaluate c on a de-
scending Gauss diagram A whose total number of chords and arrows is
greater than n. We have

c(A) = v(I−1(A)) =
∑

A′⊆A
(−1)|A−A

′|v(A′).
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All the subdiagrams A′ of A have the same chords as A and therefore are
descending. Hence, by the construction of the extension of v to ZGD, the
values of v on all the A′ are equal to v(A). If A has more than n chords,
then v(A) = 0. If A has at most n chords, it has at least one arrow. It

is easy to see that in this case
∑

A′⊆A(−1)|A−A
′| = 0, and it follows that

c(A) = 0. In particular, c vanishes on all descending Gauss diagrams with
more than n arrows.

In order to treat non-descending Gauss diagrams, we shall introduce an
algorithm, very similar to that of Section 13.1.5 that converts any long Gauss
diagram with chords into a combination of descending diagrams with at least
the same total number of chords and arrows. The algorithm consists in the
repetition of a certain map Q, similar to P , which also makes a diagram
“more descending”. We shall prove that the map Q preserves c in the sense
that c◦Q = c and does not decrease the total number of chords and arrows.
Then applying Q to a Gauss diagram A enough number of times we get a
linear combination of descending diagrams without altering the value of c.
Then the arguments of the previous paragraph show that c(A) = 0 which
will conclude the proof of the Goussarov Theorem.

Take a Gauss diagram A. Like in Section 13.1.5, we replace all the
arrows of A that point leftwards by the arrows that point to the right, using
relation (13.1.1.1).

Denote by
∑
aiA

′
i the resulting linear combination and check if the sum-

mands A′i contain prohibited pairs. Here is where our new construction dif-
fers from the previous one. For each A′i consider the leftmost prohibited
pair, and replace it with the sum of the seven non-empty subdiagrams of
the corresponding diagram from the right column of Figure 13.1.5.1 con-
taining at least one of the three arrows. Denote the sum of these seven
diagrams by A′′i . For example, if A′i is the first diagram from the left column
of Figure 13.1.5.1,

A′i =
ε −ε

, then A′′i =
−εε

+

+
−εε

+
−ε−ε

+
−εε ε

+

+
−εε −ε

+
−εε −ε

+
−εε ε −ε

.
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Now, set Q(A) =
∑
aiA

′′
i and extend Q linearly to the whole ZGD∞.

As before, applying Q repeatedly to any diagram we shall eventually
arrive to a linear combination of descending diagrams, modulo the diagrams
with more than n chords. Note that Q does not decrease the total number
of chords and arrows.

It remains to prove that Q preserves c. Since I : ZGD → ZGD is
epimorphic, it is sufficient to check that on diagrams of the form I(D).
Assume that we have established that c(Q(I(D)))) = c(I(D)) for all Gauss
diagrams D with some chords and at most k arrows. If there are no arrows
at all then D is descending and Q(I(D)) = I(D). Let now D have k + 1
arrows. If D is descending, than again Q(I(D)) = I(D) and there is nothing
to prove. If D is not descending, then let us first assume for simplicity that
all the arrows of D point to the right. Denote by l the arrow involved in the
leftmost prohibited pair, and let Dl be the diagram D with l removed. We
have

I(P (D)) = Q
(
I(D)− I(Dl)

)
+ I(Dl).

Indeed, P (D) is a diagram from the right column of Figure 13.1.5.1. Its
subdiagrams fall into two categories depending on whether they contain at
least one of the three arrows indicated on Figure 13.1.5.1 or none of them.
The latter are subdiagrams of Dl and they are included in I(Dl). The former
can be represented as Q

(
I(D)− I(Dl)

)
.

By the induction assumption, c(Q(I(Dl))) = c(I(Dl)). Therefore,

c(Q(I(D))) = c(I(P (D))) = v(P (D)) .

But applying P does not change the value of v because of our definition of
the extension of v from Section 13.1.6. So

c(Q(I(D))) = v(P (D)) = v(D) = c(I(D)) .

Hence c(Q(A)) = c(A) for any Gauss diagram A.

If some arrows of D point to the left, the argument remains essentially
the same and we leave it to the reader. �

13.1.8. Example. Casson invariant. We exemplify the proof of the
Goussarov theorem deriving the Gauss diagram formula for the Casson in-
variant, aka the second coefficient of the Conway polynomial c2. At the
beginning of this chapter we already mentioned a formula for it first given
in Section 3.6.7. However the formula we are going to derive following the
proof of the Goussarov theorem will be different.

Let v = c2. We will use the definition c = v ◦ I−1 to find the function
c : ZGD→ Z.
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If a Gauss diagram A consists of 0 or 1 chord then obviously c(A) = 0.
Also if A consists of two non-intersecting arrows then c(A) = 0. So we need
to consider the only situation when A consists of two intersecting arrows.
The are 16 such diagrams differing by the direction of arrows and signs on
them. The next table shows the answers.

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 1 c(− + )=−1 c(+ − )=−1 c(− − ) = 1

Let us do in detail the calculation of some of these values.

Take A = + − . According to the definition of I−1 from page 364

we have

c(A) = v( )− v( + )− v( − ) + v(+ − )

The first three values vanish. This follows from the actuality table for v = c2
in Section 13.1.4: the first and third Gauss diagrams are descending, so they
represent a trivial long knot; for the second value one should use the Vassiliev
skein relation (13.1.1.1)

v( + ) = v( − ) + v( − )

and then the actuality table values. Thus we have

c(A) = v(+ − ) = v(− − ) + v(− − ) .

The last two Gauss diagrams are descending. From the canonical actuality
table the values of c2 on them are zeros. So c(A) = 0.

Now let us take A = + + . Applying I−1 to A and using the

canonical actuality table for c2 as before we get c(+ + ) = v(+ + ).

To express the last Gauss diagram as a combination of descending diagrams
first we should reverse its right arrow with the relation (13.1.1.1):

+ + = + − + + − .

The first Gauss diagram here is descending. But the second one is not, it
has a prohibited pair. So we have to apply the map P from Section 13.1.5
to it. According to the first case of Figure 13.1.5.1 we have

+ − = = + .

In the first diagram we have to reverse one more arrow. And to the second
we need to apply the map P again. After that the reversion of arrows in



13.2. The Polyak algebra for virtual knots 373

it would not create any problem because the additional terms would have
3 chords, and we can ignore them if we are interested in the second order
invariant v = c2 only.

+ − = − +

modulo diagrams with three chords. The first and third diagrams here are
descending. But with the second one we have a little problem because it
has a prohibited interval with many (three) arrow ends on it. We need to
apply P five times in order to make it descending modulo diagrams with
three chords. The result will be a descending diagram B with two non
intersecting chords, one inside another. So the value of v on it would be
zero and we may ignore this part of the calculation (see problem (2) on page
386). But we give the answer to make the interested readers to be able to
check their understanding of the procedure:

B = .

Combining all these results we have

+ + = + − −B + +

modulo diagrams with at least three chords. The value of v on the last
Gauss diagram is equal to its value on the canonical descending knot with
the same chord diagram, − − , from the actuality table. This value is
1. The values of v on the other three descending Gauss diagrams are zero.

Thus we have c(+ + ) = 1.

We leave to the reader to check all other values of c from the table as
an exercise.

This table means that the value of c2 on a knot K with the Gauss
diagram D is

c2(K) =
〈+ + − − + − + − + − − , D

〉
.

This formula differs from the one at the beginning of the chapter by the
orientation of all its arrows.

13.2. The Polyak algebra for virtual knots

There are two different notions of Vassiliev invariants for virtual knots: that
of [GPV] and that of [Ka5]. We are only interested in virtual knots so far
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as they allow to speak of “subknots” of a knot and the definition of [GPV]
is tailored for this purpose.

13.2.1. The universal invariant of virtual knots. The map I : ZGD→
ZGD from Section 13.1, sending a diagram to the sum of all its subdiagrams
I(D) =

∑
D′⊆DD

′, is clearly not invariant under the Reidemeister moves.
However, we can make it invariant by simply taking the quotient of the im-
age of I by the images of the Reidemeister moves, or their linearizations.
These linearizations have the following form:

ε
= 0,

 ε

−ε
+

 ε
+

 −ε
= 0,

 ε

 ε

 ε
+  ε

 ε
+

 ε

 ε
+  ε

 ε

=
 ε

 ε

 ε
+  ε

 ε
+

 ε

 ε

+
 ε

 ε .

The space ZGD modulo the linearized Reidemeister moves is called the
Polyak algebra. The structure of an algebra comes from the connected sum
of long Gauss diagrams; we shall not use it here. The Polyak algebra, which
we denote by P, looks rather different from the quotient of ZGD by the
usual Reidemeister moves, the latter being isomorphic to the free Abelian
group spanned by the set of all virtual knots VK. Note, however, that by
construction, the resulting invariant I∗ : ZVK → P is an isomorphism, and,
therefore, contains the complete information about the virtual knot.

It is not clear how to do any calculations in P. It may be more feasible
to consider the (finite-dimensional) quotient Pn of P which is obtained by
setting all the diagrams with more than n arrows equal to zero. Quite
remarkably, the map In : ZVK → Pn obtained by composing I∗ with the
quotient map, turns out to be an order n Vassiliev invariant for virtual knots,
universal in the sense that any other order n Vassiliev invariant is obtained
by composing In with some linear function on Pn.

Let us now define the Vassiliev invariants so that the previous sentence
makes sense.

While the simplest operation on plane knot diagrams is the crossing
change, for Gauss diagrams there is a similar, but even simpler manipulation:
deleting/inserting of an arrow. An analogue of a knot with a double point
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for this operation is a diagram with a dashed arrow. A dashed arrow can
be resolved by means of the following “virtual Vassiliev skein relation”:

= − .

An invariant of virtual knots is said to be of finite type (or Vassiliev)
of order n if it vanishes on all Gauss diagrams with more than n dashed
arrows.

Observe that the effect of I on a diagram all of whose arrows are dashed,
is just making all the arrows solid. More generally, the image under I of
a Gauss diagram with some dashed arrows is a sum of Gauss diagrams all
of which contain these arrows. It follows that In is of order n: indeed, if a
Gauss diagram has more than n dashed arrows it is sent by I to a Gauss
diagram with at least n arrows, which is zero in Pn.

13.2.2. Open problems. A finite type invariant of order n for virtual
knots gives rise to a finite type invariant of classical knots of at least the
same order. Indeed, a crossing change can be thought of as deleting an
arrow followed by inserting the same arrow with the direction reversed.

Exercise. Show that if Vassiliev invariants are defined as above for
closed (unbased) virtual knots, the space P2 is 0-dimensional. Hence, the
Casson knot invariant cannot be extended to a Vassiliev invariant of order
2 for closed virtual knots.

It is not clear, however, whether a finite type invariant of classical knots
can be extended to an invariant of virtual long knots of the same order. The
calculation of [GPV] show that this is true in orders 2 and 3.

Given that I∗ is a complete invariant for virtual knots, one may hope
that each virtual knot is detected by In for some n. It is not known whether
this is the case. A positive solution to this problem would also mean that
Vassiliev invariants distinguish classical knots.

It would be interesting to describe the kernel of the natural projection
Pn → Pn−1 which kills the diagrams with n arrows. First of all, notice that
using the linearization of the second Reidemeister move, we can get rid of
all signs in the diagrams in Pn that have exactly n arrows: changing the
sign of an arrow just multiplies the diagram by −1. Now, the diagrams that
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have exactly n arrows satisfy the following 6T-relation in Pn:

+ +

= + + .

Consider the space ~An of chord diagrams with n oriented chords, modulo

the 6T-relation. There is a map in : ~An → Pn, whose image is the kernel
of the projection to Pn−1. It is not clear, however if in is an inclusion. The

spaces ~An were introduced in [Po] where their relation with usual chord
diagrams is discussed.

One more open problem is as follows. Among the linear combinations of
Gauss diagrams of the order no greater than n there are some that produce
a well defined invariant of degree n. Obviously, such combinations form a
vector space, call it Ln. The combinations that lead to the identically zero
invariant form a subspace L′n. The quotient space Ln/L

′
n is isomorphic to

the space of Vassiliev invariants Vn. The problem is to obtain a description
of (or some information about) the spaces Ln and L′n and in these terms
learn something new about Vn. For example, we have seen that the Casson
invariant c2 can be given by two different linear combinations k1, k2 of Gauss
diagrams of order 2. It is not difficult to verify that these two combinations,
together with the empty Gauss diagram k0 that corresponds to the constant
1, span the space L2. The subspace L′2 is spanned by the difference k1− k2.
We see that dimL2/L

′
2 = 2 = dimV2.

13.3. Examples of Gauss diagram formulas

13.3.1. Highest part of the invariant. Let us start with one observation
that will significantly simplify our formulas.

Lemma. Let c : ZGD → Z be a linear map representing an invariant of
order n. If A1, A2 ∈ GD are diagrams with n arrows obtained from each
other by changing the sign of one arrow, then c(A1) = −c(A2).

Proof. As we noted before, a knot invariant c vanishes on all linearized
Reidemeister moves of the form I(R), where R = 0 is a usual Reidemeister
move on realizable diagrams. Consider a linearized second Reidemeister
move involving one diagram A0 with n + 1 arrows and two diagrams A1

and A2 with n arrows. Clearly, c vanishes on A0, and therefore c(A1) =
−c(A2). �
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This observation gives rise to the following notation. Let A be a Gauss
diagram with n arrows without signs, an unsigned Gauss diagram. Given a
Gauss diagramD, we denote by 〈A,D〉 the alternating sum

∑
i(−1)signAi〈Ai, D〉,

where the Ai are all possible Gauss diagrams obtained from A by putting
signs on its arrows, and signAi is the number of chords of Ai whose sign is
negative. Since the value of c on all the Ai coincides, up to sign, we can
speak of the value of c on A.

For example, the formula for the Casson invariant of a knot K with the

Gauss diagram D can be written as c2(K) =
〈

, D
〉
.

13.3.2. Invariants of degree 3. Apart from the Casson invariant, the
simplest Vassiliev knot invariant is the coefficient j3(K) in the power series
expansion of the Jones polynomial (see Section 3.6). There are many formu-
las for j3(K); the first such formula was found by M. Polyak and O. Viro in
terms of unbased diagrams, see [PV1]. In [GPV] the following expression
is given for an invariant of degree 3 (equal to 2v3 + v2 in terms of the basic
invariants of Table 3.7.5.1 (see page 92), or to −j3/3 + c2 in terms of the
coefficients of the Jones and Conway polynomials:

〈
+ + +

+ + + +

+ + +
+ +

−
− +

+
++

−
+−

, D
〉
.

(In this formula a typo of [GPV] is corrected.) Here the bracket 〈·, ·〉 is
assumed to be linear in its first argument.

S. Willerton in his thesis [Wil3] found the following formula for −j3/3:

〈
+ + +

+ − + −

+2 + 2 + 2 , D
〉
.

A third Gauss diagram formula for j3 will be given in Section 13.3.4.
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Other combinatorial formulas for c2(K) and j3(K) were found earlier by
J. Lannes [Lan]: they are not Gauss diagram formulas.

13.3.3. Coefficients of the Conway polynomial. Besides the Gauss
diagram formulas for the low degree invariants, two infinite series of such
formulas are currently known: those for the coefficients of the Conway and
the HOMFLY polynomials. The former can be, of course, derived from the
latter, but we start from the discussion of the Conway polynomial, because
it is easier. We will follow the original exposition of [CKR].

Definition. A chord diagram D is said to be k-component if after parallel

doubling of each chord according to the picture , the

resulting curve will have k components. We use the notation |D| = k.

Example. For chord diagram with two chords we have:

∣∣∣
∣∣∣ = 1 ⇐= ,

∣∣∣
∣∣∣ = 3 ⇐= .

We will be interested in one-component diagrams only. With four chords,
there are four one-component diagrams (the notation is borrowed from [?]):

d4
1 = , d4

5 = , d4
6 = , and d4

7 = .

Definition. We can turn a one-component chord diagram with a base point
into an arrow diagram according to the following rule. Starting from the base
point we travel along the diagram with doubled chords. During this journey
we pass both copies of each chord in opposite directions. Choose an arrow
on each chord which corresponds to the direction of the first passage of the
chord. Here is an example.

.

We call the Gauss diagram obtained in this way the ascending arrow
diagram.
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Definition. The Conway combination C2n is the sum of all based one-
component ascending Gauss diagrams with 2n arrows. For example,

C2 := ,

C4 := + + + + +

+ + + + + + + + +

+ + + + + + + + .

Note that for a given one-component chord diagram we have to consider all
possible choices for the base point. However, some choices may lead to the
same Gauss diagram. In C2n we list them without repetitions. For instance,
all choices of a base point for the diagram d4

1 give the same Gauss diagram.
So d4

1 contributes only one Gauss diagram to C4. The diagram d4
7 contributes

four Gauss diagrams because of its symmetry, while d4
5 and d4

6 contribute
eight Gauss diagrams each.

