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Throughout this talk:

“Knot” means either a knot or a link

This talk is based on the paper:

Lomonaco and Kauffman, Quantum Knots and

Lattices, to appear soon on quant-ph

This talk was moﬁygfgd' by; -

|Lomonace and Kauffman, Quantum Knots and

[ Mosaics, Journal of Quantum Information

|Processing, vol. 7, Nos. 2-3, (2008), 85-
115. An earlier version can be found at:
http://arxiv.org/abs/0805.0239

This talk was also motivated by:

Kauffman and Lomonaco, Quantum Knots, SPIE
Proc. on Quantum Information & Computation
II, (2004), 5436-30, 268-284.

http://xnx lonl gov/abs/quant-ph/0403228

Lomonace, Samuel J., Jr., The modern legacies of
Thomson's atomic vortex theory in classical
{electrodynamics, AMS PSAPM/51, Providence, RT
(1996), 145 - 166.

Kitaev, Alexei Yu, Fault-tolerant quantum computation
by anyons, http://arxiv.org/abs/quant-ph/9707021

Rasetti, Mario, and Tullic Regge, Vortices in He II,
current algebras and quantum knots, Physica 80 A,

North-Holland, (1975), 217-2333.

| What Motivated This Talk ? |

| Classical Vortices in Plasmas |

Lomonace, Samuel J., Jr., The modern legacies of
Thomsen's atomic vortex theory in classical
electrodynamics, AMS PSAPM/51, Providence, RT
(1996), 145 - 166.

Knots Naturally Arise in the
| Quantum World as Dynamical Processes

Examples of dynamical knots in quantum physics:
Knotted vortices

*In supzﬁcooled helium II
® In the Bose-Einstein Condensate '

* In the Electron Fluid found within the
fractional quantum Hall effect

-

Reason for current intense interest:

_A Natural Topological Obstruction to Decoherence

J




* We seek to create a quantum system
that simulates a closed knotted physical
piece of rope.

® We seek to define a quantum knot in such
a way as to represent the state of the
knotted rope, i.e., the particular spatial
configuration of the knot tied in the rope.

® We also seek to model the ways of
moving the rope around (without cutting the
rope, and without letting it pass through
itself.)

| Rules of the Game |

Find ¢ mathematical definition of a quantum
knot that is

* Physically meaningful, i.e., physncully
implementable, and

o Simple enough to be workable and
useable. .

I Aspirations I

‘We would hope that this definition will be
useful in modeling and predicting the
_behavior of knotted vortices that actually
occur in quantum physics such as

® In supercooled helium IT
® In the Bose-Einstein Condensate

® In the Electron fluid found within the
fractional quantum Hall effect

Quick
Overview
to
Knot
| 5 Theory

IPlacement Problem: Knot Theory |

|o l

Ambient space = R; pﬂﬁl'm;’"

* Growp G= AutoHamco(R )
sk

g

MR’

.

ooy

Def. K,~K,
if ge G s.t. gK, = K,

Problem. When are two placements the same ?

K,~K, ?

]Equivalen'r Definition]

Def. K, ~ K, provided there exists a
continuous family of auto-homeomorphisms

R R (0<rg1)

e., an isotopy, that continuously deforms

K, into Kg.




|Knot Projections|

IKnoT Dlagr'am I '

- Pinmr four valtm gmph wi-rh

Labeied verhczs

|When do two Knot diagrams represent the
{same or different knots ?

Theorém (Reideﬁseis?er). Two knots (or

links) diagrams represent the same knot
(or link) iff one can be transformed
linto the other by a finite sequence of
Reidemester moves.

]Wha’f is a knof invariant ?

