HW (due this Friday) 1.2: 25, 26, 29, 34, 36, 38; 1.3 : $8,10,14,17,20,25,28 ; 1.4: 4,10,12,13,17,19,25$; 1.5: $3,8,9,15,20$

Find an equation of the line containing the point \mathbf{p} and is parallel to the vector a

Find an equation of the plane containing the point \mathbf{p} and containing the vectors \mathbf{a} and \mathbf{b}

Find the equation of the plane containing the points $(1,2,3),(5,4,7),(0,0,6)$.

Normal form:

Find the equation of the plane containing the point \mathbf{p} and orthogonal to the vector \mathbf{n}

Find the equation of the plane containing the points $(1,2,3),(5,4,7),(0,0,6)$.
$\mathbf{n} \cdot[(\mathbf{x}-\mathbf{p})]=0$
$\left(n_{1}, n_{2}, n_{3}\right) \cdot\left[\left(x_{1}, x_{2}, x_{3}\right)-\left(p_{1}, p_{2}, p_{3}\right)\right]=0$
$\left(n_{1}, n_{2}, n_{3}\right) \cdot\left(x_{1}-p_{1}, x_{2}-p_{2}, x_{3}-p_{3}\right)=0$
$n_{1}\left(x_{1}-p_{1}\right)+n_{2}\left(x_{2}-p_{2}\right)+n_{3}\left(x_{3}-p_{3}\right)=0$
$n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}=n_{1} p_{1}+n_{2} p_{2}+n_{3} p_{3}$
Equation of a plane in R^{3} in normal form:

$$
A x+B y+C z=D
$$

Equation of plane in other form $\mathbf{x}=s \mathbf{a}+t \mathbf{b}+\mathbf{p}$

Find the intersection of the planes $x-2 y+5 z=0$ and $3 x+4 y=0$

Find the distance between the point $(1,2,3)$ and the line $\mathbf{x}=t(4,2,5)+(0,6,2)$