Theorem. For n > 1, the coefficient c2n of z2n in the Conway polynomial
of a knot K with the Gauss diagram G is equal to

c2n = 〈C2n, G〉 .
Example. Consider the knot K := 62 and its Gauss diagram G := G(62):

6

3

1

4 5

2
knot 62 G =

1
3

4

2
6

5

Gauss diagram
of 62

To compute the pairing 〈C4, G〉 we must match the arrows of each diagram of
C4 with the arrows of G. One common property of all terms in C2n is that in
each term both endpoints of the arrows that are adjacent to the base point
are the arrowtails. This follows from our construction of C2n. Hence the
arrow {1} of G can not participate in the matching with any diagram of C4.
The only candidates to match with the first arrow of a diagram of C4 are the
arrows {2} and {4} of G. If it is {4}, then {1, 2, 3} cannot participate in the
matching, and there remain only 3 arrows to match with the four arrows
of C4. Therefore the arrow of G which matches with the first arrow of a
diagram of C4 must be {2}. In a similar way we can find that the arrow of
G which matches with the last arrow of a diagram of C4 must be {6}. This
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leaves three possibilities to match with the four arrows of C4: {2, 3, 4, 6},
{2, 3, 5, 6}, and {2, 4, 5, 6}. Checking them all we find only one quadruple,
{2, 3, 5, 6}, which constitute a diagram equal to the second diagram in the
second row of C4. The product of the local writhes of the arrows {2, 3, 5, 6}
is equal to (−1)(−1)(+1)(−1) = −1. Thus,

〈C4, G〉 = 〈 , G〉 = −1 ,

which coincides with the coefficient c4 of the Conway polynomial ∇(K) =
1− z2 − z4.

13.3.4. Coefficients of the HOMFLY polynomial. Let P (K) be the
HOMFLY polynomial of the knot K. Substitute a = eh and take the Tay-
lor expansion in h. The result will be a Laurent polynomial in z and a
power series in h. Let pk,l(K) be the coefficient of hkzl in that expression.
The numbers p0,l coincide with the coefficients of the Conway polynomial,
because the latter is obtained from HOMFLY by fixing a = 1.

Remark. From Exercise (21) on page 95 follow that

(1) for all nonzero terms the sum k + l is non-negative;

(2) pk,l is a Vassiliev invariant of degree no greater than k + l;

(3) if l is odd, then pk,l = 0.

We will describe a Gauss diagram formula for pk,l following [CP].

Let A be a (based, or long) Gauss diagram, S a subset of its arrows
(referred to as a state) and α an arrow of A. Doubling all chords in A that
belong to S, we obtain a diagram consisting of one or several circles with
some signed arrows attached to them. Denote by 〈α|A|S〉 the expression
in two variables h and z that depends on the sign of the chord α and the
type of the first passage of α (starting from the basepoint) according to the
following table:

First passage:

e−hz 0 e−2h − 1 0

−ehz 0 e2h − 1 0



13.3. Examples of Gauss diagram formulas 381

To the Gauss diagram A we then assign a power series W (A) in h and z
defined by

W (A) =
∑

S

〈A|S〉
(
eh − e−h

z

)c(S)−1

,

where 〈A|S〉 =
∏
α∈A〈α|A|S〉 and c(S) is the number of components ob-

tained after doubling all the chords in S. Denote by wk,l(A) the coefficient

of hkzl in this power series and consider the following linear combination of
Gauss diagrams: Ak,l :=

∑
wk,l(A) · A. Note that the number wk,l(A) is

non-zero only for a finite number of diagrams A.

Theorem. Let G be a Gauss diagram of a knot L. Then

pk,l(K) = 〈Ak,l, G〉 .

For a proof of the theorem, we refer the reader to the original paper [CP].
Here, we will only give one example. To facilitate the practical application
of the theorem, we start with some general remarks.

A state S of a Gauss diagram A is called ascending, if in traversing the
diagram with doubled chords we approach the neighborhood of every arrow
(not only the ones in S) first at the arrow head. As follows directly from
the construction, only ascending states contribute to W (A).

Note that since e±2h − 1 = ±2h + (higher degree terms) and ±e∓hz =
±z + (higher degree terms), the power series W (A) starts with terms of
degree at least |A|, the number of arrows of A. Moreover, the z-power of

〈A|S〉
(
eh−e−h

z

)c(S)−1
is equal to |S| − c(S) + 1. Therefore, for fixed k and

l, the weight wk,l(A) of a Gauss diagram may be non-zero only if A satisfies
the following conditions:

(i) |A| is at most k + l;

(ii) there is an ascending state S such that c(S) = |S|+ 1− l.
For diagrams of the highest degree |A| = k + l, the contribution of an

ascending state S to wk,l(A) is equal to (−1)|A|−|S|2kε(A), where ε(A) is
the product of signs of all arrows in A. If two such diagrams A and A′

with |A| = k+ l differ only by signs of the arrows, their contributions to Ak,l
differ by the sign ε(A)ε(A′). Thus all such diagrams may be combined to the

unsigned diagram A, appearing in Ak,l with the coefficient
∑

S(−1)|A|−|S|2k

(where the summation is over all ascending states ofA with c(S) = |S|+1−l).

Exercise. Prove that Gauss diagrams with isolated arrows do not con-
tribute to Ak,l. (Hint: all ascending states cancel out in pairs.)
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Now, by way of example, let us find an explicit formula for A1,2. The
maximal number of arrows is equal to 3. To get z2 in W (A) we need as-
cending states with either |S| = 2 and c(S) = 1, or |S| = 3 and c(S) = 2.
In the first case the equation c(S) = 1 means that the two arrows of S
must intersect. In the second case the equation c(S) = 2 does not add any
restrictions on the relative position of the arrows. In the cases |S| = |A| = 2
or |S| = |A| = 3, since S is ascending, A itself must be ascending as well.

For diagrams of the highest degree |A| = 1 + 2 = 3, we must count

ascending states of unsigned Gauss diagrams with the coefficient (−1)3−|S|2,
i.e. −2 for |S| = 2 and +2 for |S| = 3. There are only four types of
(unsigned) 3-arrow Gauss diagrams with no isolated arrows:

; , , .

Diagrams of the same type differ by the directions of arrows.

For the first type, recall that the first arrow should be oriented towards
the base point; this leaves 4 possibilities for the directions of the remaining

two arrows. One of them, namely , does not have ascending states

with |S| = 2, 3. The remaining possibilities, together with their ascending
states, are shown in the table:

The final contribution of this type of diagrams to A1,2 is equal to

−2 − 2 .

The other three types of degree 3 diagrams differ by the location of the
base point. A similar consideration shows that 5 out of the total of 12 Gauss
diagrams of these types, namely

, , , ,
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do not have ascending states with |S| = 2, 3. The remaining possibilities,
together with their ascending states, are shown in the table:

The contribution of this type of diagrams to A1,2 is thus equal to

−2 − 2 − 2 + 2 − 2 .

Besides diagrams of degree 3, some degree 2 diagrams contribute to A1,2

as well. Since |A| = 2 < k + l = 3, contributions of 2-diagrams depend also
on their signs. Such diagrams must be ascending (since |S| = |A| = 2) and

should not have isolated arrows. There are four such diagrams: , with

all choices of the signs ε1, ε2 for the arrows. For each choice we have 〈A|S〉 =

ε1ε2e
−(ε1+ε2)hz2. If ε1 = −ε2, then 〈A|S〉 = −z2, so the coefficient of hz2

vanishes and such diagrams do not occur in A1,2. For the two remaining
diagrams with ε1 = ε2 = ±, the coefficients of hz2 in 〈A|S〉 are equal to ∓2
respectively.

Combining all the above contributions, we finally get

A1,2 = −2
(

+ + + + − + + −
)
.

At this point we can see the difference between virtual and classical long
knots. For classical knots the invariant IA1,2 = 〈A1,2, ·〉 can be simplified

further. Note that any classical Gauss diagram G satisfies 〈 , G〉 =

〈 , G〉. This follows from the symmetry of the linking number. Indeed,

suppose we have matched two vertical arrows (which are the same in both
diagrams) with two arrows of G. Let us consider the orientation preserving
smoothings of the corresponding two crossings of the link diagram D as-

sociated with G. The smoothened diagram D̃ will have three components.
Matchings of the horizontal arrow of our Gauss diagrams with an arrow of G
both measure the linking number between the first and the third components

of D̃, using crossings when the first component overpasses (respectively, un-
derpasses) the third one. Thus, as functions on classical Gauss diagrams,
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is equal to and we have

p1,2(G) = −2〈 + + + + + − , G〉 .

For virtual Gauss diagrams this is no longer true.

In a similar way one may check that A3,0 = −4A1,2.

The obtained result implies one more formula for the invariant j3. In-
deed, j3 = −p3,0 − p1,2 = 3p1,2, therefore

j3(K) = −6〈 + + + + + − , G〉 .

13.4. The Jones polynomial via Gauss diagrams

The description of the Jones polynomial given in this section is essentially
a reformulation of the construction from a paper [Zul] by L. Zulli.

Let G be a Gauss diagram of a plane diagram of a knot K. Denote
by [G] the set of chords of G. The sign sign(c) of a chord c ∈ [G] can be
considered as a value of the function sign : [G]→ {−1,+1}. A state s for G
is an arbitrary function s : [G] → {−1,+1}. So for a Gauss diagram with
n chords there are 2n states. The function sign(·) is one of them. With
each state s we associate an immersed plane curve in the following way. We
double every chord c according to the rule:

c

, if s(c) = 1

, if s(c) = −1

Let |s| denote the number of connected components of the curve obtained
by doubling all the chords of G (compare with the definition of soN -weight
system in Sec.6.1.8). Also for a state s we define an integer

p(s) :=
∑

c∈[G]

s(c) · sign(c) .

The defining relations for the Kauffman bracket from Sec. 2.4 lead to
the following expression for the Jones polynomial.

Theorem.

J(K) = (−1)w(K)t3w(K)/4
∑

s

t−p(s)/4
(
−t−1/2 − t1/2

)|s|−1
,
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where the sum is taken over all 2n states for G and w(K) =
∑

c∈[G]

sign(c) is

the writhe of K.

We extend the Jones polynomial to virtual knots by means of the same
formula.

Example. For the left trefoil knot 31 we have the following Gauss
diagram.

1

3 2 G =

1

1

2

2

3 3

−
− − w(G) = −3

There are eight states for such a diagram. Here are the corresponding curves
and numbers |s|, p(s).

|s|=2

p(s)=−3

|s|=1

p(s)=−1

|s|=1

p(s)=−1

|s|=1

p(s)=−1

|s|=2

p(s)=1

|s|=2

p(s)=1

|s|=2

p(s)=1

|s|=3

p(s)=3

Therefore,

J(31) = −t−9/4
(
t3/4
(
−t−1/2 − t1/2

)
+ 3t1/4 + 3t−1/4

(
−t−1/2 − t1/2

)

+t−3/4
(
−t−1/2 − t1/2

)2)

= −t−9/4
(
−t1/4 − t5/4 − 3t−3/4 + t−3/4

(
t−1 + 2 + t

))

= t−1 + t−3 − t−4 ,

as we had before in Chapter 2.
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Exercises

(1) Gauss diagrams and Gauss diagram formulas may be defined for links
in a similar way. Prove that for a link L with two components K1 and
K2

lk(K1,K2) = 〈 , G(L)〉 .

(2) Find a sequence of Reidemeister moves that transforms the Gauss dia-
gram B from page 373 to the diagram

.

Show that this diagram is not realizable. Calculate the value of the
extension, according to 13.1.6, of the invariant c2 on it.

(3) Let A be the algebra of chord diagrams, ~A being the algebra of oriented

(arrow) chord diagrams. Prove that the natural mapping A → ~A is
well-defined, i. e. that the 6T relation implies the 4T relation.

(4) Let ~A be the algebra of Gauss diagrams, ~C being the algebra of acyclic
arrow graphs (oriented closed diagrams). Prove that the natural map-

ping ~A → ~C is well-defined, i.e. that the ~STU relation implies the 6T
relation.

(5) ∗ Define an analog of the algebra of oriented closed diagrams ~C spanned

by all graphs, not only acyclic. Denote it by ~Call. Is it true that the

natural mapping ~C → ~Call is an isomorphism?

(6) ∗ Construct an analogue of the algebra of open diagrams B consisting
of graphs with oriented edges.



Chapter 14

Miscellany

14.1. The Melvin–Morton conjecture

14.1.1. Formulation. Roughly speaking the Melvin–Morton conjecture
says that the Alexander-Conway polynomial can be read from the highest
order part of the colored Jones polynomial.

According to exercise (28) of Chapter 6 (see also [MeMo, BNG]) the
coefficients Jkn of the unframed colored Jones polynomial Jk (Section 11.2.4)
are polynomials in k of degree at most n+1 without free terms. So we may
write

Jkn
k

=
∑

06j6n

bn,jk
j and

Jk

k
=
∞∑

n=0

∑

06j6n

bn,jk
jhn ,

where bn,j are Vassiliev invariants of order 6 n. The highest order part of
the colored Jones polynomial is the Vassiliev power series invariant

MM :=
∞∑

n=0

bn,nh
n .

The Melvin–Morton conjecture. [MeMo] The highest order part of
the colored Jones polynomial MM is inverse to the version of the Alexander–
Conway power series A defined by equations (11.2.5.1-11.2.5.2). In other
words,

MM(K) ·A(K) = 1

for any knot K.

387
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14.1.2. Historical remarks. In [Mo] H. Morton proved the conjecture
for torus knots. After this L. Rozansky [Roz1] proved the Melvin–Morton
conjectures on a level of rigor of Witten’s path integral interpretation of
Jones invariant. The first complete proof was done by D. Bar-Natan and
S. Garoufalidis [BNG]. They invented a remarkable reduction of the conjec-
ture to a certain equation for weight systems via canonical invariants. We
review this reduction in Section 14.1.3. They checked the equation using
calculations of the weight systems on chord diagrams. Also they proved a
more general theorem [BNG] relating the highest order part of an arbitrary
quantum invariant to the Alexander-Conway polynomial. Following [Ch2]
we shall represent another proof of this generalized Melvin–Morton conjec-
ture in Section 14.1.7. A. Kricker, B. Spence and I. Aitchison [KSA] proved
the Melvin–Morton conjecture using the cabling operations described in Sec-
tion 9.7. Later, developing this method, A. Kricker [Kri1] also proved the
generalization. In the paper [Vai1] A. Vaintrob gives another proof of the
Melvin–Morton conjectures. He used calculations on chord diagrams and
the Lie superalgebra gl(1|1) which is responsible for the Alexander–Conway
polynomial. An idea to use the restriction of the equation for weight systems
to the primitive space was explored in [Ch1, Vai2]. We shall follow [Ch1]
in the direct calculation of the Alexander–Conway weight system in Section
14.1.5.

B. I. Kurpita and K. Murasugi found a different proof of the Melvin–
Morton conjecture which does not use Vassiliev invariants and weight sys-
tems [KuM].

The works on the Melvin–Morton conjecture stimulated L. Rozansky
[Roz2] to formulate an exiting conjecture about the fine structure of the
Kontsevich integral. The conjecture was proved by A. Kricker [Kri2]. We
shall discuss this in Section 11.5.

14.1.3. Reduction to weight systems. Both power series Vassiliev in-
variants MM and A are canonical, so does their product (exercise (6)). The
invariant of the right-hand side that is identically equal to 1 on all knots is
also a canonical invariant. The Melvin–Morton conjecture is thus an equal-
ity for canonical invariants, hence it is enough to prove the equality of their
symbols.

Introduce the notation

SMM := symb(MM) =

∞∑

n=0

symb(bn,n) ;

SA := symb(A) = symb(C) =
∞∑

n=0

symb(cn) .
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The Melvin–Morton conjecture in equivalent to the relation

SMM · SA = I0 .

It is obvious in degrees 0 and 1. So basically we must prove that in degree
> 2 the product SMM · SA equals zero. To prove this we have to prove that
SMM · SA(p1 · · · · · pn) = 0 on any product p1 · · · · · pn of primitive elements
of degree > 1.

The weight system SMM is the highest part of the weight system ϕ′Vk
sl2
/k

from exercise (28) of the Chapter 6. The last one is multiplicative as it was
explained in Section 6.1.4. Hence SMM is multiplicative too. Exercise (16)
of Chapter 3 implies that the weight system SA is also multiplicative. In
other words, both weight systems SMM and SA are group-like elements of
the Hopf algebra of weight systemsW. A product of two group-like elements
is group-like which shows that the weight system SMM ·SA is multiplicative.
Therefore, it is sufficient to prove that

SMM · SA
∣∣
P>1

= 0 .

By the definitions of the multiplication of weight systems and primitive
elements,

SMM · SA(p) = (SMM ⊗ SA)(δ(p)) = SMM(p) + SA(p) .

Therefore we have reduced the Melvin–Morton conjecture to the equality

SMM

∣∣
P>1

+ SA
∣∣
P>1

= 0 .

Now we shall exploit the filtration

0 = P1
n ⊆ P2

n ⊆ P3
n ⊆ · · · ⊆ Pnn = Pn .

from Section 5.5.2 and the wheel wn that spans Pnn/Pn−1
n for even n and

belongs to Pn−1
n for odd n.

The Melvin–Morton conjecture follows from the next theorem.

14.1.4. Theorem. The weight systems SMM and SA have the properties

1) SMM

∣∣
Pn−1

n
= SA

∣∣
Pn−1

n
= 0;

2) SMM(w2m) = 2, SA(w2m) = −2.

The equation SA(w2m) = −2 is a particular case of exercise (34) of
Chapter 6. Exercise (26) of the same chapter implies that for any p ∈ Pn−1

n

the degree in c of the polynomial ρsl2(p) is less than or equal to [(n− 1)/2].

After the substitution c = k2−1
2 corresponding to the weight systems of the

colored Jones polynomial, the degree of the polynomial ρVk
sl2

(p)/k in k will

be at most n − 1. Therefore, its n-th term vanishes and SMM

∣∣
Pn−1

n
= 0.

Exercise (24) of Chapter 6 asserts that the highest term of the polynomial
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ρsl2(w2m) is 2m+1cm. Again the substitution c = k2−1
2 (taking the trace

of the corresponding operator and dividing the result by k) gives that the

highest term of ρVk
sl2

(w2m)/k is 2m+1k2m

2m = 2k2m. Hence SMM(w2m) = 2. The

only equation which remains to prove is that SA
∣∣
Pn−1

n
= 0. We shall prove

it in the next section.