Def A kncf mvumunf:[ is n mnp
I: I{nots—; Mxm&emaucal J)omam -

that takes each knot K to a ma‘themtmcnl
obJecT I(K) such ﬂm? -

K K 1(K, ) 1K)
Consequem'ly ;
‘ I(K)¢I(K2)::>K K,

The J’ones po!ynommi isa kno? mvar'mnf E




Mosaic Knots

Lomonace and Kauffman, Quantum Knots and
Mosaics, Journal of Quantum Information
Processing, vol. 7, Nos. 2-3, (2008), 85-
1115, An egrlier version can be found at:
|http://arxiv.org/abs/0B08 0339

Mosaic Tiles

Let T(u) denote fﬁe following set of 11
symbols, calied mosaic (unoriented) tiles:
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Please note that, up to rotation, there are
exactly B tiles

| Mosaic Knots |

b
v,

The Reidemeister and planar isotopy moves
were reduced to a finite set of mosaic
moves. Here are some examples:

\/2 E

= PN | |APlanarisotopy move |
0 By 0 | AReidemeister 1 move |
o8 bacy o

{A Reidemeister 2 move}

v

i AN by [A Reidemeister 3 move}
|
i

e A « : { : \ £
e klk it




: B .‘. ' . But now we have a different
urt ... ‘ ’ but equivalent approach

| Can we find an alternative
appr'ouch To knot theory ?

Knot pro,;echons hnve baen cmund aiong
time. They were used in the 1800s by
Tait, Maxwell, Lord Kelvin. Can we move
beyond knot diagrams and Reidemeister
moves ? Today much more modern tools
-~ are available, such as 3-D gmphucs

Knof dxagrams and kno?
crossmgs are nofhmg more than
a figment of one’s chosen

projection.

Can we find an alternate approach 'to kno?s
that is much more "physics friendly” ???

s
g

Quantum Knots & Lattices | How does a dOg
or, , . - .
How Wiggle, Wag, & Tug 60 Quantum ’ . wag its 'l'all ?




| How does a dog wag its tail? |

1988 - 2000

My best friend Tazi knew the answer.

|How does a dog wag its tail ?|

* She would wiggle her tail, just
as a a creature would squirm on a
flat planar surface.

s

L

® She would wag her tail in a
4wisting corkscrew motion.

4
*‘»..«

o,

contract when an impolite child
would tug on it.

® Her +tail would also stretch or E

o

T

A

&

| How does a dog wag its tail ?]

Yes, when Tazi moved her tail, she naturally
understood how a curve can move in 3-space |

She had ¢ keen understonding of differential
geomefry.

IDifferential Geometry: The Frenet Frame

Ench point of o curve in 3-space is mﬁraliy
associoted with o 3-frame, caolled the Frenet frame.

B = binormal = TxN

T = tangent

N=normal

IDifferenTiul Geometry: The Frenet Frame l

Each point of @ curve in 3-space is noturally
associoted with o 3-frame, called the Frenet frame.

B = binormal = TxN

T = tongent

N=normal

,lDifferen'riul Geometry: The Frenet Frame

B = binormal = TxN

N=normal

* A curve bends by rotating about B - as
measured by its curvature X

*® A curve twists by rotating about N - as
measured by its forsion 7

® A curve stretches or Cunfmcfszalong its
tangent T




| Key Intuitive Idea|

A curve in 3-space has 3 local (i .
infinitesimal) degrees of freedom

Wiggle an~ : - . Tug
A curvature A torsion A metric
Move _ Move = move

Can we take this idea and use it to create a
useable well-defined set of moves which will
‘replace the Re;demensfer moves ?

{Clues from Mechanical Engineering]
Linkage = Inextensible bars (i.e., rods)

connectad'by;jjoiq‘ftg: M

J oints:

Planar @ SQhem:a

* Slider —E——— — —

|Clues from Mechanical Engineering]

Mechanism = a imkagz with 1 degree of
' freedom .

— IAEI J’om‘l’s Planar |

4-Bar Lmkngg

Since\é;hdﬁnims fixed, :fhis*iis 'Vn;locil:rmove on
linkages. The rest of the linkage is untouched
This is a local curvature move, taking place in
a fixed plane. We call it o wiggle.

ar Linkage

Ige
Iw

i;" All Joints |
| Spherical

Since endpoints fixed, this is a local move on
linkages. The r*estr,of ‘rhe'linkqga is unfouched

This is a local Tor'slan mmte locally tmé‘hng ‘
the imkage m?o a new ph:me We call it a wag.

| Mechanisms|

4-Bar Slider ’

1 Al
| Joints
| Plonar

except
1 Slider

‘"”F"‘?‘

|

Since enépomfs fnxed 'l'hls isa Iocal move on

linkages. The rest of fhe lmknge is unfouched

Th:s isa iosui exggnsmnfmnfmchcn mave,
‘taking place in a fixed plane. We call it a tug.




