Scalar Line Integrals:

Let $\mathbf{x} : [a, b] \to \mathbf{R}^n$ be a C^1 path. $f : \mathbf{R}^n \to R$, a scalar field. $\begin{aligned} \Delta s_k &= \text{length of kth segment of path} \\ &= \int_{t_{k-1}}^{t_k} ||\mathbf{x}'(t)|| dt = ||\mathbf{x}'(t_k^{**})||(t_k - t_{k-1}) = ||\mathbf{x}'(t_k^{**})|| \Delta t_k \\ &\text{ for some } t_k^{**} \in [t_{k-1}, t_k] \end{aligned}$ $\begin{aligned} \int_{\mathbf{x}} f \ ds \sim \sum_{i=1}^n f(\mathbf{x}(t_k^*)) \Delta s_k &= \sum_{i=1}^n f(\mathbf{x}(t_k^*)) ||\mathbf{x}'(t_k^{**})|| \Delta t_k \\ &\text{ Thus } \int_{\mathbf{x}} f \ ds &= \int_a^b f(\mathbf{x}(t)) ||\mathbf{x}'(t)|| dt \end{aligned}$

Vector Line integrals:

Let $\mathbf{x} : [a, b] \to \mathbf{R}^n$ be a C^1 path. $F : \mathbf{R}^n \to R^n$, a vector field.

 $\mathbf{x}'(t_k^*) \sim \frac{\Delta \mathbf{x}_k}{\Delta t_k}$ $\int_{\mathbf{x}} F \cdot ds \sim \sum_{i=1}^n F(\mathbf{x}(t_k^*)) \cdot \Delta \mathbf{x}_k = \sum_{i=1}^n F(\mathbf{x}(t_k^*)) \cdot \mathbf{x}'(t_k^*) \Delta t_k$ Thus $\int_{\mathbf{x}} F \cdot ds = \int_a^b F(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$

Other Formulations of Vector Line integrals:

The tangent vector to **x** at t is $T(t) = \frac{\mathbf{x}'(t)}{||\mathbf{x}'(t)||}$

$$\int_{\mathbf{x}} F \cdot ds = \int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = \int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \frac{||\mathbf{x}'(t)||}{||\mathbf{x}'(t)||} dt = \int_{a}^{b} F(\mathbf{x}(t)) \cdot T(t) ||\mathbf{x}'(t)|| dt = \int_{\mathbf{x}} F(\mathbf{x}(t)) \cdot T(t) ds$$

Note $\int_{a}^{b} F(\mathbf{x}(t)) \cdot T(t) ds$ is a scalar line integral of the scalar field $F \cdot T : \mathbf{R}^{n} \to \mathbf{R}$ over the path \mathbf{x} .

Note: $F \cdot T$ is the tangential component of F along the path \mathbf{x} .

Another notation (differential form):

For simplicity, we will work in \mathbb{R}^2 , but the following generalizes to any dimension.

Let
$$\mathbf{x}(t) = (x(t), y(t))$$
. Let $F(x, y) = (M(x, y), N(x, y))$
 $x = x(t), y = y(t)$. Also $x'(t) = \frac{dx}{dt}, y'(t) = \frac{dy}{dt}$

$$\int_{\mathbf{x}} F \cdot ds = \int_{a}^{b} F(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$$
$$= \int_{a}^{b} (M(x, y), N(x, y)) \cdot (x'(t), y'(t)) dt$$
$$= \int_{a}^{b} M(x, y) x'(t) dt + N(x, y) y'(t) dt$$
$$= \int_{\mathbf{x}} M(x, y) dx + N(x, y) dy$$

Definitions:

A curve is the image of piecewise C^1 path $\mathbf{x} : [a, b] \to \mathbf{R}^n$.

A curve is *simple* if it has no self-intersections; that is, \mathbf{x} is 1:1 on the open interval (a, b)

A path is *closed* if $\mathbf{x}(a) = \mathbf{x}(b)$

A curve is *closed* if $\mathbf{x}(a) = \mathbf{x}(b)$

 $\int_{\mathbf{x}} F \cdot ds$ is called the *circulation* of f along \mathbf{x} if \mathbf{x} is a closed path.

A parametrization of a curve C is a path whose image is C. Normally we will require a parametrization of a curve to be 1:1 where possible.

A piecewise C^1 path $\mathbf{y} : [c, d] \to \mathbf{R}^n$ is a reparametrization of a piecewise C^1 path $\mathbf{x} : [a, b] \to \mathbf{R}^n$ if there exists a bijective C^1 function $u : [c, d] \to [a, b]$ where the inverse of u is also C^1 and $\mathbf{y} = \mathbf{x} \circ u$ (i.e., $\mathbf{y}(t) = \mathbf{x}(u(t))$).

Note that either

1.) u(a) = c and u(b) = d. In this case, we say that **y** (and *u* are orientation-preserving OR

2.) u(a) = d and u(b) = c. In this case, we say that **y** (and *u* are orientation-reversing.

Given piecewise C^1 path, $\mathbf{x} : [a, b] \to \mathbf{R}^n$, the opposite path is $\mathbf{x}_{opp} : [a, b] \to \mathbf{R}^n \ \mathbf{x}_{opp} = \mathbf{x}(a + b - t)$

That is \mathbf{x}_{opp} is an orientation-reversing reparametrization of \mathbf{x} where $u[a, b] \rightarrow [a, b], u(t) = a + b - t$.

Thm: Let $\mathbf{x} : [a, b] \to \mathbf{R}^n$ be a piecewise C^1 path and let $\mathbf{y} : [c, d] \to \mathbf{R}^n$ be a reparametrization of \mathbf{x} . Then

if $f: \mathbf{R}^n \to \mathbf{R}$ is continuous, then $\int_{\mathbf{v}} f \, ds = \int_{\mathbf{x}} f \, ds$

if $F: \mathbf{R}^n \to \mathbf{R}^n$ is continuous, then

$$\int_{\mathbf{y}} F \cdot ds = \int_{\mathbf{x}} F \cdot ds \text{ if } \mathbf{y} \text{ is orientation-preserving.}$$
$$\int_{\mathbf{y}} F \cdot ds = -\int_{\mathbf{x}} F \cdot ds \text{ if } \mathbf{y} \text{ is orientation-reversing.}$$