14.1.5. Alexander–Conway weight system. Using the state sum for-
mula for SA from the exercise (34) of Chapter 6 we are going to prove that
SA(p) = 0 for any closed diagram p ∈ Pn−1

n .

First of all note that any such p ∈ Pn−1
n has an internal vertex connected

with three other internal vertices. Indeed, each external vertex is connected
with only one internal vertex. The number of external vertices is not greater
than n − 1. The total number of vertices of p is 2n, so there must be at
least n+ 1 internal vertices, and only n− 1 of them can be connected with
external vertices.

Pick such a vertex connected with three other internal vertices. There
are two possible cases: either all the three vertices are different or two of
them coincide.

The second case is easier, so let us start with it. Here we have a “bubble”

. After resolving the vertices of this fragment and erasing the curves

with more than one component we are left with the linear combination of
curves −2 + 2

which cancel each other. So SA(p) = 0.

For the first case we formulate our claim as a lemma.

14.1.6. Lemma. SA

( )
= 0.

We shall utilize the state surfaces Σs(p) from problem 30 of Chapter 6.
Neighbourhoods of “+”- and “−”-vertices of our state look on the surface
like three meeting bands:

(14.1.6.1)
+

;
−

= = = .

Switching a mark (value of the state) at a vertex means reglueing of the
three bands along two chords on the surface:

cut along chords interchange glue .
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Proof. We are going to divide the set of all those states s for which the
state surface Σs(p) has one boundary component into pairs in such a way
that the states s and s′ of the same pair differ by an odd number of marks.
The terms of the pairs will cancel each other and will contribute zero to
SA(p).

In fact, to do this we shall adjust only marks of the four vertices of the
fragment pictured in the lemma. The marks ε1, . . . , εl and ε′1, . . . , ε′l in the
states s and s′ will be the same except for some marks of the four vertices
of the fragment. Denote the vertices by v, va, vb, vc and their marks in the
state s by ε, εa, εb, εc, respectively.

Assume that Σs(p) has one boundary component. Modifying the surface
as in (14.1.6.1) we can suppose that the neighbourhood of the fragment has
the form

v
vb

vc

va
a

b

c

b1

c2

a1

a2

b2

c1

Draw nine chords a, a1, a2, b, b1, b2, c, c1, c2 on our surface as shown on
the picture. The chords a, b, c are located near the vertex v; a, a1, a2 near
the vertex va; b, b1, b2 near vb and c, c1, c2 near vc.

Since our surface has only one boundary component, we can draw it as
a plane circle and a, a1, a2, b, b1, b2, c, c1, c2 as chords inside it. Look at
the possible chord diagrams thus obtained.

If two, say b and c, of three chords located near a vertex, say v, do
not intersect, then the surface Σ...,−ε,εa,εb,εc,...(P ) obtained by switching the
mark ε to −ε has only one boundary component too. Indeed, the regluing
effect along two non-intersecting chords can be seen on chord diagrams as
follows:

cut along chords interchange glue .

So, in this case, the state s = {. . . ,−ε, εa, εb, εc, . . . } should be paired with
s′ = {. . . , ε, εa, εb, εc, . . . }.

Therefore, switching of a mark at a vertex increases the number of
boundary components (and then such a marked diagram may give a non-
zero contribution to SA(D)) if and only if the three chords located near the
vertex intersect pairwise.
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Now we can suppose that any two of the three chords in each triple
(a, b, c), (a, a1, a2), (b, b1, b2), (c, c1, c2) intersect. This leaves us with only
one possible chord diagram:

a1
abb1

a2

a1

c2

c

a
a2 c1 c2

b2

b

c

c1

b1

b2

So the boundary curve of the surface connects the ends of our fragment as
in the left picture below.

Σ...,ε,εa,εb,εc,...(p)

a

a

b
b

c
c

b1

b1

c2c2

a1

a1

a2

a2

b2

b2

c1

c1

Σ...,ε,−εa,−εb,−εc,...(p)

Switching marks at va, vb, vc gives a surface also with one boundary compo-
nent as in the right picture above. Pairing the state s = {. . . , ε, εa, εb, εc, . . . }
up with s′ = {. . . , ε,−εa,−εb,−εc, . . . } we get the desired result.

The Lemma and thus the Melvin–Morton conjecture are proved. �

14.1.7. Generalization of the Melvin–Morton conjecture to other
quantum invariants. Let g be a semi-simple Lie algebra and let Vλ be
an irreducible representation of g of the highest weight λ. Denote by h

a Cartan subalgebra of g, by R the set of all roots and by R+ the set of
positive roots. Let 〈·, ·〉 be the scalar product on h∗ induced by the Killing

form. These data define the unframed quantum invariant θVλ
g which after

the substitution q = eh and the expansion into a power series in h can be
written as (see Section 11.2.3)

θVλ
g =

∞∑

n=0

θλg,nh
n.

Theorem. ([BNG]).
1) The invariant θλg,n/dim(Vλ) is a polynomial in λ of degree at most n.
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2) Define the Bar-Natan–Garoufalidis function BNG as a power series in h
whose coefficient at hn is the degree n part of the polynomial θλg,n/dim(Vλ).
Then for any knot K,

BNG(K) ·
∏

α∈R+

Aα(K) = 1 ,

where Aα is the following normalization of the Alexander–Conway polyno-
mial:

Aα( ) − Aα( ) = (e
〈λ,α〉h

2 − e−
〈λ,α〉h

2 )Aα( ) ;

Aα( ) =
〈λ, α〉h

e
〈λ,α〉h

2 − e− 〈λ,α〉h
2

.

Proof. The symbol SBNG is the highest part (as a function of λ) of the Lie

algebra weight system ϕ′Vλ
g associated with the representation Vλ. According

to exercise (4), the symbol of Aα in degree n equals 〈λ, α〉nsymb(cn).

The relation between invariants can be reduced to the following relation
between their symbols:

SBNG
∣∣
Pn

+
∑

α∈R+

〈λ, α〉nsymb(cn)
∣∣
Pn

= 0 ,

for n > 1.

As above, SBNG
∣∣
Pn−1

n
= symb(cn)

∣∣
Pn−1

n
= 0, and symb(cn)(w2m) = −2.

Thus it remains to prove that

SBNG(w2m) = 2
∑

α∈R+

〈λ, α〉2m .

To prove this equality we shall use the method of Section 6.2. First, we
take the Weyl basis of g and write the Lie bracket tensor J in this basis.

Fix the root space decomposition g = h⊕
(
⊕
α∈R

gα
)
. The Cartan subal-

gebra h is orthogonal to all the gα’s and gα is orthogonal to gβ for β 6= −α.
Choose the elements eα ∈ gα and hα = [eα, e−α] ∈ h for each α ∈ R in such
a way that 〈eα, e−α〉 = 2/〈α, α〉, and for any λ ∈ h∗, λ(hα) = 2〈λ, α〉/〈α, α〉.

The elements {hβ , eα}, where β belongs to a basis B(R) of R and α ∈ R,
form the Weyl basis of g. The Lie bracket [·, ·] as an element of g∗ ⊗ g∗ ⊗ g
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can be written as follows:

[·, ·] =
∑

β∈B(R)

α∈R

(
h∗β ⊗ e∗α ⊗ α(hβ)eα − e∗α ⊗ h∗β ⊗ α(hβ)eα

)

+
∑

α∈R
e∗α ⊗ e∗−α ⊗ hα +

∑

α,γ∈R

α+γ∈R

e∗α ⊗ e∗γ ⊗Nα,γeα+γ ,

where the stars indicate elements of the dual basis. The second sum is
most important because the first and third ones give no contribution to the
Bar-Natan–Garoufalidis weight system SBNG.

After identification of g∗ and g via 〈·, ·〉 we get e∗α = (〈α, α〉/2)e−α. In
particular, the second sum of the tensor J is

∑

α∈R

(
〈α, α〉/2

)2
e−α ⊗ eα ⊗ hα .

According to Secction 6.2, to calculate SBNG(w2m) we must assign a
copy of the tensor −J with each internal vertex and then make all contrac-

tions corresponding to internal edges. After that take the product ρVλ
g (w2m)

of all operators in Vλ corresponding to external vertices. ρVλ
g (w2m) is a

scalar operator of multiplication by a certain constant. This constant is a
polynomial in λ of degree at most 2m. Its part of degree 2m is SBNG(w2m).

We associate the tensor −J with an internal vertex according to the
cyclic ordering of the three edges in such a way that the third tensor factor
of −J corresponds to the edge connecting the vertex with an external vertex.
After that we take the product of operators corresponding to these external
vertices. This means that we take the product of operators corresponding
to the third tensor factor of −J . Of course, we are interested only in those
operators which are linear in λ. One can show (see, for example, [BNG,
Lemma 5.1]) that it is possible to choose a basis in the space of the represen-
tation Vλ in such a way that the Cartan operators hα and raising operators
eα (α ∈ R+) will be linear in λ while the lowering operators e−α (α ∈ R+)
will not depend on λ. So we have to take into account only those summands
of −J that have hα or eα (α ∈ R+) as the third tensor factor. Further, to
calculate the multiplication constant of our product it is sufficient to act by
the operator on any vector. Let us choose the highest weight vector v0 for
this. The Cartan operators hα multiply v0 by λ(hα) = 2〈λ, α〉/〈α, α〉. So
indeed they are linear in λ. But the raising operators eα (α ∈ R+) send v0
to zero. This means that we have to take into account only those summands
of −J whose third tensor factor is one of the hα’s. This is exactly the second
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sum of J with the opposite sign:
∑

α∈R

(
〈α, α〉/2

)2
eα ⊗ e−α ⊗ hα.

Now making all contractions corresponding to the edges connecting internal
vertices of w2m we get the tensor:

∑

α∈R

(
〈α, α〉/2

)2m
hα ⊗ . . .⊗ hα︸ ︷︷ ︸

2m times

.

The corresponding element of U(Γ) acts on the highest weight vector v0 as
multiplication by

SBNG(w2m) =
∑

α∈R
〈λ, α〉2m = 2

∑

α∈R+

〈λ, α〉2m .

The theorem is proved. �

14.2. The Goussarov–Habiro theory

14.2.1. Formulation of the Goussarov–Habiro theorem.

14.2.1.1. In September 1995, at a conference in Oberwolfach, Michael Gous-
sarov reported about a theorem describing the pairs of knots indistinguish-
able by Vassiliev invariants of order 6 n. As usual with Goussarov’s results
the corresponding publication [G4] appeared several years later. K. Habiro
independently found the same theorem [Ha1, Ha2]. In this chapter we will
discuss a version of this theorem and related results. Other approaches to
the Goussarov–Habiro type theorems can be found in [CT, Sta3, TY].

Theorem (Goussarov–Habiro). Let K1 and K2 be two knots. Then v(K1) =
v(K2) for any Z-valued Vassiliev invariant v of order 6 n if and only if K1

and K2 are related by a finite sequence of moves Mn:

︸ ︷︷ ︸
n+ 2 components

︸ ︷︷ ︸
n+ 2 components

14.2.1.2. Denote by Bn (resp. Tn) the tangle on the left (resp. right) side
of the move Mn. The tangle Bn is an example of Brunnian tangles char-
acterized by the property that removing any of its components makes the
remaining tangle to be isotopic to the trivial tangle Tn−1 with n+1 compo-
nents.

We start the series of moves Mn with n = 0:

M0 : B0 = = T0
which is equivalent to the usual change of crossing.
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14.2.2. Exercise. Represent the change of crossing move

as a composition of M0 and an appropriate Reidemeister move of second
type.

For n = 1, the move M1 looks like

M1 : B1 = = T1

It is also known as the Borromean move

Since there are no invariants of order 6 1 except constants (Proposition
3.3.2), the Goussarov–Habiro theorem implies that any knot can be trans-
formed to the unknot by a finite sequence of Borromean movesM1, i.e. M1

is an unknotting operation.

14.2.3. Remark. Coincidence of all Vassiliev invariants of order 6 n im-
plies coincidence of all Vassiliev invariants of order 6 n−1. This means that
one can accomplish a move Mn by a sequence of moves Mn−1. Indeed, let
us deform the tangle Bn to the tangle on the left in the following picture:

Mn−1

(to see that this is indeed Bn, look at the picture closely and try to untangle
what can be untangled, working from right to left). Then the tangle in the
dashed rectangle is Bn−1. To perform the move Mn−1 we must cut it and
paste Tn−1 instead. This gives us the tangle on the right also containing
Bn−1. Now performing once more the move Mn−1 we obtain the trivial
tangle Tn.

14.2.4. Reformulation of the Goussarov–Habiro theorem.

14.2.4.1. Recall that we denoted by K the set of all (isotopy classes of) knots,
by ZK the free Z-module (even an algebra) consisting of all finite formal Z-
linear combinations of knots (see Section 1.6) and by Kn the singular knot
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filtration in ZK (see 3.2.1). Using the movesMn, we can introduce another
filtration in the module ZK.

Definition. Let Hn denote the Z-submodule of Z[K] spanned by the dif-
ferences of two knots obtained one from another by a single moveMn . For
example, the difference 31 − 63 belongs to H2.

14.2.4.2. Goussarov–Habiro’s theorem can be reformulated as follows.

Theorem. For all n the submodules Kn and Hn coincide.

Proof. (Of the equivalence of the two statements.) Indeed, if one knot K1

can be obtained from another one K2 by a finite sequence of moves Mn,
then the difference K1 − K2 belongs to Hn. Therefore, by theorem 2.2.2,
it belongs to Kn, i.e., it is equal to a linear combination of knots with > n
double points. Hence v(K1) = v(K2) for any Vassiliev invariant v of order
6 n. Conversely, if v(K1) = v(K2) for any Vassiliev invariant v of order 6 n,
then K1 − K2 belongs to Kn and, by theorem 14.2.4.2, to Hn. Therefore
K1−K2 is equal to a sum of differences of pairs of knots obtained one from
another by a singleMn move. This means that all summands in this sum can
be canceled except for the two knots K1 and K2. This allows us to rearrange
the pairs in this sum in such a way that K1 occurs in the first pair and −K2

occurs in the last pair and two consecutive pairs contain the isotopic knots,
one with plus one and another with minus one coefficients. Obviously such
an order of pairs gives us a sequence ofMn moves that transform K1 to K2.
Hence Goussarov–Habiro’s theorem 14.2.1.1 follows from theorem 14.2.4.2.
In the same way theorem 14.2.4.2 follows from Goussarov–Habiro’s theorem.
So they are equivalent. �

To prove theorem 14.2.4.2 we have to prove two inclusions: Hn ⊆ Kn
and Kn ⊆ Hn. The first one is an easy task. We do it in the next section.
The hard part — proof of the second inclusion — can be found in [G4,
Ha1, Ha2, Sta3, TY].

14.2.5. Proof of sufficiency.

14.2.5.1. In this section we prove that Hn ⊆ Kn. For this it is enough to
represent the difference Bn−Tn as a linear combination of tangles with n+1
double points in each. Let us choose the orientations of the components of
our tangles as shown. We are going to use the Vassiliev skein relation and
gradually transform the difference Bn − Tn into the required form.
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Bn − Tn = −

= + −

But the difference of the last two tangles can be expressed as a singular
tangle:

= −

We got a presentation of Bn−Tn as a linear combination of two tangles
with one double point in each between the first and the second components
of the tangles. Now we add and subtract isotopic singular tangles with one
double point:

Bn − Tn =


 −




−
(

−
)

Then using the Vassiliev skein relation we can see that the difference in the
first pair of parentheses is equal to

− + −

= − +

Similarly the difference in the second pair of parentheses would be equal to

− + −

= − +
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So we have represented Bn − Tn as a linear combination of four tangles
with two double points in each, one is between the first and the second
components of the tangles, and another one is between the second and third
components:

Bn − Tn = − +

+ −

Continuing in the same way we come to a linear combination of 2n

tangles with n + 1 double points in each occurring between consecutive
components. It is easy to see that if we change the orientations of arbitrary
k components of our tangles Bn and Tn, then the whole linear combination
will be multiplied by (−1)k.

14.2.6. Example.

B2−T2 = − − +

14.2.7. Invariants of order 2.

14.2.8. Example. There is only one (up to proportionality and adding a
constant) nontrivial Vassiliev invariant of order 6 2. It is the coefficient c2
of the Conway polynomial defined in Sec. 3.7.2.

Consider two knots

31 = , 63 = .

We choose the orientations as indicated. Their Conway polynomials

C(31) = 1 + t2 , C(63) = 1 + t2 + t4.

have equal coefficients of t2. Therefore for any Vassiliev invariant v of order
6 2 we have v(31) = v(63). In this case the Goussarov–Habiro theorem
states that it is possible to obtain the knot 63 from the knot 31 by moves
M2 : B2 T2

M2 :
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Let us show this. We start with the standard diagram of 31, and then
transform it in order to specify the tangle B2.

31 = ∼= ∼= ∼= ∼=

∼= ∼= ∼= ∼=

∼= ∼= ∼=

∼= ∼=

Now we have the tangle B2 in the dashed oval. To perform the move
M2 we must replace it by the trivial tangle T2:

∼= ∼= ∼= ∼= = 63

14.2.8.1. The mod 2 reduction of c2 is called the Arf invariant of a knot. A
description of the Arf invariant similar to the Goussarov–Habiro description
of c2 was obtained by L. Kauffman.

Theorem. (L.Kauffman [Ka1, Ka2]). K1 and K2 have the same Arf in-
variant if and only if K1 can be obtained from K2 by a finite number of so
called pass-moves:

The orientations are important. Allowing pass-moves with arbitrary
orientations we obtain an unknotting operation (see [Kaw2]).
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14.2.8.2. Open problem. (L. Kauffman) Find a set of moves relating the
knots with the same c2 modulo n, for n = 3, 4,. . . .