I Translating M.E. into Knot Theory |

Definition: Two piecewise linear (PL) knots K, and K, are
‘said o be of the same knot type, written

K, ~ K, provided one can be transformed into the other
by a finite sequence of the following local moves:

=S S

| Translating M.E. into Knot Theory |

Using the methods found in Reidemeister's
proof of the completeness of the
Reidemeister moves, we have:

Theorem: Wiggles and wags can be expressed
as sequences of fugs.

In fact, Reidemeister's fundamental move
was essentially a tug.

[So why bother with wiggles and wags ?]

| Why Wiggle & Wag? |

My reason is that, while investigating
electromagnetic knots, the knot theoretic
tools I needed to study knots that naturally
arise in physics were simply not available.

Lomonace, Samuel J., Jr., The modern legacies of
Thomson's atomic vortex theory in classical
electrodynamics, AMS PSAPM/51, Providence, RI
(1996), 145 - 166.

What was needed was a knot theory for
inextensible knots. Reidemeister's moves, which
are essentially derived from the tug move, are
simply NOT inextensible moves.

| Inextensible Knot Theory |

Definition: Two piecewise linear (PL) knots
K; and K, are said to be of the same
inextensible knot type, written

Ki= K,
provided that there exist subdivisions Ky
and K, of K; and K, respectively, such that
K'; can be transformed into the K, by a

- finite sequence of wiggles and wags.

Proposition. (Proof in progess) Let K, and K,
be PL knots. Then
K, ~K,
K=K & &
tK ui =[K zl

| Inextensible Knot Theory |

Proposition. (Proof in progess) Let K; and K,
be PL knots. Then

K, ~K,
K =K, & &
I&,] = ||

So it would seem that we have gained NOTHING
by creating inextensible knot theory i

| But think again ! |

| Inextensible Knot Theory |

By working with this modified definition of
knot type,

® We have lost none of the structure of
classical knot theory.

® But we have succeeded in incorporating
more of the geometry of 3-space.




| Inextensible Knot Theory |

Because of this modlfled definition, we will
be able to: .

® Create infinitesimal knot moves
® Create knot move differential forms

® Take variational derivatives with
respect to these infinitesimal moves

® And much more

Lattice Knots

The Cubic Honeycomb
| A Scaffolding for 3-Space

For each non-negative integer . let
denote the 3-D lattice of points

Ly = {('; ,';} ,';,‘) M, € Z}
lying in Euclidean 3-space R*

This lattice determines a filing of R’ by
2ix2 %2 cubes,

called the cubic honeycomb of R’(of order/)

The Cubic Honeycomb (of order (¢ )
A Scaffolding for 3-Space

| The Cubic Honeycomb |

‘We think of this honeycomb as a cel! complex
G, for R’ consisting of:

Vertices Edges Faces Cubes
o _'I m
ae L E .
o=l el =

All cells of positive dimension are open cells.

I Lattice Knots l .

Definition. A lattice graph & (of order ¢ )
is a finite subset of edges (together with
their zndpomfs) of the honeyccmb G

Definition. A lattice Knot K (of order ¢)
is a lattice 2-valent graph (of order ¢ ).
Let K denote the set gf all lattice knots
of order £ .

10



‘ Lattice Knots

o
/ :
WEWi 7
F fg Wi ity o 4
¥ ) . e & ‘ F
i ¥ ¥ i # il #
EWE V.ieaVe,
P - N = )i‘: s’ ;f
=

Lattice Trefoil Lattice Hopf Link

Necessary
Infrastructure

| Orientation of 3-Space |

We define an orientation of R’ by
selecting a right handed frame

)—bez

€

at the origin O = (0,0,0) properly aligned
with the edges of the honeycomb, and by
parallel transporting it to each vertex ge L

We refer to this frame as the preferred

fmme =

| Orientation of 3-Space |

The greférred frame at each lattice point.

