Calc 1 review: Chain rule
Suppose $z=f(y)$ and $y=g(x)$. Then $z=(f \circ g)(x)$
$\frac{d z}{d y}=f^{\prime}(y) \quad \frac{d y}{d x}=g^{\prime}(x) \quad \frac{d z}{d x}=(f \circ g)^{\prime}(x)$
Chain rule $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
$\frac{d z}{d x}=(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)=\frac{d z}{d y} \frac{d y}{d x}$
Thus $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$

Example: The area of a rectangle is given by the function $A: \mathbf{R}^{2} \rightarrow \mathbf{R}, A(l, w)=l w$

Suppose the length of a rectangle is changing with time according to the function $l(t)=t^{2}$.

Suppose the width of a rectangle is changing with time according to the function $w(t)=\sin (t)$.

We can combine these two functions for l and w into a function $F: \mathbf{R} \rightarrow \mathbf{R}^{2}$ where $F(t)=$

Thus the area of a rectangle is changing with time according to the function:

At time $t=3$,

The length of the rectangle is
The width of the rectangle is
The area of the rectangle is
The rate of change of the length of the rectangle at $t=3$ is

The rate of change of the width of the rectangle at $t=3$ is

The rate of change of the area of the rectangle at $t=3$ is

Example: The area of a rectangle is given by the function
$A: \mathbf{R}^{2} \rightarrow \mathbf{R}, A(l, w)=l w$
Suppose the length of a rectangle is changing with time according
to some unknown function $l: \mathbf{R} \rightarrow \mathbf{R}$
Suppose the width of a rectangle is changing with time according
to some unknown function $w: \mathbf{R} \rightarrow \mathbf{R}$
We can combine these two functions for l and w into a function
$F: \mathbf{R} \rightarrow \mathbf{R}^{2}$ where $F(t)=$
Suppose at time $t=3$, the length of the rectangle is 10 m and the width is 8 m . Suppose also that at time $t=3$, the length is decreasing at a rate of $4 \mathrm{~m} / \mathrm{sec}$ while the width is increasing at a rate of $5 \mathrm{~m} / \mathrm{sec}$. Find the rate of change of the area of the rectangle at $t=3$.