14.2.8.3. Open problem. Find a set of moves relating any two knots with
the same Vassiliev invariants modulo 2 (3, 4, ...) up to the order n.

14.2.8.4. Open problem. Find a set of moves relating any two knots with
the same Conway polynomial.

The paper by S. Naik and T. Stanford [NaS] might be useful in studying
these problems. It describes the moves relating two knots with the same
Seifert matrix.

14.2.9. The Goussarov groups.

14.2.10. Definition. Two knots K1 and K2 are called n-equivalent if they
cannot be distinguished by Z-valued Vassiliev invariants of order 6 n, i.e.,
v(K1) = v(K2) for any v ∈ VZ

n .

Let Gn be the set of n-equivalence classes of knots.

14.2.11. Theorem (Goussarov [G1]). The set Gn is an Abelian group with
respect to the connected sum of knots.

We call the group Gn the n-th Goussarov group.

Since there are no Vassiliev invariants of order 6 1 except constants,
the zeroth and the first Goussarov groups are trivial. The proof of the
theorem in [G1] is an explicit construction of an n-inverse to a given knot
K, i.e. such a knot K−1

n that the connected sum K#K−1
n has all trivial

Vassiliev invariants up to the order n. The proof proceeds by induction
on n and gives the presentation of the n-inverse K−1

n as a connected sum
K−1
n = K2#K3# . . .#Kn such that for any j = 2, . . . , n the truncated

connected sum K2#K3# . . .#Kj is a j-inverse to K.

Exercise. Following the proofs given in [G1] and [Sta3], construct the
2-inverse of the trefoil 31.

In this section we confine ourselves with a description of the groups G2,
G3.

14.2.11.1. The second Goussarov group G2. Consider the coefficient c2 of t2

in the Conway polynomial C(K). According to exercise 6 at the end of
Chapter 2, C(K1#K2) = C(K1) · C(K2) and C(K) has the form C(K) =
1 + c2(K)t2 + . . . . These facts imply that c2(K1#K2) = c2(K1) + c2(K2).
Therefore c2 is a homomorphism of G2 into Z. Since c2 is the only nontrivial
invariant of order 6 2 and takes value 1 on certain knots, the homomorphism
c2 : G2 → Z is in fact an isomorphism. So G2

∼= Z. From the table in Sec.2.3.3
we can see that c2(31) = 1 and c2(41) = −1. This means that the knot 31

represents a generator of G2, and 41 is 2-inverse of 31. The prime knots
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with up to 8 crossings are distributed in the second Goussarov group G2 as
follows.

52 87
88 820

62 77 47 75
815

61 86
89

81 48
812

83 41
85 118 817, ,

31 63 76
813 816 188, ,

73 81982 51 72
810814 821

0 1 2 3 4 5 6−1−2−3−4

, , , , ,
,

, ,, , , , , , , , 710 , , , ,
,

c2

14.2.11.2. The third Goussarov group G3. In order 3 we have one more Vas-
siliev invariant j3, the coefficient at h3 in the power series expansion of the
Jones polynomial with substitution t = eh. The Jones polynomial is multi-
plicative, J(K1#K2) = J(K1) · J(K2) (see exercise 7 at the end of Chapter
2) and its expansion has the form J(K) = 1 + j2(K)h2 + j3(K)h3 + . . . (see
Sec. 3.6). Thus we can write

J(K1#K2) = 1 + (j2(K1) + j2(K2))h
2 + (j3(K1) + j3(K2))h

3 + . . .

In particular, j3(K1#K2) = j3(K1)+ j3(K2). According to exercise 6 at the
end of Chapter 3, j3 is divisible by 6. Then j3/6 is a homomorphism from
G3 to Z. Together with c2 we get the isomorphism

G3
∼= Z⊕ Z = Z2; K 7→ (c2(K), j3(K)/6)

Let us identify G3 with the integral lattice on a plane. The distribution of
prime knots on this lattice is shown in Figure 14.2.11.1 (numbers with a bar
refer to knots that differ from the corresponding table knots (see page 26)
by a mirror reflection).

In particular, the 3-inverse of the trefoil 31 can be represented by 62, or
77. Also we can see that 31#41 is 3-equivalent to 82. Therefore 31#41#82

is 3-equivalent to the unknot, and 41#82 also represents the 3-inverse to 31.
The knots 63 and 82 represent the standard generators of G3.

14.2.11.3. Open problem. Is there any torsion in the group Gn?

14.3. Bialgebra of graphs

It turns out that the natural mapping that assigns to every chord diagram
its intersection graph, can be converted into a homomorphism of bialgebras
γ : A → L, where A is the algebra of chord diagrams and L is an alge-
bra generated by graphs modulo certain relations which was introduced by
S. Lando [Lnd1]. Here is his construction.

Let G be the graded vector space (over a field F) spanned by all simple
graphs (without loops nor multiple edges) as free generators:

G = G0 ⊕G1 ⊕G2 ⊕ . . . ,
It is graded by the order (the number of vertices) of a graph. This space is
easily turned into a bialgebra:
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8140,

82 218,

82 218, 81331
816

, ,

18863,

81331
816

, ,

41 817,

62 77,

62 77,

87 820,

6148

8983

81 86 85

76

52 810

51

72

815

47 75,

812

73

819

71

6148

118

118

858681

76

88

88

87 820,,

52 810

51

72

47 75,

815

819

73

71

c2

j3/6

Figure 14.2.11.1. Values of Vassiliev invariants c2 and j3 on small
prime knots



404 14. Miscellany

1. The multiplication is defined as the disjoint union of graphs, then
extended by linearity. The empty graph plays the role of the unit in this
algebra.

2. The comultiplication is defined similarly to the comultiplication in
the bialgebra of chord diagrams. If G is a graph, let V = V (G) be the set
of its vertices. For any subset U ⊂ V denote by G(U) the graph with the
set of vertices U and those vertices of the graph G whose both endpoints
belong to G. We put by definition:

(14.3.0.1) δ(G) =
∑

U⊆V (G)

G(U)⊗G(V \ U),

and extend by linearity to the whole of G.

The sum in (14.3.0.1) is taken over all subsets U ⊂ V and contains as

many as 2#(V ) summands.

Example of a coproduct.

δ( s s s) = 1 ⊗ s s s + 2 s ⊗ s s + s ⊗ s s

+ s s ⊗ s + 2 s s ⊗ s + s s s ⊗ 1

Exercise. Check the axioms of a Hopf algebra for G.

The mapping from chord diagrams to intersection graphs does not ex-
tend to a linear operator A → G, because the combinations of graphs that
correspond to 4-term relations for chord diagrams, do not vanish in G. To
obtain a linear mapping, it is necessary to mod out the space G by relations,
consistent with the 4 term relations. Here is an appropriate definition.

Let G be an arbitrary graph and u, v an ordered pair of its vertices.
The pair u, v defines two transformations of the graph G: G 7→ G′uv and

G 7→ G̃uv. Both graphs G′uv and G̃uv have the same set of vertices as G.
They are obtained as follows.

If uv is an edge in G, then the graph G′uv is obtained from G by deleting
the edge uv; otherwise this edge should be added (thus, G 7→ G′uv is toggling
the adjacency of u and v).

The graph G̃uv is obtained from G in a more tricky way. Consider all
vertices w ∈ V (G) \ {u, v} which are adjacent in G with v. Then in the

graph G̃uv vertices u and w are joined by an edge if and only if they are
not joined in G. For all other pairs of vertices their adjacency in G and in

G̃uv is the same. Note that the two operations applied at the same pair of
vertices, commute and hence the graph G′uv is well-defined.
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14.3.1. Definition. A four-term relation for graphs is

(14.3.1.1) G−G′uv = G̃uv − G̃′uv

Example.

u u uv v v vu

− = −

Exercises. 1. Check that, passing to intersection graphs, the four-term
relation for chord diagram carries over exactly into this four-term relation
for graphs. 2. Find the four-term relation of chord diagrams which is the
preimage of the relation shown in the previous example.

14.3.2. Definition. The graph bialgebra of Lando L is the quotient of the
graph algebra G over the ideal generated by all 4-term relations (14.3.1.1).

14.3.3. Theorem. The multiplication and the comultiplication defined above
induce a bialgebra structure in the quotient space L.

Proof. The only thing that needs checking is that the multiplication and
the comultiplication both respect the 4-term relation 14.3.1.1. For the mul-
tiplication (disjoint union of graphs) this statement is obvious. In order
to verify it for the comultiplication, it is sufficient to consider two different
cases. Namely, let u, v ∈ V (G) be two distinct vertices of a graph G. The
right-hand side summands in the comultiplication formula (14.3.0.1) split
into two groups: those where both vertices u and v belong either to the
subset U ⊂ V (G) or to its complement V (G) \ U ; and those where u and
v belong to different subsets. By cleverly grouping the terms of the first

kind for the coproduct δ(G−G′uv − G̃uv + G̃′uv) they all cancel out in pairs.
The terms of the second kind can be paired to mutually cancel already for

each of the two summands δ(G − G′uv) and δ(G̃uv − G̃′uv). The theorem is
proved. �

Relations 14.3.1.1 are homogeneous with respect to the number of ver-
tices, therefore L is a graded algebra. By Theorem A.2.25 (p. 430), the
algebra L is polynomial over its space of primitive elements.

Now we have a well-defined bialgebra homomorphism

γ : A → L

which extends the assignment of the intersection graph to a chord diagram.
It is defined by the linear mapping between the corresponding primitive
spaces P (A)→ P (L).
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According to S. Lando [Lnd1], the dimensions of the homogeneous com-
ponents of P (L) are known up to degree 7. It turns out that the ho-
momorphism γ is an isomorphism in degrees up to 6, while the mapping
γ : P7(A) → P7(L) has a 1-dimensional kernel. See [Lnd1] for further
details and open problems related to the algebra L.

14.4. Estimates for the number of Vassiliev knot invariants

The knowledge of dimPi for i 6 d is equivalent to the knowledge of dimAi,
i 6 d, or dimVi, i 6 d. At present, the exact asymptotic behavior of these
numbers as d tends to infinity is not known. Below, we summarize the
known results on the exact enumeration as well as on the asymptotic lower
and upper bounds.

14.4.1. Historical remarks.

14.4.1.1. Exact results. The exact dimensions of the spaces related to Vas-
siliev invariants are known up to n = 12. The results are shown in the
table below. They were obtained by V. Vassiliev for n 6 5 in 1990 [Va2],
then by D. Bar-Natan for n 6 9 in 1993 [BN1] and by J. Kneissler (for
n = 10, 11, 12) in 1997 [Kn0]. More detail information about the dimen-
sions of the primitive spaces see in the table on page 139.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 0 0 1 1 2 3 5 8 12 18 27 39 55

dimAn 1 0 1 1 3 4 9 14 27 44 80 132 232

dimVn 1 1 2 3 6 10 19 33 60 104 184 316 548

14.4.1.2. Upper bounds. A priori it was obvious that dimAd < (2d− 1)!! =
1 · 3 · · · (2d − 1), because this is the total number of chord diagrams before
factorization over the rotations.

Then, there appeared five papers where this estimate was successively
improved:

(1) (1993) Chmutov and Duzhin [CD1] proved that dimAd < (d− 1)!

(2) (1995) K. Ng in [Ng] replaced (d− 1)! by (d− 2)!/2.

(3) (1996) A. Stoimenow [Sto1] proved that dimAd grows slower than
d!/ad, where a = 1.1.

(4) (2000) B. Bollobás and O. Riordan [BR1] obtained the asymptot-
ical bound d!/(2 ln(2) + o(1))d (approximately d!/1.38d).

(5) (2001) D. Zagier [Zag1] improved the last result to 6d
√
d·d!

π2d , which

is asymptotically smaller than d!/ad for any constant a < π2/6 =
1.644...
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14.4.1.3. Lower bounds. In the story of lower bounds for the number of
Vassiliev knot invariants there is a funny episode. The first paper by Kont-
sevich about Vassiliev invariants ([Kon1], section 3) contains the following
passage:

“Using this construction 1, one can obtain the estimate

dim(Vn) > ec
√
n, n→ +∞

for any positive constant c < π
√

2/3 (see [BN1a], Exercise 6.14).”

Here Vn is a slip of the pen, instead of Pn, because of the reference
to Exercise 6.14 where primitive elements are considered. Exercise 6.14
was present, however, only in the first edition of Bar-Natan’s preprint and
eliminated in the following editions as well as in the final published version
of his text [BN1]. In [BN1a] it reads as follows (page 43):

“Exercise 6.14. (Kontsevich, [24]) Let P>2(m) denote the number of
partitions of an integer m into a sum of integers bigger than or equal to 2.
Show that dimPm > P>2(m+ 1).

Hint 6.15. Use a correspondence like

4 3 2 2 -� 10 + 1 = 4 + 3 + 2 + 2,

and . . . ”

The reference [24] was to “M. Kontsevich. Private communication.”!
Thus, both authors referred to each other, and none of them gave any proof.
Later, however, Kontsevich explained what he had in mind (see item 5
below).

Arranged by time, the history of world records in asymptotic lower
bounds for the dimension of the primitive space Pd looks as follows.

(1) (1994) dimPd > 1 (“forest elements” found by Chmutov, Duzhin
and Lando [CDL3]).

(2) (1995) dimPd > [d/2] (given by colored Jones function — see
Melvin–Morton [MeMo] and Chmutov–Varchenko [ChV]).

(3) (1996) dimPd & d2/96 (see Duzhin [Du1]).

(4) (1997) dimPd & dlog d, i. e. the growth is faster than any polyno-
mial (Chmutov–Duzhin [CD2]).

(5) (1997) dimPd > eπ
√
d/3 (Kontsevich [Kon2]).

(6) (1997) dimPd > eC
√
d for any constant C < π

√
2/3 (Dasbach

[Da3]).

1Of Lie algebra weight systems.
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14.4.2. Proof of the lower bound. We will sketch the proof of the lower
bound for the number of Vassiliev knot invariants, following our paper [CD2]
and then explain how O. Dasbach [Da3], using the same method, managed
to improve the estimate and establish the bound which is still (2006) the
best.

The idea of the proof is simple: we construct a large family of open
diagrams whose linear independence in the algebra B follows from the lin-
ear independence of the values on these diagrams of a certain polynomial
invariant P , which is obtained from the universal glN invariant by means of
a simplification.

As we know from Chapter 6, the glN invariant ψglN
, evaluated on an

open diagram C, is a polynomial in the generalized Casimir elements x0, x1,
..., xN . This polynomial is homogeneous in the sense of the grading defined
by setting deg xm = m. However, it is in general not homogeneous if xm’s
are considered as simple variables of degree 1.

14.4.3. Definition. The polynomial invariant P : B → Z[x0, ..., xN ] is the
highest homogeneous part of ψglN

if all the variables are taken with degree
1.

For example, if we had ψglN
(C) = x2

0x2−x2
1, then we would have P (C) =

x2
0x2.

Now we introduce the family of primitive open diagrams whose linear
independence we shall prove.

14.4.4. Definition. The baguette diagram Bn1,...,nk
is

Bn1,...,nk
=

︸ ︷︷ ︸
n1 vertices

︸ ︷︷ ︸
n2 vertices

︸ ︷︷ ︸
nk−1 vertices

︸ ︷︷ ︸
nk vertices

. . . . . . . . . . . .

. . .

It has a total of 2(n1 + · · ·+ nk + k− 1) vertices, out of which n1 + · · ·+ nk
are univalent.

To write down the formula for the value P (Bn1,...,nk
), we will need the

following definitions.

14.4.5. Definition. A two-line scheme of order k is a combinatorial object
defined as follows. Consider k pairs of points arranged in two rows like

. Choose one of the 2k−1 subsets of the set {1, . . . , k − 1}. If s
belongs to the chosen subset, then we connect the lower points of s-th and
(s+ 1)-th pairs, otherwise we connect the upper points.
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Example. Here is the scheme corresponding to k = 5 and the subset
{2, 3}:

.

The number of connected components in a scheme of order k is k + 1.

14.4.6. Definition. Let σ be a scheme; i1, . . . , ik be non negative integers:
0 6 i1 6 n1, . . . , 0 6 ik 6 nk. We assign is to the lower vertex of the s-th
pair of σ and js = ns − is — to the upper vertex. For example

i1

j1

i2

j2

i3

j3

i4

j4

i5

j5

.

Then the corresponding monomial is xσ0xσ1 . . . xσk
where σt is the sum of

integers assigned to the vertices of t-th connected component of σ.

Example. For the above weighted scheme we get the monomial

xi1xj1+j2xi2+i3+i4xj3xj4+j5xi5 .

Now the formula for P can be stated as follows.

14.4.7. Proposition. If N > n1 + · · ·+ nk then

PglN (Bn1,...,nk
) =

∑

i1,...,ik

(−1)j1+···+jk
(
n1

i1

)
. . .

(
nk
ik

)∑

σ

xσ0xσ1 . . . xσk
,

where the external sum ranges over all integers i1, . . . , ik such that 0 6 i1 6

n1, . . . , 0 6 ik 6 nk; the internal sum ranges over all the 2k−1 schemes,
js = ns − is, and xσ0xσ1 . . . xσk

is the monomial associated with the scheme
σ and integers i1, . . . , ik.

Examples.

For the baguette diagram B2 we have k = 1, n1 = 2. There is only one
scheme: q

q
. The corresponding monomial is xi1xj1 , and

PglN (B2) =
2∑

i1=0

(−1)j1
(

2

i1

)
xi1xj1

= x0x2 − 2x1x1 + x2x0 = 2(x0x2 − x2
1)

which agrees with the example given in Chapter 6 on page 190.