Color Coding Conventions
for Vertices & Edges

Solid Gray

Solid Red “Hollow"” Gray RS
i ki :
. Indeterminont,

T J——— S TP
Part of the Not part of || . obe part of
Lattice Knot Lattice Knot }| fayﬁ?cinmi

A vertex a of o cube B is calied a preferred
vertex of B if the first octant of the
preferred frame at a contains the cube B.

Since B is uniquely determined by its its
preferred vertex, we use the notation

B=B"(a)

1"



The preferred edges and preferred faces of
B“(a) are respectively the edges and
faces of B“)(4) that have a as a vertex

® Every edge is o preferred edge of ex&cﬂy one cube

: Every face is the preferred fac:e of exactly one cube
Hence, the following notation uniquely
identifies each edge and face of the cell
complex § - ‘

E pm{a} = Preferred edge parallel to e,

Fp‘“(a) = Preferred face perpendicular to €,

| Drawing Conventions|

When drawn in isolation, each cube B“(a) is
drawn with edges parallel to the preferred
frame, and with the preferred vertex in the
back bottom left hand corner.

| The Left and Right Permutations|

Define the left and right Ermhmﬁons
| and 7] as .

L: {123} - {123} T {1,2,3} - {1,2.3}
3

1 > 2 1 > 3
2 e 3 2 = 1
3 = 1 3 > 2

Ergo, e, =¢q,Xeq e-m=e;|xe[, e;x-—el,xew

| Preferred Vertices, Edges, & Faces |

| Drawing Conventions

a

- (@)

| Drawing Conventions |

When drawn in isolation, F,’(4) is always
drawn with preferred vertex a in the upper
left hand corner, and with ¢ (a) pointing out
of the page. ~ ~

a EE‘M} ( a)

Preferred
Vertex

g

| Invisible
preferred
frame

gy
€, (@) points out of the page toward the reader

12



| Vertex Translation |

_Leta be a vertex in the lattice L,

a’=a+2",

iy -t
a’=a-2 e,
a’ =a+3-2"¢,

So for example,

-8

427 i et == :
e =a+2-27%, 52", +27e,

[The Preferred Vertex (PV) Map |-}

£

L"Je

B L

Preferred
Vertex
BY%ayJ|a} u{ E(“’(a)} u{ F“}(a)}
Half Closed Cube
L=, R’ = L

x=(x,x.x) b (220, 2 2, 2| 20, )

Lattice Knof
Moves

Lattice Knots

Definition. A lattice graph & (of order 7 )
is a finite subset of edges (together with
their endpoints) of the honeycomb &

Definition. A lattice Knot K (of order /)
is a lattice 2-valent graph (of order 7 ).
Let K denote the set of all lattice
knots of order £ .

& 7 * 7,

Lattice Knots

e &
i 1" z‘{
IV A YA s
A F el
F A 4 #

#
k‘ #
D .
®

Lattice Trefoil

Lattice Hopf Link

13



| Lattice knot moves |

Definition. A lattice knot move'u\(gf
order ¢ ) is a bijection

UK 5 K®

The move | is said fo be local if there
exists a cube B“/(4) in the lattice such
that

”IK—B"“(::) = 'dlx-a‘-“m

forall KeKY

L(ap, 13) = 13%a.p)

This is a local move on face 1’; © (a) -

~ |Lattice Knot Moves|

We will now'sdtfi\he/' the lattice
knot moves tug, wiggle, and wag.

-

S S
i B0 g

@t

L%ap, [J)=10 “(a.p)

(e-L DU weng-LE
[3%eA®==(x-T]U] T wxn[]=]

K otherwise

| For each cube, 4 Tugs for each preferred face |

| J%a.p) 1%, p)
b b B Srirs gli’(")u
Cl“a.p) i1 %a.p)

12 tugs for each cube
{ Tugs are extensible local moves ] -

For each cube, 2 Wiggles for each preferred face

Liap )=T1%@r)  L(ap0)=1Tr)

6 ‘Qigg'les per:cuBe

{Wigghas are inextensible local maves}

14



L1, 0 )= OYal)

| The Left and Right Permutations |

Please recall that the left and right
~ permutations | and 7| are defined as

1 > 2 1 b 3
2 > 3 2 =3 1
3 -3 1 3 > 2

= & = g __:':" f
e,=¢,Xeq g ,=e;Xe, eq=e,Xe,

|Preferred edges & Faces |

{1,"@

L pee
- E, (a) :

5]

» fD =] Edge3

‘

Preferred ;
Vertex (I
Invisible

preferred |
frame

F%a) - .

