Scalar Line Integrals:
Let $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ be a C^{1} path. $f: \mathbf{R}^{n} \rightarrow R$, a scalar field.
$\Delta s_{k}=$ length of kth segment of path

$$
=\int_{t_{k-1}}^{t_{k}}\left\|\mathbf{x}^{\prime}(t)\right\| d t=\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\|\left(t_{k}-t_{k-1}\right)=\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\| \Delta t_{k}
$$ for some $t_{k}^{* *} \in\left[t_{k-1}, t_{k}\right]$

$\int_{\mathbf{x}} f d s \sim \sum_{i=1}^{n} f\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \Delta s_{k}=\sum_{i=1}^{n} f\left(\mathbf{x}\left(t_{k}^{*}\right)\right)\left\|\mathbf{x}^{\prime}\left(t_{k}^{* *}\right)\right\| \Delta t_{k}$

$$
\text { Thus } \int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

Vector Line integrals:
Let $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ be a C^{1} path. $F: \mathbf{R}^{n} \rightarrow R^{n}$, a vector field.
$\mathbf{x}^{\prime}\left(t_{k}^{*}\right) \sim \frac{\Delta \mathbf{x}_{k}}{\Delta t_{k}}$
$\int_{\mathbf{x}} F \cdot d s \sim \sum_{i=1}^{n} F\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \cdot \Delta \mathbf{x}_{k}=\sum_{i=1}^{n} F\left(\mathbf{x}\left(t_{k}^{*}\right)\right) \cdot \mathbf{x}^{\prime}\left(t_{k}^{*}\right) \Delta t_{k}$
Thus $\int_{\mathbf{x}} F \cdot d s=\int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t$

Other Formulations of Vector Line integrals:
The tangent vector to \mathbf{x} at t is $T(t)=\frac{\mathbf{x}^{\prime}(t)}{\left\|\mathbf{x}^{\prime}(t)\right\|}$
$\int_{\mathbf{x}} F \cdot d s=\int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) \frac{\left\|\mathbf{x}^{\prime}(t)\right\|}{\left\|\mathbf{x}^{\prime}(t)\right\|} d t=$
$\int_{a}^{b} F(\mathbf{x}(t)) \cdot T(t)\left\|\mathbf{x}^{\prime}(t)\right\| d t=\int_{\mathbf{x}} F(\mathbf{x}(t)) \cdot T(t) d s$
Note $\int_{a}^{b} F(\mathbf{x}(t)) \cdot T(t) d s$ is a scalar line integral of the scalar field $F \cdot T: \mathbf{R}^{n} \rightarrow \mathbf{R}$ over the path \mathbf{x}.

Note: $F \cdot T$ is the tangential component of F along the path \mathbf{x}.
Another notation (differential form):
For simplicity, we will work in \mathbf{R}^{2}, but the following generalizes to any dimension.

Let $\mathbf{x}(t)=(x(t), y(t))$. Let $F(x, y)=(M(x, y), N(x, y))$
$x=x(t), y=y(t)$. Also $x^{\prime}(t)=\frac{d x}{d t}, y^{\prime}(t)=\frac{d y}{d t}$

$$
\begin{gathered}
\int_{\mathbf{x}} F \cdot d s=\int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t \\
=\int_{a}^{b}(M(x, y), N(x, y)) \cdot\left(x^{\prime}(t), y^{\prime}(t)\right) d t \\
=\int_{a}^{b} M(x, y) x^{\prime}(t) d t+N(x, y) y^{\prime}(t) d t \\
=\int_{\mathbf{x}} M(x, y) d x+N(x, y) d y
\end{gathered}
$$

Definitions:

A curve is the image of piecewise C^{1} path $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$.

A curve is simple if it has no self-intersections; that is, \mathbf{x} is $1: 1$ on the open interval (a, b)

A path is closed if $\mathbf{x}(a)=\mathbf{x}(b)$
A curve is closed if $\mathbf{x}(a)=\mathbf{x}(b)$
$\int_{\mathbf{x}} F \cdot d s$ is called the circulation of f along \mathbf{x} if \mathbf{x} is a closed path.

A parametrization of a curve C is a path whose image is C. Normally we will require a parametrization of a curve to be 1:1 where possible.

A piecewise C^{1} path $\mathbf{y}:[c, d] \rightarrow \mathbf{R}^{n}$ is a reparametrization of a piecewise C^{1} path $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ if there exists a bijective C^{1} function $u:[c, d] \rightarrow[a, b]$ where the inverse of u is also C^{1} and $\mathbf{y}=\mathbf{x} \circ u$ (i.e., $\mathbf{y}(t)=\mathbf{x}(u(t))$).

Note that either
1.) $u(a)=c$ and $u(b)=d$. In this case, we say that \mathbf{y} (and u are orientation-preserving OR
2.) $u(a)=d$ and $u(b)=c$. In this case, we say that \mathbf{y} (and u are orientation-reversing.

Given piecewise C^{1} path, $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$, the opposite path is $\mathbf{x}_{\text {opp }}:[a, b] \rightarrow \mathbf{R}^{n} \mathbf{x}_{\text {opp }}=\mathbf{x}(a+b-t)$

That is $\mathbf{x}_{\text {opp }}$ is an orientation-reversing reparametrization of \mathbf{x} where $u[a, b] \rightarrow[a, b], u(t)=a+b-t$.

Thm: Let $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ be a piecewise C^{1} path and let $\mathbf{y}:[c, d] \rightarrow \mathbf{R}^{n}$ be a reparametrization of \mathbf{x}. Then
if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is continuous, then $\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s$ if $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is continuous, then

$$
\begin{aligned}
& \int_{\mathbf{y}} F \cdot d s=\int_{\mathbf{x}} F \cdot d s \text { if } \mathbf{y} \text { is orientation-preserving. } \\
& \int_{\mathbf{y}} F \cdot d s=-\int_{\mathbf{x}} F \cdot d s \text { if } \mathbf{y} \text { is orientation-reversing. }
\end{aligned}
$$