For B1,1: k = 2, n1 = n2 = 1. There are two schemes: q q
q q

and q q
q q

.
The corresponding monomial are xi1xi2xj1+j2 and xi1+i2xj1xj2 . We have

PglN (B1,1) =
1∑

i1=0

1∑

i2=0

(−1)j1+j2xi1xi2xj1+j2 +
1∑

i1=0

1∑

i2=0

(−1)j1+j2xi1+i2xj1xj2

= x0x0x2−x0x1x1−x1x0x1+x1x1x0+x0x1x1−x1x0x1−x1x1x0+x2x0x0

= 2(x2
0x2 − x0x

2
1)
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Sketch of the proof of Proposition 14.4.7. The diagram Bn1,...,nk

has k parts separated by k − 1 walls. Each wall is an edge connecting
trivalent vertices to which we will refer as wall vertices. The s-th part has
ns outgoing legs. We will refer to the corresponding trivalent vertices as leg
vertices.

The proof consists of three steps.

At the first step we study the effect of resolutions of the wall vertices.
We prove that the monomial obtained by certain resolutions of these vertices
has the maximal possible degree if and only if for each wall both resolutions
of its vertices have the same sign. These signs are related to the above
defined schemes in the following way. If we take the positive resolutions at
both endpoints of the wall number s, then we connect the lower vertices
of the s-th and the (s + 1)-th pairs in the scheme. If we take the negative
resolutions, then we connect the upper vertices.

At the second step we study the effect of resolutions of leg vertices. We
show that the result depends only on the numbers of positive resolutions of
leg vertices in each part and does not depend on which vertices in a part
were resolved positively and which negatively. We denote by is the number
of positive resolutions in part s. This yields the binomial coefficients

(
ns

is

)
in

the formula of Proposition 14.4.7. The total number j1 + · · ·+ jk of negative
resolutions of leg vertices gives the sign (−1)j1+···+jk .

The first two steps allow us to consider only those cases where the resolu-
tions of the left is leg vertices in the part s are positive, the rest js resolutions
are negative and both resolutions at the ends of each wall have the same
sign. At the third step we prove that such resolutions of wall vertices lead
to monomials associated with corresponding schemes according to definition
14.4.6.

We will make some comments only about the first step, because it is
exactly at this step where Dasbach found an improvement of the original
argument of [CD2].

Let us fix certain resolutions of all trivalent vertices of Bn1,...,nk
. We

denote the obtained T -diagram (see p. 184) by T . It consists of n = n1 +
· · · + nk pairs of points and a number of lines connecting them. After a
suitable permutation of the pairs T will look like a disjoint union of certain
xm’s. Hence it defines a monomial in xm’s which we denote by m(T ).

Let us close all lines in the diagram by connecting the two points in
every pair with an additional short line. We obtain a number of closed
curves, and we can draw them in such a way that they have 3 intersection



14.4. Estimates for the number of Vassiliev knot invariants 411

points in the vicinity of each negative resolution and do not have other
intersections. Each variable xm gives precisely one closed curve. Thus the
degree of m(T ) is equal to the number of these closed curves.

Consider an oriented surface S which has our family of curves as its
boundary (the Seifert surface):

= .

The degree of m(T ) is equal to the number of boundary components b of S.
The whole surface S consists of an annulus corresponding to the big circle
in Bn1,...,nk

and k− 1 bands corresponding to the walls. Here is an example:

where each of the two walls on the left has the same resolutions at its
endpoints, while the two walls on the right have different resolutions at
their endpoints. The resolutions of the leg vertices do not influence the
surface S.

The Euler characteristic χ of S can be easily computed. The surface
S is contractible to a circle with k − 1 chords, thus χ = −k + 1. On the
other hand χ = 2− 2g − b, where g and b are the genus and the number of
boundary components of S. Hence b = k + 1− 2g. Therefore, the degree of
m(T ), equal to b, attains its maximal value k + 1 if and only if the surface
S has genus 0.

We claim that if there exists a wall whose ends are resolved with the
opposite signs then the genus of S is not zero. Indeed, in this case we can
draw a closed curve in S which does not separate the surface (independently
of the remaining resolutions):

Hence the contribution to P (Bn1,...,nk
) is given by only those monomials

which come from equal resolutions at the ends of each wall.

Now, with Proposition 14.4.7 in hand, we can prove the following result.
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14.4.8. Theorem. Let n = n1 + · · · + nk and d = n + k − 1. Baguette
diagrams Bn1,...,nk

are linearly independent in B if n1, . . . , nk are all even
and satisfy the following conditions:

n1 < n2

n1 + n2 < n3

n1 + n2 + n3 < n4

· · · · · · · · · · · · · · · · · · · · ·
n1 + n2 + · · ·+ nk−2 < nk−1

n1 + n2 + · · ·+ nk−2 + nk−1 < n/3.

The proof is based on the study of the supports of polynomials P (Bn1,...,nk
)

— the subsets of Zk corresponding to non-zero terms of the polynomial.

Counting the number of elements described by the theorem, one arrives
at the lower bound nlog(n) for the dimension of the primitive subspace Pn of
B.

The main difficulty in the above proof is the necessity to consider the
2k resolutions for the wall vertices of a baguette diagram that correspond to
the zero genus Seifert surface. O. Dasbach in [Da3] avoided this difficulty
by considering a different family of open diagrams for which there are only
two ways of resolution of the wall vertices leading to the surface of minimum
genus. These are the Pont-Neuf diagrams:

PNa1,...,ak,b =

2

2b

a1 ak

a

(the numbers a1, ..., ak, 2b refer to the number of legs attached to the
corresponding edge of the inner diagram).

The reader may wish to check the above property of Pont-Neuf diagrams
by way of exercise. It is remarkable that Pont Neuf diagrams not only lead
to simpler considerations, but they are more numerous, too, and thus lead
to a much better asymptotic estimate for dimPn. The exact statement of
Dasbach’s theorem is as follows.

14.4.9. Theorem. For fixed n and k, the diagrams PNa1,...,ak,b with 0 6

a1 6 ... 6 ak 6 b, a1 + ...+ ak + 2b = 2n are linearly independent.
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Counting the number of such partitions of 2n, we obtain precisely the
estimate announced by Kontsevich in [Kon1].

Corollary. dimPn is asymptotically greater than ec
√
n for any constant

c < π
√

2/3.

Exercises

(1) Show that M1 is equivalent to the ∆
move in the sense that, modulo Reide-
meister moves, the M1 move can be

accomplished by ∆ moves and vise versa. The fact that ∆ is an unknot-
ting operation was proved in [Ma, MN].

(2) Prove thatM1 is equivalent to the move

(3) Prove thatM2 is equivalent to the so called clasp-pass move

(4) Prove thatMn is equivalent to the move Cn:

︸ ︷︷ ︸
n+ 2 components

︸ ︷︷ ︸
n+ 2 components

(5) Find the inverse element of the knot 31 in the group G4.

(6) (S. Lando). Let N be a formal variable. Prove that N corankA(G) defines
an algebra homomorphism L → Z[N ], where L is the graph algebra
of Lando and A(G) stands for the adjacency matrix of the graph G
considered over the field F2 of two elements.

(7) ∗ Let λ : A → L be the natural homomorphism from the algebra of
chord diagrams into the graph algebra of Lando.
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• Find kerλ (unknown in degrees greater than 7).
• Find imλ (unknown in degrees greater than 7).
• Describe the primitive space P (L).
• L is the analog of the algebra of chord diagrams in the case of

intersection graphs. Are there any counterparts of the algebras C
and B?



Chapter 15

The Vassiliev spectral

sequence

Zdes budet gorod zalozhen.

415





Appendix

A.1. Lie algebras and their universal envelopes

A.1.1. Metrized Lie algebras. Let g be a finite-dimensional Lie alge-
bra over C, that is, a C-vector space equipped with a bilinear operation
(commutator) (x, y) 7→ [x, y] subject to the rules

[x, y] = −[y, x] ,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

An Abelian Lie algebra is an arbitrary vector space with the commutator
which is identically 0: [x, y] = 0 for all x, y ∈ g.

An ideal in a Lie algebra is a vector subspace stable under taking the
commutator with an arbitrary element of the whole algebra. A Lie algebra
is called simple if it is not Abelian and does not contain any proper ideal.
Simple Lie algebras are classified (see, for example, [FH, Hum]). Over the
field of complex numbers C there are four families of classical algebras:

Type g dim g description

An sln+1 n2 + 2n (n+ 1)× (n+ 1) matrices with zero trace, (n > 1)

Bn so2n+1 2n2 + n skew-symmetric (2n+ 1)× (2n+ 1) matrices, (n > 2)

Cn sp2n 2n2 + n

2n×2nmatricesX satisfying the relationXt·M+M ·X = 0,
where M is the standard 2n × 2n skew-symmetric matrix

M =

�
O Idn

−Idn 0

�
, (n > 3)

Dn so2n 2n2 − n skew-symmetric 2n× 2n matrices, (n > 4)

and five exceptional algebras:

Type E6 E7 E8 F4 G2

dim g 78 133 248 52 14

417
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Apart from the low-dimensional isomorphisms

sp2
∼= so3

∼= sl2; sp4
∼= so5; so4

∼= sl2 ⊕ sl2; so6
∼= sl4,

all the Lie algebras in the list above are different. The Lie algebra glN of
all N × N matrices is isomorphic to the direct sum of slN and the trivial
one-dimensional Lie algebra C.

A representation of a Lie algebra g in a vector space V is a Lie algebra
homomorphism of g into the Lie algebra End(V ) of linear operators in V ,
i.e. a mapping ρ : g→ End(V ) such that

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x).

The standard representation of a matrix Lie algebra, e.g. glN or slN , is
the one given by the identity mapping.

The adjoint representation is the action ad of g on itself according to
the rule

x 7→ adx ∈ Hom(g, g) , adx(y) = [x, y] .

It is indeed a representation, because ad[x,y] = adx · ady − ady · adx =
[adx, ady].

— Add a little about representations: list of irreducible
representations for sl2, Casimir tensor and Casimir num-
ber! —

The Killing form on a Lie algebra g is defined by the equality

〈x, y〉K = Tr(adxady).

Cartan’s criterion says that this bilinear form is non-degenerate if and only
if the algebra is semi-simple, i.e. is isomorphic to the direct sum of simple
Lie algebras.

A.1.2. Exercise. Prove that the Killing form is ad-invariant in the sense
of the following definition.

A bilinear form 〈·, ·〉 : g⊗ g→ C is said to be ad-invariant if it satisfies
the identity

〈adz(x), y〉+ 〈x, adz(y)〉 = 0,

or, equivalently,

(A.1.2.1) 〈[x, z], y〉 = 〈x, [z, y]〉.
for all x, y, z ∈ g.

This definition is justified by the fact described in the following exercise.
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A.1.3. Exercise. Let G be the connected Lie group corresponding to the
Lie algebra g and let Adg : g → g be its adjoint representation (see, e.g.,
[AdJ]). Then the ad-invariance of a bilinear form is equivalent to its Ad-
invariance defined by the natural rule

〈Adg(x),Adg(y)〉 = 〈x, y〉
for all x, y ∈ g and g ∈ G.

A Lie algebra is said to be metrized, if it is equipped with an ad-invariant
symmetric non-degenerate bilinear form 〈·, ·〉 : g ⊗ g → C. The class of
metrizable algebras contains simple Lie algebras with (a multiple of) the
Killing form, Abelian Lie algebras with an arbitrary non-degenerate bilinear
form and their direct sums.

For the classical simple Lie algebras which consist of matrices, it is often
more convenient to use, instead of the Killing form, a different bilinear form
〈x, y〉 = Tr(xy), which is proportional to the Killing form with the coefficient
1

2N for slN , 1
N−2 for soN , and 1

N+2 for spN .

A.1.4. Exercise. Prove that for the Lie algebra glN the Killing form 〈x, y〉 =
(Tr(adx · ady) is degenerate with defect 1 and can be expressed as follows:

〈x, y〉K = 2NTr(xy)− 2Tr(x)Tr(y) .

A.1.5. Exercise. Prove that the form Tr(xy) on glN is non-degenerate and
ad-invariant.

Below, we will need the following lemma.

A.1.6. Lemma. Let cijk be the structure constants of a metrized Lie algebra
in a basis {ei}, orthonormal with respect to the ad-invariant bilinear form
〈·, ·〉:

〈ei, ej〉 = δij ,

[ei, ej ] =
d∑

k=1

cijkek.

Then the constants cijk are antisymmetric with respect to the permutations
of the indices i, j and k.

Proof. The equality cijk = −cjik is the coordinate expression of the fact
that the commutator is antisymmetric: [x, y] = −[y, x]. It remains to prove
that cijk = cjki. This follows immediately from equation (A.1.2.1), simply
by setting x = ei, y = ek, z = ej . �

Corollary. Let J ∈ g⊗3 be the structure tensor of a metrized Lie algebra
transferred from g∗ ⊗ g∗ ⊗ g to g⊗3 by means of the duality defined by the
metric. Then J is totally antisymmetric: J ∈ ∧3g.
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A.1.7. Universal enveloping algebras. Let g be a finite-dimensional
Lie algebra. Denote by T = ⊕n>0Tn the tensor algebra of the vector space
g. Here Tn = g ⊗ · · · ⊗ g (n factors) is the vector space spanned by the
elements x1 ⊗ · · · ⊗ xn with all xi ∈ g, subject to the relations that express
the linear dependence of x1 ⊗ · · · ⊗ xn on each xi. Multiplication in T
is given by the tensor product. We get the universal enveloping algebra
of g, denoted by U(g), if, to these relations, we add the relations of the
form x ⊗ y − y ⊗ x = [x, y] where [x, y] is the structure bracket in g. More
formally, let I be the double-sided ideal of T (g) generated by all the elements
x⊗ y − y ⊗ x− [x, y], x, y ∈ g. Then by definition

U(g) = T (g)/I.

(Speaking informally, in U(g) we are allowed to treat the elements of g as
associative variables, always remembering the commutator relations that
existed between themin g itself.)

!! add: PBW and Harish-Chandra

A.2. Bialgebras and Hopf algebras

Here we provide background information about bialgebras and Hopf algebras
necessary for the study of the algebras of knot invariants, chord diagrams,
weight systems etc.

A.2.1. Coalgebras and bialgebras. To introduce the notions of a coal-
gebra and bialgebra, let us first recall what is an algebra.

A.2.2. Definition. An algebra over a field F is an F-vector spaceA equipped
with a linear mapping µ : A ⊗ A → A, called multiplication. We will only
consider associative algebras with a unit. Associativity means that the dia-
gram

A⊗A⊗A µ⊗id−−−−→ A⊗A
id⊗µ

y
yµ

A⊗A −−−−→
µ

A

is commutative. The unit is a linear mapping ι : F → A (uniquely defined
by the element ι(1) ∈ A) that makes commutative the diagram

F⊗A ι⊗id−−−−→ A⊗A
x

yµ

A A

where the left vertical arrow is a natural isomorphism.
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We have on purpose formulated the notion of algebra in this formal way:
this allows us to derive the definition of a coalgebra by a mere reversion of
arrows.

A.2.3. Definition. A coalgebra is a vector space A equipped with a linear
mapping δ : A→ A⊗A, referred to as comultiplication, and a linear mapping
ε : A→ F, called the counit, such that the following two diagrams commute:

A⊗A⊗A δ⊗id←−−−− A⊗A
id⊗δ

x
xδ

A⊗A δ←−−−− A

F⊗A ε⊗id←−−−− A⊗A
y

xδ

A A

Algebras (resp. coalgebras) may or may not possess an additional prop-
erty of commutativity (resp. cocommutativity ), defined through the follow-
ing commutative diagrams:

A⊗A µ−−−−→ A

τ

x
∥∥∥

A⊗A µ−−−−→ A

A⊗A δ←−−−− A

τ

y
∥∥∥

A⊗A δ←−−−− A

where τ : A⊗A→ A⊗A is the permutation of the tensor factors, τ : a⊗b 7→
b⊗ a.

The following exercise is useful to get acquainted with the notion of a
coalgebra.

A.2.4. Exercise. Let ∆
(n)
i : A⊗n → A⊗(n+1) be defined as taking the

coproduct of the i-th tensor factor, ∆
(n)
0 (x) = 1⊗ x, ∆

(n)
n+1(x) = x⊗ 1. Set

δn =
∑n+1

i=0 (−1)i∆
(n)
i . Prove that the sequence {δn} forms a complex, i.e.

δi+1 ◦ δi = 0.

A.2.5. Definition. A bialgebra is a vector space A with the structure of
an algebra given by µ, ι and the structure of a coalgebra given by δ, ε which
agree in the sense that the following identities hold:

(1) ε(1) = 1

(2) δ(1) = 1⊗ 1

(3) ε(ab) = ε(a)ε(b)

(4) δ(ab) = δ(a)δ(b)

(in the last equation δ(a)δ(b) denotes the component-wise product in A⊗A
induced by the product µ in A).

Note that these conditions, taken in pairs, have the following meaning:

(1,3) ⇔ ε is a (unitary) algebra homomorphism.
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(2,4) ⇔ δ is a (unitary) algebra homomorphism.

(1,2) ⇔ ι is a (unitary) coalgebra homomorphism.

(3,4) ⇔ µ is a (unitary) coalgebra homomorphism.

The coherence of the two structures making the definition of a bialgebra
can thus be stated in either of the two equivalent ways:

• ε and δ are algebra homomorphisms,

• µ and i are coalgebra homomorphisms.

Example 1. The group algebra F[G] of a finite group G over a field
F consists of formal linear combinations

∑
x∈G λxx where λx ∈ F with the

product defined on the basic elements by the group multiplication in G.
The coproduct is defined as δ(x) = x ⊗ x for x ∈ G and then extended
by linearity. Instead of a group G, in this example one can actually take a
semigroup.