E m(a.,l)

D

BFEa) oy
. ! @"f%? 5

(a.1)

m(n( a.,l)

Wags

For each cube, there are 4 wags for each of
its 3 preferred faces.

Hence, there are 12 wags per cube.

{ Wags are inextensible local moves )

15



[An Example of a Wiggle Move |

These are
Conditional
Moves

The
Ambient
Groups

Tug, Wiggle, & Wag are Permutations|

For each £20 . each of the above moves,
Tug, Wiggle, & Wag,

is a permutation (bijection) on the set K'Y
of all lattice knots of order ¢ .

In fact, each of the above local moves,
as a permutation, is the product of
disjoint transpositions.

| The Ambient Groups A, and %, |

Definition. The ambient group A, is the
group generated by tugs, wiggles, and
wags of order £ .

Definition. The inextensible ambient group
A, is the group generated only by wiggles
and wags of order £ .

of involutions that generate the
above groups.

{Tugs, wiggles, and wags are o set }

What Is the Ambient Group ?

| What is the ambient group ???|

Observation: ‘Wiggle,‘»wag, and tug are
_ symbolic conditional moves, as are the
Reidemeister moves.

For example, the tug

K

»

16



| What is the ambient group ???|

Observation: Each is a symbolic
representation of an authentic conditional
move e, a conditional orientation
preserving (OP) auto-homeomorphism of R’

Moreover, each invoived (OP) auto-
homeomorphism #:R’ - R’ is local, i.e.,
there exists a 3-ball D such that

. ,=id :R’°~D—>R*~D

[ What is the ambient group 22?|

Let LAH ,,(R') the gro g of local OP auto-
homeomorphisms of R* .

Let F be a family of knots in IR '
For example:

K®  The family of laftice kno'rs

s The family of finh’ely piecewise
smooth (FPWS) knots in R’

| What is the ambient group ???|

Def. A local authentic conditional (LAC)
move on a family of knots F is a map

®: F - LAH,(R’)
K b (0, :R'>R)

such that
®,(Kle F VKef

Let LA”op(RS)F be the space of
all LAC moves for the family F .

| What is the ambient group 22?|

3\ F s -
Let LAH,,(R’) be the space of all LAC
moves for the family F .

Define a multiplication **' as fdllow;:

LAH p (R°) xLaH ,(RY)” = LaH,(R*)
(@) > ©.0

9= (q)t'q’) ¢ =¢'d>‘(x.°®1r

where ' denotes the composition of
functions.

| What is the ambient group ???|

Proposition. (LAH or (R‘})F‘,') is a monoid.

In the paper "Quantum Knots and Lattices,”
we construct a faithful representation

T:A, - LAH,,(R))

into a subgroup of the moniod (LAH o fE'Y )
by mapping each generator wiggle, wag, and
tug onto a local conditional OP auto-
homeomorphism of R’

Refinement

17



| The refinement injection |

Def. We define the refmemenf mecﬁon -
Q K(h KMM) S 2

from lattice knots of order f 1'0 lattice
knots of order /+1 as ‘

Q: K(!) ¥ K(A—l)

x w UU U {Fere)

mely p=l E(a)

| The refinement injection |

An example:

ol

K (D)

| Comec'rur'ed Refinement Monomorphrsm[

We coruer.?ure the ex:s?ence of a
refinement monomorphism
‘ Q: A! = A,,
which preserves the action
AXK® 5 K@
, (8,K) +» gK
i.e., with the property
Q(g)Q(K)=0(gK )

In fﬂc'l' we have o cons’truc‘hon which
we believe is such a monomorphism.

| The Refinement MorphismQ:A, — A, ??? |

a( C19(a,1))=

l:l ““)(a’n,])D(M’(ll’z,])lj (M;(a:s.l) Du-m(a‘])

| Knot Type

18



| Lattice Knot Type|

Two lattice knots K, and K, in K are of
the same ¢ -type, written
; K,~K,

gk, =K,
They are of the same knot type, written
K, ~K,
provided there is a non-negative integer m
such that
Q"K, ~Q"K,

