2.4 Higher order derivatives:

$\frac{\partial^2 f}{\partial x_{i_1} \partial x_{i_2}} = \frac{\partial}{\partial x_{i_1}} \left(\frac{\partial}{\partial x_{i_2}}\right)$	$\frac{1}{2}(f))$	
Ex: Let $f(x, y, z) =$	$x^2 ln(yz)$	
$\frac{\partial f}{\partial x} =$	$rac{\partial f}{\partial y} =$	$\frac{\partial f}{\partial z} =$
$\frac{\partial^2 f}{\partial x^2} =$	$\frac{\partial^2 f}{\partial x \partial y} =$	$\frac{\partial^2 f}{\partial z \partial y} =$
$\frac{\partial^3 f}{\partial x^3} =$	$rac{\partial^3 f}{\partial x^2 \partial z} =$	$rac{\partial^3 f}{\partial x \partial y \partial z} =$

Defn: Let V be a nonempty open subset of \mathbb{R}^n , $f: V \to \mathbb{R}^m$, $p \in \mathbb{N}$.

i.) f is C^p on V is each partial derivative of order $k \leq p$ exists and is continuous on V.

ii.) f is C^{∞} on V if f is C^p on V for all $p \in \mathbb{N}$ (f is smooth). Ex: g(x, y) = (x + y, x)

Cor 1.7 If $f \in C^r$ on U, then $\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} = \frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}}$ where (j_1, j_2, \dots, j_k) is a permutation of (i_1, i_2, \dots, i_k)