Example 2. The algebra FG of F-valued functions on a finite group G
with pointwise multiplication

(fg)(x) = f(x)g(x)

and comultiplication defined by

δ(f)(x, y) = f(xy)

where the element δ(f) ∈ FG ⊗ FG is understood as a function on G × G
due to the natural isomorphism FG ⊗ FG ∼= FG×G.

Example 3. The polynomial algebra. Let A be the symmetric algebra
of a finite-dimensional vector space X, i.e. A = S(X) = ⊕∞n=0S

k(X), where
Sk(X) is the symmetric part of the k-th tensor power of X. Then A is a bial-
gebra with the coproduct defined on the elements x ∈ X = S1(X) ⊂ A by
setting δ(x) = 1⊗x+x⊗1 and then extended as an algebra homomorphism
to the entire A.

Example 4. Universal enveloping algebras. Let g be a Lie algebra,
A = U(g) — its universal enveloping algebra with usual multiplication (see
section A.1.7 for a definition and basic facts). Define δ(g) = 1⊗g+g⊗1 for
g ∈ g and extend it to all of A by the axioms of bialgebra. If g is Abelian,
then this example is reduced to the previous one.

Exercise. Define the appropriate unit and counit in each of the above
examples.

A.2.6. Primitive and group-like elements. In a bialgebra, there are
two remarkable classes of elements: primitive elements and group-like ele-
ments.
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Definition. An element a ∈ A of a bialgebra A is said to be primitive if

δ(a) = 1⊗ a+ a⊗ 1.

The set of all primitive elements forms a vector subspace P(A) called
the primitive subspace of the bialgebra A. The primitive subspace is closed
under the commutator [a, b] = ab − ba, so it forms a Lie algebra (which is
Abelian, if A is commutative). Indeed, if a, b ∈ P(A), then

δ(a) = 1⊗ a+ a⊗ 1,

δ(b) = 1⊗ b+ b⊗ 1,

whence

δ(ab) = 1⊗ ab+ a⊗ b+ b⊗ a+ ab⊗ 1,

δ(ba) = 1⊗ ba+ b⊗ a+ a⊗ b+ ba⊗ 1

and therefore

δ([a, b]) = 1⊗ [a, b] + [a, b]⊗ 1.

Definition. An element a ∈ A is said to be semigroup-like if and

δ(a) = a⊗ a.
If, in addition, a is invertible, then it is called group-like.

The set of all group-like elements G(A) of a bialgebraA is a multiplicative
group. Indeed, G(A) consists of all invertible elements of the semigroup
{a ∈ A | δ(a) = a⊗ a}.

Among the examples of bialgebras given above, the notions of the prim-
itive and group-like elements are especially transparent in the case A = FG

(Example 2). As follows from the definitions, primitive elements are additive
functions (f(xy) = f(x) + f(y)) while group-like elements are multiplicative
functions (f(xy) = f(x)f(y)).

In Example 3, using the isomorphism S(X)⊗S(X) ∼= S(X⊕X), we can
rewrite the definition of the coproduct as δ(x) = (x, x) ∈ X ⊕X for x ∈ X.
It is even more suggestive to view the elements of the symmetric algebra
A = S(X) as polynomial functions on the dual space X∗ (where homoge-
neous subspaces S0(X), S1(X), S2(X), etc. correspond to constants, linear
functions, quadratic functions etc. on X∗). In these terms, the product in A
corresponds to the usual (pointwise) multiplication of functions, while the
coproduct δ : S(X)→ S(X ⊕X) acts according to the rule

δ(f)(ξ, η) = f(ξ + η), ξ, η ∈ X∗.
Under the same identifications,

(f ⊗ g)(ξ, η) = f(ξ)g(η),
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in particular,

(f ⊗ 1)(ξ, η) = f(ξ),

(1⊗ f)(ξ, η) = f(η).

We see that an element of S(X), cosidered as a function on X∗, is primitive
(group-like) if and only if this function is additive (multiplicative):

f(ξ, η) = f(ξ) + f(η),

f(ξ, η) = f(ξ)f(η).

The first condition means that f is a linear function on X∗, i.e. it corre-
sponds to an element of X itself; therefore,

P(S(X)) = X.

Over a field of characteristic zero, the second condition cannot hold for
polynomial functions except for the constant function equal to 1; thus

G(S(X)) = {1}.
The completed symmetric algebra S(X), in contrast with S(X), has a lot of
group-like elements. As shows Quillen’s theorem (see page 431),

G(S(X)) = {exp(x) | x ∈ X},
where exp(x) is defined as a formal power series 1 + x+ x2/2! + . . .

A.2.7. Exercise. Describe the primitive and group-like elements in exam-
ples 1 and 4.

(Answer to 1: P = 0, G = G.

Answer to 4: P = g, G = 0 (in the completed case G = exp(g).)

A.2.8. Dual bialgebras. The dual vector space of a bialgebra can be nat-
urally equipped with a structure of a bialgebra, too.

Let A be a bialgebra over a field F and let A∗ = HomF(A,F). We define
the product of two elements f, g ∈ A∗ as

(A.2.8.1) (f · g)(a) = (f ⊗ g)(δ(a)) =
∑

i

f(a′i)g(a
′′
i ),

if δ(a) =
∑

i a
′
i ⊗ a′′i .

The coproduct of an element f ∈ A∗ is defined by the equation

(A.2.8.2) δ(f)(a⊗ b) = f(ab).

where the evaluation of δ(f) ∈ A∗⊗A∗ on the element a⊗ b ∈ A⊗A comes
from the natural pairing between A∗ ⊗A∗ and A⊗A.

Thus, the product (resp. coproduct) in A∗ is defined through the co-
product (resp. product) in A. It is easy to define the unit and the counit in
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A∗ in terms of the counit and the unit of A and then check that the space
A∗ becomes indeed a bialgebra.

If read in the opposite direction, Equations (A.2.8.1) and (A.2.8.2) allow
one to uniquely define the structure of a bialgebra in the initial space A, if
such a structure is given in the dual space A∗. The uniqueness follows from
the simple observation that an element a of a vector space A is completely
defined by the values of all linear functionals f(a), while an element of the
tensor square q ∈ A ⊗ A is completely determined by values (f ⊗ g)(q) for
all f, g ∈ A∗.
A.2.9. Exercise. Check that the axioms of a bialgebra in the dual space
A∗ imply that A becomes a bialgebra, too.

A.2.10. Exercise. Check that the bialgebra of Example 2 above is dual to
the bialgebra of Example 1.

A.2.11. Exercise. Prove that for a finite-dimensional bialgebra A there is
a natural isomorphism (A∗)∗ ∼= A.

If A is infinite-dimensional, then the assertion of the last Exercise does
not hold: in this case the vector space (A∗)∗ is strictly bigger than A.

A.2.12. Proposition. Primitive (resp. group-like) elements in the bialge-
bra A∗ are linear functions on A which are additive (resp. multiplicative),
i.e. satisfy the respective identities

f(ab) = f(a) + f(b),

f(ab) = f(a)f(b)

for all a, b ∈ A.

Proof. An element f ∈ A∗ is primitive if δ(f) = 1⊗ f + f ⊗ 1. Evaluating
this on an arbitrary tensor product a⊗ b with a, b ∈ A, we obtain

f(ab) = f(a) + f(b).

An element f ∈ A∗ is group-like if δ(f) = f ⊗ f . Evaluating this on an
arbitrary tensor product a⊗ b, we obtain

f(ab) = f(a)f(b).

�

A.2.13. Filtrations and gradings in vector spaces. A decreasing fil-
tration (d-filtration) in a vector space A over a field F is a sequence of
subspaces Ai, i = 0, 1, 2, ... such that

A = A0 ⊃ A1 ⊃ A2 ⊃ . . .
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The order ord(a) of an element a ∈ A is defined as the natural number n
such that a ∈ An, but a 6∈ An−1. If no such number exists, then we set
ord(a) = ∞. The factors of a d-filtration are the quotient spaces GiA =
Ai/Ai+1.

An increasing filtration (i-filtration) in a vector space A is a sequence of
subspaces Ai, i = 0, 1, 2, ... such that

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A.
The order of an element a ∈ A is defined as the natural number n such that
a ∈ An, but a 6∈ An+1. If no such number exists, then we set ord(a) = ∞.
The factors of an i-filtration are the quotient spaces GiA = Ai/Ai−1, where
by definition A−1 = 0.

A filtration (either d- or i-) is said to be of finite type if all its factors are
finite-dimensional. Note that in each case the whole space has a (possibly
infinite-dimensional) ‘part’ not covered by the factors, viz. ∩∞i=1Ai for a
d-filtration and A/∪∞i=1 Ai for an i-filtration. If these parts vanish, then we
say that we deal with a reduced filtered space.

There is a simple way to obtain a reduced filtered space with the same
factors:

• A′ = A/ ∩∞i=1 Ai for a d-filtered space,

• A′ = ∪∞i=1Ai for an i-filtered space.

In either case the reduced space inherits the filtration in a natural way.

A filtered basis of an i-filtered vector space A is constructed as follows.
One takes a basis of A0, then adds some vectors to form a basis of A1 ⊃ A0

etc. For a d-filtered space A, a filtered basis is defined as the disjoint union
of a countable number of subsets T = T0 ∪ T1 ∪ T2 ∪ · · · ∪ T ′ where T ′ is
a basis of ∩∞i=1Ai (possibly infinite), while all Ti’s are finite sets with the
property that for each n the union of ∪∞i=nTi and T ′ is a basis of An.

A vector space is said to be graded if it is represented as a direct sum of
its subspaces

A =
∞⊕

i=0

Ai.

With a filtered vector space A, one can associate a graded space G(A) setting

G(A) =
∞∑

i=0

GiA =
∞∑

i=0

Ai/Ai+1

in case of a d-filtration and

G(A) =
∞∑

i=0

GiA =
∞∑

i=0

Ai/Ai−1
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in case of an i-filtration.

If A is a filtered space of finite type, then the homogeneous components
GiA are also finite-dimensional; the ‘size’ of G(A) has a compact description
by means of the Poincaré series

∑∞
k=0 dim(GiA)tk, where t is an auxiliary

formal variable.

A.2.14. Example. The Poincaré series of the algebra of polynomials in
one variable is

1 + t+ t2 + ... =
1

1− t .

A.2.15. Exercise. Find the Poincaré series of the polynomial algebra with
n independent variables.

A.2.16. Graded completion.

Add a formal definiton of the graded completion!!

A.2.17. Dual filtration. Given a d-filtered vector space A (i.e. endowed
with a decreasing filtration) one can introduce a natural structure of an
i-filtered space in the dual space A∗ = Hom(A,F) by the formula

(A∗)i = {f ∈ A∗ : f |Ai+1 = 0}.
Note that the subscript of A is i + 1, not i. This convention is crucial to
ensure the following important assertion.

A.2.18. Lemma. Each factor of the dual filtered space is dual to the factor
of the initial space with the same number: Gi(A

∗) = (GiA)∗. Hence, for an
i-filtered space of finite type, we have an (unnatural) isomorphism Gi(A

∗) ∼=
GiA.

Proof. Indeed, there is a natural map λ : (A∗)i → (GiA)∗ defined by the
formula λ(f) = f |Ai . Since any linear function can be extended from a
subspace to the whole space, this mapping is surjective. Its kernel is by
definition (A∗)i−1, whence the assertion. �

A.2.19. Filtered bialgebras.

Definition. We will say that a bialgebra A is d-filtered (resp. i-filtered) if
its underlying vector space has a decreasing (resp. increasing) filtration by
subspaces Ai compatible with the algebraic operations in the following sense:

ApAq ⊂ Ap+q for p, q > 0, δ(An) ⊂
∑

p+q=n

Ap ⊗Aq for n > 0.

The second condition can be equivalently rewritten as δ(An) ⊂
∑

p+q>nAp⊗
Aq for i-filtered bialgebras, and as δ(An) ⊂

∑
p+q6nAp ⊗ Aq for d-filtered

bialgebras.
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Additional requirements imposed on the unit and the counit are: 1 ∈ A0

and ε|A1 = 0.

A.2.20. Dual filtered bialgebra.

Theorem. The bialgebra dual to a d-filtered bialgebra is an i-filtered bial-
gebra.

Proof. Let A be a bialgebra with a decreasing filtration by subspaces Ai.
The constructions of Sec. A.2.8 and A.2.17 define a structure of a bialgebra
and that of a filtered vector space in the dual space A∗. We must check that
these two structures are compatible, i.e. that

(A∗)p(A
∗)q ⊂ (A∗)p+q

and

δ((A∗)n) ⊂
∑

p+q=n

(A∗)p ⊗ (A∗)q .

To prove the first assertion, let f ∈ (A∗)p, g ∈ (A∗)q and a ∈ Ap+q+1.
Write δ(a) as a sum of tensor products a′ ⊗ a′′ where ord(a′) + ord(a′′) >

p+ q + 1. Then, by definition,

(fg)(a) = (f ⊗ g)(δ(a)) =
∑

f(a′)g(a′′) = 0,

because in each summand either ord(a′) > p + 1 and then f(a′) = 0 or
ord(a′′) > q + 1 and then g(a′′) = 0.

For the second assertion, pick an f ∈ (A∗)n. Choose a filtered basis (p.
426) in A and dual filtered basis in A∗ and expand δ(f) over the correspond-
ing basis of the tensor square A∗ ⊗ A∗. Let λf ′ ⊗ f ′′ be one of the terms
of this expansion and let a′, a′′ ∈ A be the vectors of the dual basis of A
conjugate to f ′ and f ′′. Set b = a′a′′. Then

f(b) = δ(f)(a′ ⊗ a′′) = λ 6= 0.

According to the definition of the dual filtration, this inequality implies that
ord(b) 6 ord(f) = n. Note, finally, that ord(a′) + ord(a′′) 6 ord(a′a′′) in a
d-filtered algebra. �

A.2.21. Hopf algebras.

A.2.22. Definition. A Hopf algebra is a graded bialgebra. This means
that the vector space A is graded by integer numbered subspaces

A =
⊕

k>0

Ak
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and the grading is compatible with the operations µ, ι, δ, ε in the following
sense:

µ : Am ⊗An → Am+n,

δ : An →
⊕

k+l=n

Ak ⊗Al.

A Hopf algebra A is said to be of finite type, if all its homogeneous com-
ponents An are finite-dimensional. A Hopf algebra is said to be connected,
if (1) ι : F → A is an isomorphism of F onto A0 ⊂ A and (2) ε |Ak

= 0 for
k > 0, while ε |A0 is an isomorphism between A0 and F, inverse to ι.

Remark 1. The above definition follows the classical paper [MiMo].
In more recent times, it became customary to include one more operation,
called antipode, in the definition of a Hopf algebra. The antipode is a linear
mapping S : A→ A such that µ ◦ (S ⊗ 1) ◦ δ = µ ◦ (1⊗ S) ◦ δ = ι ◦ ε. Note
that the bialgebras we will be mostly interested in (those that satisfy the
premises of Theorem A.2.25 below) always have an antipode.

Remark 2. We will need to extend the definition of a Hopf algebra from
graded algebras, i.e. direct sums of finite-dimensional homogeneous compo-
nents, to completed graded algebras, i.e. direct products of such components
(see p. 111).

A.2.23. Exercise. If A is a filtered bialgebra, then its associated graded
vector space G(A) carries the structure of a Hopf algebra with all algebraic
operations naturally defined by the operations in A by passing to quotient
spaces.

A.2.24. Dual Hopf algebra. Here we specialize the construction of Sec-
tion A.2.8 to the case of Hopf algebras.

If A = ⊕Ak is a Hopf algebra of finite type and Wk = Hom(Ak,F)
are vector spaces, dual to the homogeneous components of A, then the dual
space to the whole A is represented as the product

∏
kWk which is in general

bigger than the direct sum W =
∑

kWk. However, it is this smaller space
W that we will call the dual Hopf algebra of A with the operations induced
by the corresponding operations in A as follows:

µ∗ : Wn → ⊕
k+l=n

Hom(Ak ⊗Al,F) ∼= ⊕
k+l=n

Wk ⊗Wl is a comultiplication for W

δ∗ : Wn ⊗Wm →Wm+n is a multiplication for W

ι∗ : W → F is a counit for W

ε∗ : F→W is a unit for W
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A.2.25. Structure theorem for Hopf algebras. Is it easy to see that
for a Hopf algebra the primitive subspace P = P (A) ⊂ A is homogeneous
in the sense that P =

⊕
n>0

P ∩An.

Theorem. (Milnor–Moore [MiMo]). Any commutative cocommutative
connected Hopf algebra of finite type over a field of characteristic 0 is equal
to the symmetric algebra of its primitive subspace:

A = S(P (A)).

The word ’equal’ (not just isomorphic) means that if the inclusion P (A)→ A
is extended to a homomorphism S(P (A)) → A in the standard way, this
gives a bialgebra isomorphism. In other words, if a linear basis is chosen in
every homogeneous component Pn = P ∩ An, then every element of A can
be written uniquely as a polynomial in these variables.

Proof. There are two assertions to prove:

(I) that every element of A is polynomially expressible (i. e. as a linear
combination of products) through primitive elements,

(II) that the value of a nonzero polynomial on a set of linearly indepen-
dent homogeneous primitive elements cannot vanish in A.

Let us start to prove assertion (I) for homogeneous elements of the al-
gebra by induction on their degree.