L pem

provided there is an element ge A, such that

| Inextensible Lattice Knot Type|

Two lattice knots K, and K, in K are of
the same inextensible ¢ -type, written
Kl*:Kz i

provided there is an element gc A, such that
gk =K,

They are of the same inextensible knot type,
written

K =K,
provided there is a non-negative integer m

_such that

Qm K, tfmom K»2

{n-Bounded Lattices,
Lattice knots, and
Ambient Groups

In preparation for creating a ; ,
definition of physically emplementable
guantum knot systems, we need fo
work with finite mathematical objects.

| n-Bounded Lattices|

Let /and # be be non-negative integers. We
define the n-bounded lattice of order ¢ as
L, ={ae L, :}aL < n}

I(tL = maxj(iaiD

We also have

where

C,,  The corresponding cell complex

€/,  The corresponding j-skeleton

- set of n-bounded lattice
K(l. s K”)f\ Lt.n

n-Bounded Lattice Knots &
Ambient Groups

_knots of order ¢

Ay Aelc,@ Ambient group of order (£,n)
Ava=Ac ]C Inextensible Ambient group

of order (¢n)




n-Bounded Lattice Knots &
Ambient Groups

We also have the injecﬁon
1: K(t.n) - Kll.n-H)

and the monomorphisms

&) -~ {f.u+l)

CAYY 5 A and AT S A

We thus have o nested sequence of iaﬂuce
knot systems ,

(K‘“),A ) (K(ln “)_) —-)(K‘“’A )

| n-Bounded Lattice Knot Type |

Two lattice knots K, and K, in K" are

said to be of the same lnf‘hce knot

(¢,n) ~1ype, written

K, ';’Kz
provided there is an element 2€ A, such that
gK =K,
They are of the same lattice knot type,
written K ~K,

provnded there are non-negative integers ¢'
and 7' such that '
an' Kl t:é‘z”Ql'Kz

| n-Bounded Lattice Knot Type |
In like manner for the inextensible ambient
group A., , we can define »

K=K, and K, =‘sz

£

Quantum Knots
&
Quantum Knot Systems

| Quantum Kno‘l‘s |

It's time to remodel fhe bounded lattice L,
by painting all l’fs edges.

Two available cans of paint

"Solid” Red

“Hci;w” Groy o insise ;
[set K ofall

Set of all 2- .,
colorings of ' | lattice graphs
Lt,n . {in L'l.

edges of

| Quantum Knots |

| E Edge Coloring Spcce} ;
E= 2-D Hilbert space with orthonormal basis
](}) [ ........... ) | 1) =l

Non-Edge Existent Edge
i “Hollow” Gray l ! “Solid” Red i

G(t.n) - ® E
E‘”eEdgn(L,,,)

{G“ Hilbert Space of Lattice Graphs in Ly, |

20



|Quanfum Kno?s] '
{G("s")Hilbzr'f Space of Lattice Graphs inL,,,,i
= ® E

E¥e Ed;:es( L, ,,)

Orthonormal basis is:

{ ® l EY, L‘( E(z))\)
EoeifersLy,) '

e [:dgas( LM) ___){Q}'fay , Red }}

which is identified with

{ |G) l G lattice graphin L, }

| Quantum Knots | ;
[G& Hilbert Space of Lattice Graphs in Ly, |

G{E.n} - ® E

EYe Edg«'s( Ly ,,)

Orthonormal basis is:

{ |G} ‘ G lattice graphin L, }

I Quantum Knots |
fGWHilberf Space of Lattice Graphs in :,,. !

G(z.n) - ® E

Y% E:'d,';'cs( L _,,)

Orthonormal basis is:
{ |G) [ G lattice graphin L,, }

[K“r"-’Hilberf Space of quantum knots ]

K . Sub-Hilbert space of G“"with
orthonormal basis

{|K) 1 Ke K}

|An Example of a Quantum Knot |

|The Ambient Group A, as a Unitary Group

We identify each element ge A, with the
linear transformation defined by

K(l.n) s K(Ln)
k) - |ek)
Since each element ge A, is a permutation,

it is o linear transformation that simply
permutes basis elements.

