Final Exam May 13, 2009 SHOW ALL WORK
Math 28 Calculus III Either circle your answers or place on answer line.

Choose 8 out of the following 10 problems: Clearly indicate which 8 problems you choose. 7 of these problems will be worth 14 points. The 8 th problem will be worth 7 points (2 points +5 points extra credit). You may do all problems. If you do not correctly choose your top 8 problems, I may change your choices (with a small penalty) if it improves your grade.

My 8th choice (worth 7 points) is \qquad
Do not grade the following 2 problem(s): \qquad
Problems 1-4 or 5 will come from chapters 1-4. The problems will be "randomly" chosen, but extra weight will be given to the following sections:

Tangent (hyper-)planes/linear approximations
2.5 Chain rule
2.6 Directional derivative
3.3 Vector Field
4.2 Extrema
4.4 Lagrange Multiplier

The next 4-5 problems will come from chapters 5-7.
Problem 10.) Prove either (A) or (B). Clearly indicate your choice.

You may bring a 3×5 card to the exam. You may write on both sides of this card.

Scalar Line Integrals:
Let $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ be a C^{1} path. $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, a scalar field.
$\Delta s_{k}=$ length of kth segment of path
$=\int_{t_{k-1}}^{t_{k}}\left\|\mathbf{x}^{\prime}(t)\right\| d t=\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\|\left(t_{k}-t_{k-1}\right)=\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\| \Delta t_{k}$ for some $t_{k}^{* *} \in\left[t_{k-1}, t_{k}\right]$
$\int_{\mathbf{x}} f d s \sim \sum_{i=1}^{n} f\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \Delta s_{k}=\sum_{i=1}^{n} f\left(\mathbf{x}\left(t_{k}^{*}\right)\right)\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\| \Delta t_{k}$
Thus $\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t$

Scalar Surface integral

$$
\begin{aligned}
& \text { Suppose } S=X(D) \\
& \begin{aligned}
\iint_{S} f d S= & \lim _{\Delta A_{k} \rightarrow 0} \Sigma f\left(\mathbf{c}_{k}\right) \Delta A_{k} \\
& =\iint_{D} f(X(s, t))\left\|T_{s} \times T_{t}\right\| d s d t \\
& =\iint_{D} f(X(s, t))\|N(s, t)\| d s d t
\end{aligned}
\end{aligned}
$$

Vector Line integrals:
Let $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ be a C^{1} path. $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, a vector field.
$\mathrm{x}^{\prime}\left(t_{k}^{*}\right) \sim \frac{\Delta \mathbf{x}_{k}}{\Delta t_{k}}$
$\int_{\mathbf{x}} F \cdot d s \sim \sum_{i=1}^{n} F\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \cdot \Delta \mathbf{x}_{k}=\sum_{i=1}^{n} F\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \cdot \mathbf{x}^{\prime}\left(t_{k}^{*}\right) \Delta t_{k}$

Thus $\int_{\mathbf{x}} F \cdot d s=\int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t$
$=$ work done by F on particle as particle moves along path \mathbf{x} and F represents a force field.
$=\int_{\mathbf{x}} F(\mathbf{x}(t)) \cdot T(t) d s$ where T is unit tangent to \mathbf{x}.
$=$ scalar line integral of the tangential component of F along path \mathbf{x}.
$=$ circulation of F along \mathbf{x} when \mathbf{x} is a closed curve.

If F is conservative and
if $A=$ the initial point of \mathbf{x} and $B=$ the terminal point of \mathbf{x}, then $\int_{\mathbf{x}} F \cdot d s=f(B)-f(A)=$ total change.

Note the scalar line integral $\int_{C} F \cdot \mathbf{n} d s=$ flux across C where \mathbf{n} is the unit normal to C in the direction of interest. 6.2 Divergence Thm in the Plane $\int_{\partial S} F \cdot \mathbf{n} d s=\iint_{S}[\nabla \cdot F] d A$

Vector Surface integral

$$
\begin{aligned}
\iint_{X} F & \cdot d S=\iint_{X} F(X(s, t)) \cdot N(s, t) d s d t=\iint_{X}(F \cdot \mathbf{n}) d S \\
& =\text { flux of } F \text { across } S \\
& =\frac{\text { volume of fluid flowing thru } S}{\text { unit time }} \\
& =\text { rate of fluid flow thru } S
\end{aligned}
$$

where F is a velocity vector field of a fluid.