First note that under our assumptions the coproduct of a homogeneous
element a ∈ An has the form

(A.2.25.1) δ(x) = 1⊗ x+ · · ·+ x⊗ 1,

where the dots stand for an element of A1⊗An−1 + · · ·+An−1⊗A1. Indeed,
we can always write δ(x) = 1⊗ y + · · ·+ z ⊗ 1. By cocommutativity y = z.
Then, x = (ε⊗ id)(δ(x)) = y + 0 + · · ·+ 0 = y.

In particular, for any element x ∈ A1 equation (A.2.25.1) ensures that
δ(x) = 1 ⊗ x + x ⊗ 1, so that A1 = P1. (It may happen that A1 = 0, but
this does not interfere the subsequent argument!)

Take an element x ∈ A2. We have

δ(x) = 1⊗ x+
∑

λijp
1
i ⊗ p1

j + x⊗ 1,

where p1
i constitute a basis of A1 = P1 and λij is a symmetric matrix over

the ground field. Let

x′ =
1

2

∑
λijp

1
i p

1
j .

Then

δ(x′) = 1⊗ x′ +
∑

λijp
1
i ⊗ p1

j + x′ ⊗ 1.
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It follows that

δ(x− x′) = 1⊗ x′ + x′ ⊗ 1,

i. e. x − x′ is primitive, and x is expressed through primitive elements as
(x− x′) + x′, which is a polynomial, linear in P2 and quadratic in P1.

Proceeding in this way, assertion I can be proved in grading 3, 4, ... We
omit the formal inductive argument.

The uniqueness of the polynomial representation in terms of basic prim-
itive elements (assertion II) is a consequence of the following observation:

Denote by Rn ⊂ An the subspace spanned by all nontrivial products
of homogeneous elements of positive degree. Then there is a direct sum
decomposition

An = Pn ⊕Rn.
This completes the proof.

!!! correct the last ugly argument!!!

�

A.2.26. Corollary. An algebra A satisfying the assumptions of the theorem

1. has no zero divisors,

2. has the antipode S defined on primitive elements (see p. 423) by

S(p) = −p .
!!! Add the structure theorem for Hopf algebras that are
not commutative, but cocommutative (they are univer-
sal envelops of their primitive spaces). Same corollaries
hold. Also, add an example of a non-cocommutative alge-
bra where the theorem does not hold at all!!!

A.2.27. Group-like elements in Hopf algebras.

A.2.28. Lemma. (D. Quillen’s theorem [Q]) For a completed connected
Hopf algebra over a field of characteristic 0 the functions exp and log (defined
by the usual Taylor expansions) establish one-to-one mappings between the
set of primitive elements P (A) and the set of group-like elements G(A).

Proof. Let p ∈ P (A). Then

δ(pn) = (1⊗ p+ p⊗ 1)n =
∑

k+l=n

n!

k!l!
pk ⊗ pl

and therefore

δ(ep) = δ(

∞∑

n=0

pn

n!
) =

∞∑

k=0

∞∑

l=0

1

k!l!
pk ⊗ pl =

∞∑

k=0

1

k!
pk ⊗

∞∑

l=0

1

l!
pl = δ(ep)⊗ δ(ep)
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which means that ep ∈ G(A).

Vice versa, assuming that g ∈ G(A) we want to prove that log(g) ∈
P (A). By assumption, our Hopf algebra is connected which implies that
the graded component g0 ∈ A0

∼= F is equal to 1. Therefore we can write
g = 1+h where h ∈∑k>0Ak. The condition that g is group-like transcribes
as

(A.2.28.1) δ(h) = 1⊗ h+ h⊗ 1 + h⊗ h.
Now,

p = log(g) = log(1 + h) =
∞∑

k=1

(−1)k−1

k
hk

and an exercise in power series combinatorics shows that equation A.2.28.1
implies the required property

δ(p) = 1⊗ p+ p⊗ 1.

�

A.3. Free associative and free Lie algebras

This section contains a compendium of results on free associative and free
Lie algebras important for the study of the Drinfeld associator (Chapter 10).
We give almost no proofs referring the interested reader to special literature,
e.g. [Reu].

A.3.1. Definition. The free (associative) algebra with n generators F(n)
over a field F is the algebra of non-commutative polynomials in n variables.

For example, the algebra F(2) = F〈x1, x2〉 consists of finite linear com-
binations of the form c+c1x1+c2x2+c11x

2
1+c12x1x2+c21x2x1+c22x

2
2+ . . . ,

cα ∈ F, with natural addition and multiplication.

The meaning of the word free is that, in F(n), there are no relations
between the generators and thus the only identities that hold in F(n) are
those that follow from the axioms of an algebra, for example, (x1 + x2)

2 =
x2

1 + x1x2 + x2x1 + x2
2. An abstract way to define the free algebra uniquely

up to isomorphism, is by means of the universal property:

if A is an arbitrary (associative, not necessarily commuta-
tive) algebra and y1, . . . , yn ∈ A a set of its elements, then
there is a unique homomorphism F(n) → A that takes
each xi into the corresponding yi.

We are interested in the relation between associative algebras and Lie
algebras, and we begin with the simple observation that any associative
algebra has the structure of a Lie algebra defined by the conventional rule
[a, b] = ab− ba.
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Definition. A commutator monomial of degree m and depth k in a free
algebra F is a monomial in the generators xi1 · · · · · xim with k pairs of
brackets inserted in arbitrary position.

For example, x2[x1, [x1, x
2
3]] is a commutator monomial of degree 5 and

depth 2. The maximal depth of a commutator monomial of degree m is
m − 1, and we will call monomials of maximal depth full commutators. It
is easy to see that the linear span of full commutators is closed under the
commutator, so it forms a Lie subalgebra L(n) ⊂ F(n). Using the skew-
symmetry and the Jacobi identity, one can rewrite any full commutator as
a linear combination of right-normalized full commutators

[x1 · · · · · xm] := [x1, [...[xm−1, xm]...]] .

The following table shows dimensions and indicates some bases of the
homogeneous components of small degree for the algebra L(2):

m dimL(2)m basis
1 2 x, y
2 1 [x, y]
3 2 [x, [x, y]] [y, [x, y]]
4 3 [x, [x, [x, [x, y]]]] [y, [x, [x, [x, y]]]] [y, [y, [x, [x, y]]]]
5 6 [x, [x, [x, [x, y]]]] [y, [x, [x, [x, y]]]] [y, [y, [x, [x, y]]]]

[y, [y, [y, [x, y]]]] [[x, y], [x, [x, y]]] [[x, y], [y, [x, y]]]

The free algebra is a graded algebra with the grading defined by the
conventional degree of monomials: deg(xi1 · · · · ·xik) = k. The homogeneous
component F(n)k of degree k has dimension nk, and the Poincaré series of
F(n) is dim(F(n)k)t

k = 1/(1− nt).
Let A be an associative algebra or a Lie algebra. The (first) commu-

tant of A, denoted by A′ = [A,A], is, by definition, the linear span of all
commutators [a, b] (in the associative case defined by the conventional rule
[a, b] = ab− ba). There are two ways to iterate the operation A 7→ A′:

• A(1) = A′, A(n+1) = [A,A(n)], leading to the decreasing filtration
of A by subspaces A(n) called the lower central series of A,

• A(1) = A′, A(n+1) = [A(n), A(n)], leading to the filtration A ⊃
A(1) ⊃ A(2) ⊃ . . . called the derived series of A.

Obviously, A(n) ⊂ A(n) for any n, and this inclusion is in general strict
if n > 1 (for example, this is so in the case of free algebras). The second

subspace of the derived series A(2) = [[A,A], [A,A]] has a special name: it
is called the second commutant of A.
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In the case of the free associative algebra, the terms of both the derived
series and the lower central series are homogeneous subspaces with respect
to the grading.

A.3.2. Definition. The completed free algebra with n generators Fn is
the graded completion of F(n), i.e. the algebra of formal power series in n
non-commuting variables, denoted also by F〈〈x1, . . . , xn〉〉.

In the free algebra there is a coproduct δ : F(n)→ F(n)⊗F(n) defined
on the generators by δ(xi) = xi ⊗ xi and then extended by linearity and
multiplicativity to the entire F(n).

A.3.3. Theorem. The primitive space P(F(n)) is equal to the linear span
of all full commutators.

There is a natural linear operator α : F(n) → F(n) defined on the
monomials by

α(x1 · · · · · xk) =
1

k!
[x1 · · · · · xk],

where [x1·· · ··xk] denotes the full right-normalized commutator [x1, [...[xk−1, xk]...]].

A.3.4. Theorem. The operator α is a projector onto the subspace L(n) ⊂
F(n).

———————- (moved from chapter 9: brush up!!)

A.3.5. Free associative algebra and free Lie algebra. Let C=C〈〈A,B〉〉
be the algebra of formal power series in two non-commuting variables, i.e.
the completed free associative algebra with two generators.

Coproduct in C — useful intuition.

If C is understood as the space of functions in two non-commuting vari-
ables A and B, then C ⊗ C can be be interpreted as the space of functions
in four variables A1, B1, A2, B2 where each of A1, B1 commutes with each
of A2, B2, but variables with the same subscript do not commute between
themselves. In this setting, the coproduct has the following transparent
meaning:

δ(ϕ(A,B)) = ϕ(A1 +A2, B1 +B2).

In particular, the primitive elements of C are precisely the functions having
the additivity property

ϕ(A1 +A2, B1 +B2) = ϕ(A1, B1) + ϕ(A2, B2).

A.4. Discriminants and Vassiliev’s spectral sequence

To be edited by JM; here follows the original fragment
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A.4.1. Discriminant approach. Recall that a knot is a smooth embed-
ding of the circle S1 into 3-space R3. A smooth isotopy in the class of
embeddings does not change the equivalence class of a knot. To change the
equivalence class, one must make one or several crossing changes.

Doing a crossing change continuously, one must pass through a map
from S1 to R3 which is not an embedding, but an immersion S1 → R3 with
a double point:

At this moment, it is quite instructive to imagine simultaneously the
transformations of a closed curve in 3-space (the physical space in the ter-
minology of Arnold [Ar3]) and corresponding paths in the space of maps
from S1 to R3 (the functional space). Here is a typical picture:

Σ

wall

1K

K 2

Path in the functional space

Isotopy of a knot

The disk on the left is the space Imm of immersions S1 → R3, the dashed
lines are the discriminant Σ consisting of immersions which are not embed-
dings, and the connected components of the complement Emb = Imm \ Σ
correspond to equivalence classes of knots.

Remark. In the original Vassiliev’s approach, he considered the space
of all smooth maps S1 → R3 with both local and non-local singularities
allowed:

Local singularities Non-local singularities

This is important to develop the general theory: the space of all maps is
linear and hence contractible, therefore one can apply Alexander duality etc.
(see details in [Va3]). However, it is clear that, to transform any knot into
any other, it is enough to pass only through immersions with one transversal
self-intersection, so in this elementary introduction we can confine ourselves
with the class of immersions.
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Embeddings and immersions from S1 to R3 constitute two infinite-dimen-
sional manifolds, Emb ⊂ Imm. While the entire space Imm is connected,
the subspace Emb is not, and its connected components are nothing but the
topological types of knots. The type can only change when the point in the
space Imm passes through a wall separating two connected components.

A knot invariant is the same thing as a function constant on the con-
nected components of the space Emb. When a point in Imm representing
a knot, goes through a wall, the invariant experiences a jump. Vassiliev’s
original idea was to prolong knot invariants from Emb to Σ assigning to a
point p ∈ Σ the value of the corresponding jump when one passes from the
negative side to the negative side of Σ. This construction only makes sense
for generic points of the discriminant which correspond to knots with one
simple double point, and it relies on the fact that at these generic points the
discriminant is naturally cooriented.

Definition. A point p ∈ im(f) ⊂ R3 is a simple double point of f if its
preimage under f consists of two values t1 and t2 and the two tangent
vectors f ′(t1) and f ′(t2) are non-collinear. Geometrically, this means that,
in a neighborhood of the point p, the curve consists of two branches with
different tangents.

Simple double point

Smooth singular maps having one simple double point form a subman-
ifold of codimension 1 in the space of all immersions, while for other types
of singularities the codimension is greater. They form the principal stratum
of the discriminant Σ.

Definition. A hypersurface in a real manifold is said to be coorientable if is
has a non-zero section of its normal bundle, i.e. if there exists a continuous
vector field which is not tangent to the hypersurface at any point and does
not vanish anywhere. The only thing we want to know of this vector feld is
the side of the hypersurface it points to. The coorientation of a coorientable
hypersurface is a choice of one of the two such possibilities.

The figure below on the left illustrates this notion. The figure on the
right shows the simplest example of a hypersurface that has no coorientation
— the Möbius band in R3.
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Coorientation Möbius band

A crucial observation is that the (open) hypersurface in Imm consisting
of all knots with exactly one simple double point is coorientable. A small
shift off the discriminant is said to be positive if the local writhe at the
point in question is +1, and negative, if it is −1 (see page 22). Each of these
resolutions is well defined (does not depend on the plane projection used
to express this relation). To make sure of this fact, the reader is invited
to make a physical model of a crossing with the help of two sharpened (i.e.
oriented) pencils and look at them from one side, then from the other.

A.4.2. While an arbitrary path from one knot to another can be effectuated
by a path that goes only through the generic points of the discriminant, it
turns out to be very important to understand what happens near the points
where the discriminant has self-intersections. The simplest self-intersection
occurs at the points where the corresponding singular knot has two simple
double points:

d c

b a

Σ

Σ

a-b

b-d

c-d

a-c

NENW

SESW

The figure on the left shows the neighborhood of a self-intersection in the
functional space; Σ is the dicriminant, arrows show its coorientation, the fat
grey points are typical points of the corresponding regions, and the letters
a, b, c, d, as well as their differences are the values of some knot invariant in
these regions. The figure on the right displays sample knots close to a knot
with two self-intersections in accordance with the left-hand picture. Note
that among the four non-singular knots which are present, one (NE) is a
trefoil, while the other three (NW, SW, SE) are trivial knots and therefore
belong to the same global component of the space Imm \ Emb: the local
connected components shown in the figure are joined together somewhere
far away.
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We see that the difference of values of an invariant along one component
of the discriminant (a − b) − (c − d) is equal to the difference of its values
on another component (a − c) − (b − d). Therefore the invariant can be
prolonged to the central point of the picture by the value a− b− c+ d.

This observation is valid for knots with any number of distinct simple
double points. Let Kn denote the set of equivalence classes of singular knots
with n double points and no other singularities. By definition, K0 = K is

the set of all non-singular knots. Put K̃ = ∪n>0Kn.
Definition. (Vassiliev’s extension of knot invariants.) Let G be an Abelian

group. Given a knot invariant v : K → G, we define its extension K̃ → G,
denoted by the same letter v, according to the rule

(A.4.2.1) v( ) = v( )− v( ),

known as Vassiliev’s skein relation.

The right hand side of Vassiliev’s skein relation refers to the two resolu-
tions of the double point — positive and negative, explained above. Let us
stress that this definition does not appeal to knot diagrams, but directly to
genuine knots embedded in R3.

It does not take long to understand that Vassiliev’s extension from Kn−1

to Kn is well defined, i.e. does not depend on the choice of a double point
to resolve. Indeed, the calculation of f(K), K ∈ Kn, is in any case reduced
to the complete resolution of the knot K which yields an alternating sum

(A.4.2.2) v(K) =
∑

ε1=±1

· · ·
∑

εn=±1

(−1)|ε|v(Kε1,...,εn),

where ε = (ε1, ..., εn), |ε| is the number of −1’s in the sequence ε1, ..., εn,
and Kε1,...,εn is the knot obtained from K by a positive or negative resolution
of the double points according to the sign of εi for the point number i. The
geometrical background of this phenomenon is that, in the vicinity of the
singular knot K, the pair

(space of immersions S1 → R3, discriminant)

is diffeomorphic to the pair

(Rn, union of coordinate hyperplanes)

multiplied by a vector subspace of codimension n, as shown above in a
picture corresponding to the case n = 2. A locally constant function v
defined in the complement of the coordinate cross in Rn is extended to the
origin by the rule (3.1.2.2) and this number is equal to the difference of the
two similar combinations of order n− 1 corresponding to the two points on
any coordinate axis in Rn lying on either side of the origin.
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[Kir] A. N. Kirillov, Dilogarithm identities, Progress of Theor. Phys. Suppl., 118 (1995)
61–142 (http://www.math.nagoya-u.ac.jp/~kirillov/publications.html).

[Kn0] J. Kneissler, The number of primitive Vassiliev invariants up to degree twelve,
arXiv:math.QA/9706022, June 1997.

[Kn1] J. Kneissler, On spaces of connected graphs. I. Properties of ladders. in Knots in

Hellas ’98, 252–273, World Sci. Publishing, River Edge, NJ, 2000.

[Kn2] J. Kneissler, On spaces of connected graphs. II. Relations in the algebra Λ. J.
Knot Theory Ramifications 10 (2001), no. 5, 667–674.

[Kn3] J. Kneissler, On spaces of connected graphs. III. The ladder filtration. J. Knot
Theory Ramifications 10 (2001), no. 5, 675–686.

[KnZa] V. Knizhnik, A. Zamolodchikov, Current algebra and the Wess—Zumino model

in two dimensions, Nucl. Phys. B 247 (1984) 83–103.

[KN] S. Kobayashi, K. Nomizu. Foundations of Differential geometry. Wiley, 1998. (?
change to a more appropriate text!!)
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[Mar] Julien Marché. A computation of Kontsevich integral of torus knots.
arXiv:math.GT/0404264.
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Notations

Z, Q, R, C — rings of integer, rational, real and complex numbers.

A — algebra of unframed chord diagrams on the circle, p.109.

Afr — algebra of framed chord diagrams on the circle, p.106.

An — space of unframed chord diagrams of degree n, p.105.

Afrn — space of framed chord diagrams of degree n, p.105.