Hence, under this identification, the ambient
group A,, becomes a discrete group of
unitary transfs on the Hilbert space KK“".

|An Example of the A,, Group Action|

& ‘ Vertex g
i ok .‘ [

|K)=

Wiggle
L':I"'(""~3)

\\/

1 (a3)(5))= !
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[The Quantum Knot System (K“".A, )]

Def. A guantum knot s!s?em;(K”J”,A&,,“) isa
quantum system havinglK'“" as its state space,
and having the Ambient group A,, as its set
of accessible unitary transformations.

The states of quantum system (K(""’,A,,n) are
quantum knots. The elements of the ambient
group 4(n) are guantum moves.

(K R, ) A A, )

i Physically | Physically Physically §
| Implementable | Implementable Implementable |

[ The Quantum Knot System (KA ]
( K‘“”,AM) :')' : :—)( K“’")‘/'At.n)'l_)( K(LM}'A‘&M ) :'). -
‘f‘ A

Physically %’ Physically Physically
Implementable . § bi Tepl :

Choosing integers/ and n is analogous to
choosing respectively the thickness and the
length of the rope. The smalier the thickness
and the longer the rope, the more knots that
can be tied.

The parameters (wiggle, wag, & fug) of the
ambient group A, are the “knobs” one turns
to spacially manipulate the quantum knot.

[Quantum Knot Type

Def. Two quantum knots |K ) and |K,) are
of the same knot (£,n)-type, written

!K|>'[ !Kz>’

provided there is an element ge A, s.t.
glK)=|K)
They are of the same knot type, written
K.}~ K2,

provided there are integer £'.n'2 0 such that
" atn' -
Qlt tK‘>l:t‘Qll Iﬁ1>

Two Quantum Knots of the Same Knot Type

o D+

&y

A

Seltay
Wiggle ' ‘[2_

Dm(“ﬂ’:‘)

100

(e300

[5h+
LB

| Two Quantum Knots NOT of the Same Knot Type |

Hamiltonians
of the

Generators
of the

Ambient Group
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| Hamiltonians for 4(n) |

Each generator g€ A, is the product of
disjoint transpositions, i.e.,

g= (g Kp ) (Kopokip) (Ko Ko )
Choose a permutation 77 so that
ﬂ—‘gﬂz(KwKz)([{39K4)"'(Kr—1’1"r)

Hence, ( o, )

P 01
g f where o, =( )

L 1’(‘”“') ?m:dim !E;"?;"T)‘g

rr‘xﬂ=1
i

|Hami|1‘onicms for A(n) | ;

1.0
Also, let 0’0{0 1) . and note that

ln(a{)z%’f(z.sn)(apa,), el

For simplicity, we olways choose the branch 5= 0.

H, = —-inln(n“gn)n“

z (1.®(0,~0)) 0 .
=27 0 0 J
2 (d(zm)-2rpd (£ n)-2r)

Bl ’Mutrix fog def

[The Log of a Unitary Matrix|

Let U be an arbitrary finite rxr unitary
matrix.

Then eigenvalues of U all lie on the unit
circle in the complex plane.

Moreover, there exists a unitary matrix W
which diagonalizes U, i.e., there exists a
unitary matrix W such that

wuw ' = A(eia’ 2%, e )

where ¢ ¢® _¢% are the eigenvalues of U.

[The Log of a Unitary Matrix|

Then -
in(U)=w"A(In(e”),In(e™),....In(e" )) w

8, . . -
Since l“(e ')=’3i+2m"/‘ , where n,€Z
is an arbitrary integer, we have

In(U)=iW"A(6, +27n,.6, + 2zn,....0, + 27n, )W

where #,.1,,....0,€ Z

[The Log of a Unitary Matrix|

Since ¢ = iA"’ /(m!) , we have

m=4
eln(L-'} = ew"'A(lnlﬂ, oadnif, YW
- P’/—I-‘,’A(m"a‘ ,...Jniﬂr)wr
- IV"A((I‘"M . _.eluiﬁ, ) 1%

=W A(eiﬂﬁ-lﬂ‘in] " "ei(),-rz;rin, ) w

=WIA(",...0e™ w=u

[BlBack

[ |Hamiltonians for A, N (a“)

" Using the ',tr{ami§foniun for the wiggle move

o7 & ]

and the initial state | | ‘I

we have that the solution to Schroedinger's
equation for time 7 is .

