Calculus I review:

Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$.
Recall the tangent line to $y=f(x)$ at $x=a$ is

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

Thus $y=f(a)+f^{\prime}(a)(x-a)$ is the best linear approximation of f near $x=a$.

Ex: Find the best linear approximation for $f(x)=2 x+5$.
Answer:

Note slope $=f^{\prime}(x)=2$.

Ex: Find the best linear approximation for $h(x)=x^{2}$ at $x=3$.
$h^{\prime}(x)=2 x$.
Thus slope of tangent line at $x=3$ is $h^{\prime}(3)=2(3)=6$.
Hence $\frac{y-9}{x-3}=6$
Equation of tangent line: $y=9+6(x-3)$

Estimate $h(3.1)$:

The gradient of $f: R^{n} \rightarrow R^{1}$ is denoted by

$$
\nabla f(\mathbf{a})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{a})\right)
$$

Defn: The Jacobian matrix of $f: R^{n} \rightarrow R^{m}$ at a is

$$
D f(\mathbf{a})=\left[\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})\right]_{m \times n}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a})
\end{array}\right]
$$

Thm: If f is differentiable at \mathbf{a}, then
1.) f is continuous at a.
2.) $\frac{\partial f_{i}}{\partial x_{j}}$ exists at \mathbf{a} for all i, j.
3.) The derivative of f at $\mathbf{a}=D f(\mathbf{a})$

$$
=\text { the Jacobian matrix of } f \text { at } \mathbf{a} \text {. }
$$

Thm: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)$. If $\frac{\partial f_{i}}{\partial x_{j}}$ exists and are continuous in a neighborhood of a for all i, j, then f is differentiable at a