A(n) — algebra of chord diagrams on n lines, p.162.

Ah(n) — algebra of horizontal chord diagrams, p.160.

Â — graded completion of the algebra of chord diagrams, p.226.

An — set of chord diagrams of degree n, p.79.

A — Alexander-Conway power series invariant, p.318.

αn — map from Vn to RAn, symbol of an invariant, p.80.

B — algebra of open Jacobi diagrams, p.142.

B(m) — space of m-colored open Jacobi diagrams, p.156.

B◦ — enlarged algebra B, p.324.

Bn — set of open Jacobi diagrams of degree n, p.142.

BNG — the Bar-Natan–Garoufalidis function, p.393.

C — space of closed diagrams, p.128.

Cn — space of closed diagrams of degree n, p.128.

Cn — Goussarov–Habiro moves, p.413.

C(x1, . . . ,xn |y1, . . . ,ym) — space of mixed Jacobi diagrams, p.156.

C — Conway polynomial, p.45.

451



452 Notations

C2n — Conway combination of Gauss diagrams, p.378.

Cn — set of closed diagrams of degree n, p.135.

cn — n-th coefficient of the Conway polynomial, p.46.

n — n-th disconnected cabling of a knot, p.251.

n — n-th connected cabling of a knot, p.251.

∂C — diagrammatic differential operator on B, p.320.

∂◦C — diagrammatic differential operator on B◦, p.325.

∂Ω — wheeling map, p.320.

δ — coproduct in Afr, p.108.

ε — counit in Afr, p.109.

F (L) — unframed two-variable Kauffman polynomial, p.59.

Gn — Goussarov group, p.401.

G — bialgebra of graphs, p.402.

Γ — algebra of 3-graphs, p.199.

Γ(D) — intersection graph of a chord diagram D, p.116.

H =

(
1 0
0 −1

)
— element of the Lie algebra sl2, p.170.

H — hump unknot, p.229.

In — constant 1 weight system on An, p.112.

I — a map of Gauss diagrams to arrow diagrams, p.363.

I(K) — final Kontsevich integral, p.229.

I — algebra of knot invariants, p.49.

ι — unit in Afr, p.109.

jn — n-th coefficient of the modified Jones polynomial, p.83.

K — set of knots, p.27.

Li2 — Euler dilogarithm, p.247.

L — bialgebra Lando, p.405.

Λ — Vogel’s algebra, p.210.

Λ(L) — framed two-variable Kauffman polynomial, p.59.

∇ — difference operator for Vassiliev invariants, p.75.

Mn — Goussarov–Habiro moves, p.395.

MM — highest order part of the colored Jones polynomial, p.387.

MT — mutation of a knot with respect to a tangle T , p.251.

µ — product in Afr, p.106.

P — Polyak algebra, p.374.
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Pn — primitive subspace of the algebra of chord diagrams, p.113.

P — HOMFLY polynomial, p.57.

P fr — framed HOMFLY polynomial, p.70.

pk,l(L) — k, l-th coefficient of the modified HOMFLY polynomial, , p.95.

ψn — n-th cabling of a knot, p.262.

R — ground ring (usually Q or C), p.73.

R(An) — R-valued functions on chord diagrams, p.80.

R — R-matrix, p.51.

R, R−1 — Kontsevich integrals of two braided strings, p.232.

SA — symbol of the Alexander-Conway invariant A, p.388.

SMM — symbol of the Melvin-Morton invariant MM , p.388.

Si — operation on tangle (chord) diagrams, p.249.

symb(v) — symbol of the Vasiliev invariant v, p.81.

σ — mirror reflection of knots, p.23.

τ — changing the orientation of a knot, p.23.

τ — inverse of χ : B → C, p.146.

Θ — the chord diagram with one chord, , p.109.

θfr —- quantum invariant, p.52.

θfr —- sl2-quantum invariant, p.55.

θfr,StslN
—- slN -quantum invariant, p.68.

V — space of Vassiliev (finite type) invariants, p.73

Vn — space of unframed Vassiliev knot invariants of degree 6 n, p.73.

Vfrn — space of framed Vassiliev knot invariants of degree 6 n, p.81.

V• — space of polynomial Vassiliev invariants, p.77.

V̂• — space of power series invariants, graded completion of V•, p.77.

Wn — space of unframed weight systems of degree n, p.100.

Wfr
n — space of framed weight systems of degree n, p.100.

Ŵfr — graded completion of the algebra of weight systems, p.111.

Z( ) — Kontsevich integral of in algebra B(y), p.321.

Z( ) — Kontsevich integral of in algebra B(y1,y2), p.322.

Zi( ) — i-th part of the Kontsevich integral Z( ), p.323.

Z(K) — Kontsevich integral, p.226.

ZK — algebra of knots, p.27.

∆n
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ρg, ρ
V
g

φg, φ
V
g

χ — symmetrization map B → C, p.146.

χym
— map C(X |y1, . . . ,ym)→ C(X,ym |y1, . . . ,ym−1), p.156.

Φ — map B(y)→ C(x), p.321.

Φ0 — map B → C, p.324.

Φ2 — map B(y1,y2)→ C(x), p.322.

Ω′ — part of Z0( ) containing wheels, p.324.

〈 , 〉y — pairing C(x |y)⊗ B(y)→ C(x), p.158.

— open Hopf link, p.321.

— doubled open Hopf link, p.322.

— closed Hopf link, p.330.

———————–
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Index

E6, 418

E7, 418

E8, 418

F4, 418

G2, 418

L, 303

O+1, 263

C〈〈A,B〉〉, 281

Kn, 438

ΦKZ, 281

, 263

δ, 421

ε, 421

η(p,q), 297

ι, 420

n, 262

n,y (X ∪ y), 268

n, 263

n,y (X ∪ y), 268

µ, 420

slN , 417

spN , 417

soN , 417eϕV ⊗n

g , 268

f , 294

Actuality table, 89

canonical, 367

ad-invariant

bilinear form, 418

Adams operation, 267

Adjoint representation, 418

Alexander polynomial, 45

Alexander–Conway polynomial, 318

Algebra, 420

B◦, 324

horizontal chord diagrams, 160

of 3-graphs, 199

of knot invariants, 49

of knots, 27

of Vassiliev invariants, 75

universal enveloping, 420, 422

Vogel’s Λ, 210

Almost direct semi-product, 345

Antipode, 429

Antisymmetry relation, 130

Arf invariant, 65, 400

Associating tangle, 245, 247

Associator

axiomatic definition, 304

rational, 308

Baguette diagram, 408

Bar-Natan–Garoufalidis function, 393

Bialgebra, 421

connected, 429

d-filtered, 427

filtered, 427

graded, 428

i-filtered, 427

of chord diagrams, 105

of finite type, 429

of graphs, 402

of open diagrams, 145

of weight systems, 110

Borromean move, 396

Borromean rings, 20

Boundary configuration, 288

Braid, 29

fundamental, 37

generators, 30

pure, 29, 279
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relation, 30

relations, 30
Bridge number, 64

Brunnian link, 36

Burau representation, 38
reduced, 38

Cabling

of chord diagrams, 264
of closed diagrams, 265

of invariants, 263

of knots
connected, 262

disconnected, 263

of open diagrams, 265
of tangles, 268

parenthesized, 271

of the Kontsevich integral, 269
of weight systems, 266

Canonical

invariant, 315
series, 316

Canonical decomposition of graphs, 119

Casimir element, 168
Casson invariant, 87, 371

Chinese characters, 142

Chord
isolated, 99

Chord diagram, 79

anti-symmetric, 256
coproduct, 108

distinguishing mutants, 273

mutation, 118

of a singular knot, 79

product, 106

symmetric, 256

Circle graph, 116

Clasp-pass move, 413

Closed diagram, 127

connected, 137

coproduct, 137

product, 137

Coalgebra, 421

Cocommutativity, 421

Colored Jones polynomial, 317
Comb with n teeth, 323

Commutativity, 421

Conjecture
Melvin–Morton, 387

Tait, 22, 67

Connected Cabling, 268
Convergent monomial, 293

Conway combination, 379

Conway knot, 59, 257
Conway polynomial, 45, 64, 318, 379

symbol, 95, 163, 318

table, 47

Coorientation, 436

Coproduct

in A, 108

in B, 144

in C, 137

in W, 110

Counit

in A, 109

in W, 110

Crossing number, 41

Decomposition of graphs, 119

Deframing

of chord diagrams, 109

of weight systems, 112

Degree, 79, 127, 142, 198

Determinant of a link, 65

Diagram

1-3-valent, 142

caterpillar, 165

chord, for tangles, 154

closed, 127

Dynkin, 117

fixed, 209

Jacobi, 142

open, 141

Pont-Neuf, 188, 412

web, 142

Diagrammatic differential operator, 320,
325

Dilogarithm, 247

Disconnected Cabling, 263, 268

Divergent monomial, 293

Double point, 72, 436

resolution, 438

Drinfeld associator, 281

Duality relation, 301

Duflo-Kirillov isomorphism, 319, 320

Dynkin diagram, 117

Edge product, 199

Embedding, 17

Filtered basis, 426

Filtered space

reduced, 426

Finite type invariant, 73

Four-term relation

for chord diagrams, 97

for graphs, 405

for knots, 101

generalized, 123

horizontal, 99

Framed knot, 32

Framing, 32

independence, 102

Free Lie algebra L, 303
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Fundamental theorem

for tangles, 155

Gauss diagram, 34

descending, 365

for singular knots, 366

for links, 386

realizable, 363

unsigned, 377

Generalized 4-term relation, 123

Goeritz diagram, 37

Goussarov

–Habiro move

Mn, 395

Cn, 413

group, 401

Graded completion, 226

Graded space, 426

associated with a filtration, 426

Grading

by legs in B, 144

by loops in B, 144

Granny knot, 20

Graph

canonical decomposition, 119

circle, 116

decomposition, 119

interlacement, 116

intersection, 116

prime, 119

split, 119

Group algebra, 422

Group-like element, 111, 423

Hexagon relation, 305

HOMFLY polynomial, 57, 380

framed, 70

table, 58

Vassiliev invariants, 95

Homogeneous components, 429

Hopf algebra, 428

dual, 429

connected, 429

of finite type, 429

Hopf link, 20

, 321

Hopf link , 263

Hump, 229

IHX relation, 130

generalized, 133

Interlacement graph, 116

Internal graph of a closed diagram, 137

Intersection graph, 116

conjecture, 117, 258

Intersection number, 42

Isomorphism

A ≃ C, 135

B ≃ C, 146

Duflo-Kirillov, 320

Isotopy, 19

Jacobi diagram, 127

for tangles, 154

mixed, for tangles, 155

unframed, 152

Jones polynomial, 48, 64

colored, 317

highest part, 387

interlacing crossings formulae, 65

modified, 83

table, 86

switching formula, 65

symbol, 84, 163

table, 50

Kauffman bracket, 48

Kauffman polynomial, 59

table, 60–62

Killing form, 418

Kinoshita–Terasaka knot, 59, 257

Kirchhoff law, 133

Knizhnik–Zamolodchikov

equation, 276

Knizhnik-Zamolodchikov

associator, 281

Knot, 17

achiral, 23

alternating, 22

ambient equivalence, 20

ambient isotopy, 20

amphicheiral, 23

asymmetric, 23

chiral, 23

Conway, 59, 257

figure eight, 20

framed, 32

granny, 20

invariant, 27

multiplicative, 27

invertible, 23

Kinoshita–Terasaka, 59, 257

long, 29

plus-amphicheiral, 256

pretzel, 24

rational, 64

ribbon, 33

singular, 438

square, 20

strict Morse, 226

symmetric, 23

table, 26

trefoil, 20

unoriented, 18
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virtual, 35

Knot diagram, 21

alternating, 22

reducible, 22

Knot invariant, 41

2-loop polynomial, 334

finite type, 73

group-like, 103

primitive, 103

Vassiliev, 73

Kontsevich integral, 226

of the Hopf link, 336

combinatorial, 286

convergence, 234

final, 229

for tangles, 232

framed, 260

group-like, 251

invariance, 235

mutation, 257

of the unknot, 328

preliminary, 229

reality, 253

KZ equation, 276

formal, 279

reduced, 281

Landen connection formula, 248

Lando

graph algebra, 405

Lawrence–Krammer–Bigelow
representation, 38

Leg

of a closed diagram, 130

of an open diagram, 142

Lie algebra

classical, 417

exceptional, 417

free L, 303

metrized, 419

weight systems, 167

Link, 20

determinant, 65

Borromean rings, 20

Brunnian, 36

Hopf, 20, 263, 330

Morse, 224

split, 64

strict Morse, 224

trivial, 20

Whitehead, 20

Link relation, 156

Linking number, 42, 65, 67, 94, 224, 386

Magnus expansion, 343

Map

Φ : B → C, 321

Φ0 : B → C, 324

Φ2 : B ⊗ B → C, 322

Mapping f , 294

Markov moves, 30

Moves

∆, 413

Borromean, 396

clasp-pass, 413

Goussarov–Habiro

Mn, 395

Cn, 413

Markov, 30

pass, 400

Reidemeister, 21

framed, 33

Turaev

framed, 33

oriented, 32

unoriented, 31

Multiple polylogarithm, 297

Multiple zeta values, 297

Multiplication

of Vassiliev invariants, 75

Multivariate ζ-function, 297

Mutation, 257

of a chord diagram, 118

Mutation MT , 251

MZV, 292, 297

n-equivalence, 74

n-triviality, 74

Non-associative monomial, 285

One-term relation, 99

Open diagram, 141

Operation

Si on T -chord diagrams, 249

Order, 79, 127, 142, 198

in a d-filtered space, 426

in an i-filtered space, 426

Orientation

detecting, 140, 152

Pairing, 227

Pairing B◦ ⊗ B◦ → Γ, 325

Parallel, 263

Pass-move, 400

Pentagon relation, 304

Perfect matching, 124

Polyak algebra, 374

Polylogarithm, 297

Pont-Neuf diagram, 188, 412

Pretzel knot, 24

Prime graph, 119

Primitive element, 423

Primitive space

dimensions, 139
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filtration, 138

in A, 113

in C, 138

Product

in A, 106

in B, 144

in C, 137

in Γ, 199, 204

in W, 110

of tangles, 29

Quantum group, 51

Quantum invariant, 317

sl2, 52, 68

slN , 68

framed, 53

unframed, 57

Quillen, 431

R-matrix, 51

for slN , 68

Rational knots, 64

Reidemeister moves, 21

framed, 33

Relation

AS, 130

four-term, 97

framing independence, 102

IHX, 130

Kirchhoff, 133

link, 156

one-term, 99

sliding, 159

STU, 128

two-term, 121

Resolution

complete, 73, 438

Ribbon graph, 199

Ribbon knot, 33

Roger five-term relation, 248

Scheme, 408

Self-linking number, 32, 44

Semigroup-like element, 423

Share, 118

shuffle, 252

Singularities, 435

Skein relation

Conway’s, 45

Sliding relation, 159

Split of a graph, 119

Split union, 59

Square knot, 20

String link, 29

Strut, 152

STU, 128

Symbol, 81

Symmetrization map, 145

T-diagram, 184

Table of

chord diagrams, 107

Conway polynomials, 47

dimensions of

the primitive spaces, 139

the spaces of Vassiliev invariants, 406

generators of Γ, 203

HOMFLY polynomials, 58

Jones polynomials, 50

modified, 86

Kauffman polynomials, 60–62

knots, 26

Lie algebra weight systems on Γ, 215

Tait conjecture, 22

Tangle, 28

associating, 245, 247

elementary, 31

Jacobi diagram, 154

product, 29

simple, 31

tensor product, 29

parameterized, 233

Tangle diagrams

product, 157

tensor product, 158

Theorem

Alexander, 30

Birman–Lin, 87

Goussarov–Habiro, 395

Le–Murakami–Kassel, 316

Markov, 30

Milnor–Moore, 430

Quillen, 431

Reidemeister, 21

framed, 33

Turaev, 31

Vassiliev–Kontsevich, 100

wheeling, 320

Three-graph, 198

bubble, 202

dodecahedron, 204

wheel, 204

Trefoil, 20

Turaev moves, 31

framed, 33

oriented, 32

unoriented, 31

Two-loop polynomial, 334

Two-term relations, 121

Unframed chord diagrams, 105

Unit

in A, 109

in W, 110



460 Index

Univariate zeta function, 304

Universal enveloping algebra, 420

Universal Vassiliev invariant, 241

Unknot, 45

Goeritz, 37

Kontsevich integral, 328

with framing 1 O+1, 263

Unknotting number, 42

Vassiliev

extension, 72, 438

invariant, 73

algebra of, 75

canonical, 244, 315

framed, 81

from HOMFLY, 95

group-like, 103

power series, 77

primitive, 103

symbol of, 81

universal for free group, 343

universal for knots, 241

universal for pure braids, 347

skein relation, 72, 438

Vector space

of chord diagrams, 105

of closed diagrams, 128

of open diagrams, 142

of unframed chord diagrams, 105

Vertex

external, 130

internal, 130

Vertex product, 204

Vogel

algebra Λ, 210

Weight

of a MZV, 303

Weight system, 97

glN , 173, 183

sl2, 170, 181

slN , 175

soN , 177, 185

sp2N , 178

homogeneous, 112

Lie algebra, 167

multiplicative, 111

of the Conway coefficients, 194

of the Jones coefficients, 173, 192

unframed, 99

Wheel, 139

Wheeling, 319

Wheeling map, 320

Wheeling Theorem, 320

Wheels formula, 328

Whitehead link, 20

Whitney trick, 39

Wilson loop, 127

Witten, 9

Writhe
local, 22

of a framed knot, 261

of a knot diagram, 22

total, 22

Yang–Baxter equation, 51