"-0> um.{.‘%)l b >
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Observables

which are

Quantum Knot
Invariants

|Observable Q. Knot Invariants |

Question. What do we mean by a
physically observable knot invariant ?

Le‘t&K“"” A, ) be a quantum knot system.
Then a quantum observable (} is a Hermitian
operator on the Hilbert space .

|Observable Q. Knot Invariants

uestion. But which observables {3 are
actually knot invariants ?

Def. An observable £ is an invariant of

quantum knots provided U ' = Q for
all UEA

lObser-vable Q. Knot Invariants |

Question. But how do we find quantum knot
invariant obsgrvqbles 2

Theorem. Leti(K{""'aAg,n) be a quantum
knot system, and let

K-,

be a decomposmon of the represenfahon
A xK(l.n} - Kl S0y
into irreducible representations .

Then, for each r. the projection opemtar P

for the subspace W isa quamum knot
observable.

{Observable Q. Knot Invariants |

Theorem. Let (K‘“” A,,,} be a quantum
knot system, and let O be an observable

on K%, Let St(Q) be the stabilizer
subgroup for () .,

st(Q)={ve A(n) -vau=-n}

Then the observable
vau!
Uehy, 5y
is a quantum knot invariant, where the

above sum is over a complete set of coset
representatives of St(ﬂy in A,

[Observable Q. Knot Invariants |

InK'“" , the following is an example of an
memnsable qunn'tum knot invariant
observable:

nglaﬁljll(a >< F‘” ");*'Z]apm ><3Flf“(a”’)|

where 97,”(¢) denotes the boundary of the
face F*(a) -
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Future Directions
&

Open Questions

]Fufure Directions & Open Questions |

° What is the structure of the ambient groups
Ay Ay Ay Ay, and their direct limits ?
Can one find a presentation of these groups ?
Are they Coxeter groups?

* Exactly how are the lattice and the mosaic
ambient groups related fo one ancther.

[Future Directions & Open Questions |

® Unlike classical knots, quantum knots can
-exhibit the non-classical behavior of
quantum superposition and quantum
-entanglement. Are quantum and topological
entanglement related to one another ?

If so, how ?

[Future Directions & Open Questions I '

* How does one find a quantum observable for
the Jones polynomial ? This would be a family
of observables parameterized by points on the
circle in the complex plane. poes this

approach lead to an algorithmic improvement
to the quantum algorithm created by
Aharonov, Jones, and Landau ?

® How does one create quantum knot
observables that represent other knot
invariants such as, for example, the Vassiliev
invariants ? :

|Future Directions & Open Questions |

® What is gained by extending the definition
of quantum knot observables o POVMs ?

® What is gained by extending the definition
of quantum knot observables to mixed
ensembles ?

 |[Future Directions & Open Questions |

Def. We define the Inﬁiéé’numbér of a ‘kno"l"
K as the smallest integer n for which K is

~ representable as a lattice knot of order (£=0,n)

How does one compute the lattice number of
a knot? How does one find o quantum
observable for the lattice number?

_ How is the lattice number related Yo the

mosaic number of o knot?
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|Future Directions & Open Questions |

Quantum Knot Tomography: Given many
copies of the same quanfum knot, find
the most efficient set of measurements
that will determine the quantum knot fo a
chosen tolerance £>0 .

Quantum Braids: Use lattices to define
quantum braids. How are such quantum
braids related to the work of Freedman,
Kitaev, et al on anyons and topological
quantum computing?

|Future Directions & Open Questions |

® Can quantum knot systems be used to model

and predict the behavior of

= Quantum vortices in supercooled helium 2 ?

= Quantum vortices in the Bose-Einstein
Condensate

= Frfacﬂond! charge quantification that is
manifest in the fractional quantum Hall
effect

UMBC
Quantum Knots
Research Lab

We at UMBC are very proud of our
new state of the art Quontum Knots
Research Laboratory.

We have just purchased some of the
latest and most advanced equipment
in quantum knots research il
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