Feb 3, 2010: Chapter 2

Note Title 2/3/20

Goal: Classify knots in the torus.

$$\pi_1(T^2) = Z + Z \text{ since } T^2 = S^1 \times S^1$$

$$<1,0> = longitude = L$$

$$<0, 1> = meridian = M$$

Thus if f: $S^1 \rightarrow T^2$ is an embedding (ie a knot), then f is homotopic to <a, b> = aL + bM.

Thm 2C2: $\langle a, b \rangle$ is represented by an embedding iff a = b = 0 or gcd(a, b) = 1.

universal cover of the torus

Claim: K and K' are ambient is $\cot o$ pic in T^2 iff = (a, b) = K' where a = b = 0 or gcd(a, b) = 1.

Proof (→) Obvious.

(←) This direction requires several lemmas.

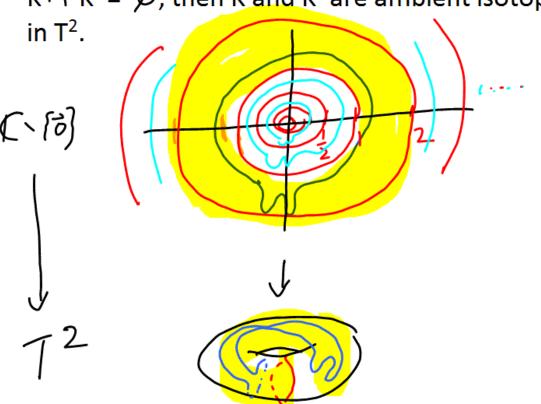
Recall K_1 and K_2 are ambient isotopic in M if there exists a map h: M x [0, 1] \rightarrow M such that

- 0.) h_t is a homeomorphism for all t in [0, 1] where h_t : $M \rightarrow M$, $h_t(x) = h(x, t)$.
- 1.) $h_0 = identity$
- 2.) $h_1(K_1) = K_2$

Recall K_1 and K_2 are homotopic in M if there exists a continuous map h: $S^1 \times [0, 1] \rightarrow M$ such that

- 1.) $h_0 = K_1$
- 2.) $h_1 = K_2$

Lemma 2C3: If K, K' of class <0, 1> and $K \cap K' = \not D$, then K and K' are ambient isotopic



Lemma 2C5: If K of class <0, 1> such that K \(\hat{M}\)M in a finite number of points, then K is ambient isotopic to M.

Thm 2C8: Any two knots of class <0, 1> are ambient isotopic.

Proof: Exercise 2C9

2C10: Twist homeomorphisms

$$h_L(e^{ix}, e^{iy}) = (e^{i(x+y)}, e^{iy})$$
 "longitudinal twist"

$$h_M(e^{ix}, e^{iy}) = (e^{ix}, e^{i(x+y)})$$
 "meridinal twist"

Note
$$h_L(<1, 0>) = <1, 0>$$
, $h_L(<0, 1>) = <1, 1>$
 $h_M(<1, 0>) = <1, 1>$, $h_M(<0, 1>) = <0, 1>$

Tf(a,b)=(0,0)=)HWHandle decomposition:

Let
$$B^n = \{ x \text{ in } R^n : ||x|| < 1 \}$$

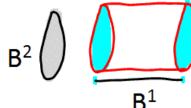
A k-handle = $B^k \times B^{n-k}$ with gluing surface B^k .

Ex: in R³,

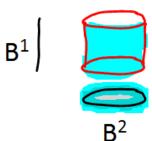
O-handle: $B^0 \times B^3 = 3$ -ball

B⁰

1-handle: $B^1 \times B^2 = 3$ -ball



2-handle: $B^2 \times B^1 = 3$ -



3-handle: $B^3 \times B^0 = 3$ -ball