2.4 Higher order derivatives:
$\frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{2}}}=\frac{\partial}{\partial x_{i_{1}}}\left(\frac{\partial}{\partial x_{i_{2}}}(f)\right)$
Ex: Let $f(x, y, z)=x^{2} \ln (y z)$
$\frac{\partial f}{\partial x}=$
$\frac{\partial f}{\partial y}=$

$$
\frac{\partial f}{\partial z}=
$$

$\frac{\partial^{2} f}{\partial x^{2}}=$
$\frac{\partial^{2} f}{\partial x \partial y}=$

$$
\frac{\partial^{2} f}{\partial z \partial y}=
$$

$\frac{\partial^{3} f}{\partial x^{3}}=$
$\frac{\partial^{3} f}{\partial x^{2} \partial z}=$
$\frac{\partial^{3} f}{\partial x \partial y \partial z}=$

Defn: Let V be a nonempty open subset of $R^{n}, f: V \rightarrow R^{m}$, $p \in \mathbf{N}$.
i.) f is C^{p} on V is each partial derivative of order $k \leq p$ exists and is continuous on V.
ii.) f is C^{∞} on V if f is C^{p} on V for all $p \in \mathbf{N}(f$ is smooth $)$.

Ex: $g(x, y)=(x+y, x)$

Cor 1.7 If $f \in C^{r}$ on U, then $\frac{\partial^{k} f}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k}}}=\frac{\partial^{k} f}{\partial x_{j_{1}} \partial x_{j_{2}} \ldots \partial x_{j_{k}}}$ where $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$

